Skip to main content

Table 1 Clinical characteristics for training and testing sets

From: Predicting malignant risk of ground-glass nodules using convolutional neural networks based on dual-time-point 18F-FDG PET/CT

  

Training set

(n = 239, m = 318)

Testing set

(n = 72, m = 798)

p

Gender, n

Male

84

29

 
 

Female

155

43

0.56

Age (years, mean)

 

60.87

59.07

0.17

Smoking history, n

Yes

48

16

 
 

No

191

56

0.82

Lung cancer family history, n

Yes

41

15

 
 

No

198

57

0.59

GGOs risk Stratification

High risk

226

53

 
 

Low risk

92

26

0.58

GGOs Position

Left upper lobe

84

18

 
 

Left lower lobe

41

6

 
 

Right upper lobe

110

29

 
 

Right middle lobe

26

7

 
 

Right lower lobe

57

19

0.53

Early-phase PET

SUVmax

(kBq/ml/MBq/kg)

 

2.42

1.99

0.13

Delayed-phase PET SUVmax

(kBq/ml/MBq/kg)

 

3.03

2.46

0.17

GGOs diameter

 

17.88

16.67

0.20