Classifier | Precision | Recall | Specificity | Accuracy | F1-Score | TP | FN | FP | TN | AUC |
---|---|---|---|---|---|---|---|---|---|---|
Cubic SVM | 0.760 | 0.826 | 0.760 | 0.792 | 0.792 | 19 | 4 | 6 | 19 | 0.870 |
Weighted KNN | 0.783 | 0.783 | 0.800 | 0.792 | 0.783 | 18 | 5 | 5 | 20 | 0.835 |
Fine KNN | 0.826 | 0.826 | 0.840 | 0.833 | 0.826 | 19 | 4 | 4 | 21 | 0.833 |
Cosine KNN | 0.714 | 0.870 | 0.680 | 0.771 | 0.784 | 20 | 3 | 8 | 17 | 0.814 |
Linear Discriminant | 0.923 | 0.522 | 0.960 | 0.750 | 0.667 | 12 | 11 | 1 | 24 | 0.807 |
Binary GLM Logistic Regression | 0.857 | 0.522 | 0.920 | 0.729 | 0.649 | 12 | 11 | 2 | 23 | 0.803 |
Medium KNN | 0.714 | 0.870 | 0.680 | 0.771 | 0.784 | 20 | 3 | 8 | 17 | 0.800 |
Cubic KNN | 0.714 | 0.870 | 0.680 | 0.771 | 0.784 | 20 | 3 | 8 | 17 | 0.794 |
Fine Tree | 0.741 | 0.870 | 0.720 | 0.792 | 0.800 | 20 | 3 | 7 | 18 | 0.788 |
Medium Tree | 0.741 | 0.870 | 0.720 | 0.792 | 0.800 | 20 | 3 | 7 | 18 | 0.788 |
Coarse Tree | 0.741 | 0.870 | 0.720 | 0.792 | 0.800 | 20 | 3 | 7 | 18 | 0.788 |
Fine Gaussian SVM | 0.750 | 0.522 | 0.840 | 0.688 | 0.615 | 12 | 11 | 4 | 21 | 0.779 |
Medium Gaussian SVM | 0.800 | 0.522 | 0.880 | 0.708 | 0.632 | 12 | 11 | 3 | 22 | 0.767 |
Gaussian Naive Bayes | 0.923 | 0.522 | 0.960 | 0.750 | 0.667 | 12 | 11 | 1 | 24 | 0.760 |
Coarse Gaussian SVM | 0.706 | 0.522 | 0.800 | 0.667 | 0.600 | 12 | 11 | 5 | 20 | 0.760 |
Quadratic Discriminant | 0.917 | 0.478 | 0.960 | 0.729 | 0.629 | 11 | 12 | 1 | 24 | 0.757 |
Quadratic SVM | 0.690 | 0.870 | 0.640 | 0.750 | 0.769 | 20 | 3 | 9 | 16 | 0.708 |
Linear SVM | 0.818 | 0.391 | 0.920 | 0.667 | 0.529 | 9 | 14 | 2 | 23 | 0.694 |
Kernel Naive Bayes | 0.875 | 0.609 | 0.920 | 0.771 | 0.718 | 14 | 9 | 2 | 23 | 0.692 |
Coarse KNN | NaN | 0.000 | 1.000 | 0.521 | NaN | 0 | 23 | 0 | 25 | 0.000 |