Skip to main content

Table 3 Evaluation metrics of the models

From: Development and validation of machine learning models for predicting no. 253 lymph node metastasis in left-sided colorectal cancer using clinical and CT-based radiomic features

Model

AUC

ACC

SEN

SPE

PPV

NPV

Test set

      

Clinical model

0.694

0.654

0.808

0.577

0.488

0.857

CT model

0.663

0.705

0.462

0.827

0.571

0.754

Radiomics model

0.720

0.667

0.731

0.635

0.500

0.825

Combined model

0.663

0.590

0.885

0.442

0.442

0.885

Temporal validation set

      

Clinical model

0.743

0.644

0.867

0.533

0.481

0.889

CT model

0.629

0.644

0.933

0.500

0.483

0.938

Radiomics model

0.716

0.756

0.667

0.800

0.625

0.828

Combined model

0.800

0.800

0.800

0.800

0.667

0.889

  1. The model determines the optimal decision threshold by maximizing Youden’s Index
  2. AUC = area under the curve; ACC = accuracy; SEN = sensitivity; SPE = specificity; PPV = positive predictive value; NPV = negative predictive value