Skip to main content

Table 2 Model performance of different machine learning algorithms in each cohort

From: Preoperative prediction of WHO/ISUP grade of ccRCC using intratumoral and peritumoral habitat imaging: multicenter study

model_name

Cohort

Accuracy

AUC

95% CI

Sensitivity

Specificity

PPV

NPV

LR

Training

0. 740

0. 852

0. 805 - 0. 898

0. 772

0. 730

0.492

0. 904

LR

Validation

0. 724

0. 774

0. 684 - 0. 863

0. 652

0. 739

0.341

0. 911

LR

Testing

0. 642

0. 720

0. 553 - 0. 888

0. 750

0. 627

0.214

0. 949

RandomForest

Training

0. 798

0. 896

0. 861 - 0. 930

0. 810

0. 794

0.571

0. 925

RandomForest

Validation

0. 806

0. 852

0. 781 - 0. 924

0. 783

0. 811

0.462

0. 947

RandomForest

Testing

0. 687

0. 835

0. 717 - 0. 953

0. 750

0. 678

0.240

0. 952

XGBoost

Training

0. 840

0. 893

0. 857 - 0. 929

0. 810

0. 850

0.646

0. 930

XGBoost

Validation

0. 776

0. 846

0. 777 - 0. 915

0. 696

0. 793

0.410

0. 926

XGBoost

Testing

0. 731

0. 841

0. 734 - 0. 948

0. 625

0. 746

0.250

0. 936

LightGBM

Training

0. 814

0. 891

0. 854 - 0. 927

0. 861

0. 798

0.591

0. 944

LightGBM

Validation

0. 828

0. 877

0. 814 - 0. 941

0. 826

0. 829

0.500

0. 958

LightGBM

Testing

0. 687

0. 847

0. 725 - 0. 969

0. 875

0. 661

0.259

0. 975

  1. LR:Logistic Regression