Skip to main content

Table 2 Comparison of radiomics features between PD-L1 high and low expression groups in training set

From: An interpretable machine learning model based on computed tomography radiomics for predicting programmed death ligand 1 expression status in gastric cancer

Features

Radiomics feature value (Z-score normalization)

PD-L1 low

Expression (n = 73)

PD-L1 high

Expression (n = 70)

P value

wavele_HH_glcm_Idn

0.25 ± 0.99

-0.26 ± 0.95

0.002

wavele_HL_gldm_Dependence-Entropy

0.21 ± 0.98

-0.22 ± 0.97

0.009

wavele_HL_glszm_LargeAreaLowGrayLevelEmphasis

-0.18 ± 0.70

0.19 ± 1.21

0.005

wavele_LL_firstorder_Kurtosis

0.25 ± 1.24

-0.26 ± 0.56

0.009

wavele_LL_firstorder_Minimum

-0.29 ± 1.04

0.30 ± 0.87

< 0.001

wavele_LL_glcm_Idn

0.28 ± 0.96

-0.29 ± 0.97

< 0.001

wavele_LL_glcm_JointEntropy

0.25 ± 0.95

-0.27 ± 0.99

0.002

wavele_LL_glcm_Maximum-Probability

-0.22 ± 0.77

0.23 ± 1.16

0.015

wavele_LL_ngtdm_Busyness

-0.25 ± 0.73

0.26 ± 1.17

0.009

  1. Note: Data are presented as mean ± standard deviation, and compared using an independent t-test
  2. Abbreviations: CPS, combined positive score; glcm, gray level cooccurrence matrix; glszm, gray level size zone matrix; ngtdm, neighboring gray tone difference matrix