Skip to main content

Table 2 Performance of seizure prediction models using tumor location features for pediatric patients with supratentorial glioma

From: Morphometric and radiomics analysis toward the prediction of epilepsy associated with supratentorial low-grade glioma in children

Classifier

Precision

Recall

Specificity

Accuracy

F1-Score

TP

FN

FP

TN

AUC

Cubic SVM

0.760

0.826

0.760

0.792

0.792

19

4

6

19

0.870

Weighted KNN

0.783

0.783

0.800

0.792

0.783

18

5

5

20

0.835

Fine KNN

0.826

0.826

0.840

0.833

0.826

19

4

4

21

0.833

Cosine KNN

0.714

0.870

0.680

0.771

0.784

20

3

8

17

0.814

Linear Discriminant

0.923

0.522

0.960

0.750

0.667

12

11

1

24

0.807

Binary GLM Logistic Regression

0.857

0.522

0.920

0.729

0.649

12

11

2

23

0.803

Medium KNN

0.714

0.870

0.680

0.771

0.784

20

3

8

17

0.800

Cubic KNN

0.714

0.870

0.680

0.771

0.784

20

3

8

17

0.794

Fine Tree

0.741

0.870

0.720

0.792

0.800

20

3

7

18

0.788

Medium Tree

0.741

0.870

0.720

0.792

0.800

20

3

7

18

0.788

Coarse Tree

0.741

0.870

0.720

0.792

0.800

20

3

7

18

0.788

Fine Gaussian SVM

0.750

0.522

0.840

0.688

0.615

12

11

4

21

0.779

Medium Gaussian SVM

0.800

0.522

0.880

0.708

0.632

12

11

3

22

0.767

Gaussian Naive Bayes

0.923

0.522

0.960

0.750

0.667

12

11

1

24

0.760

Coarse Gaussian SVM

0.706

0.522

0.800

0.667

0.600

12

11

5

20

0.760

Quadratic Discriminant

0.917

0.478

0.960

0.729

0.629

11

12

1

24

0.757

Quadratic SVM

0.690

0.870

0.640

0.750

0.769

20

3

9

16

0.708

Linear SVM

0.818

0.391

0.920

0.667

0.529

9

14

2

23

0.694

Kernel Naive Bayes

0.875

0.609

0.920

0.771

0.718

14

9

2

23

0.692

Coarse KNN

NaN

0.000

1.000

0.521

NaN

0

23

0

25

0.000

  1. AUC, area under receiver operating characteristic curve; FN: False Negative; FP: False Positive; GLM: Generalized linear models; KNN: k-nearest neighbors; SVM: Support Vector Machines; TN: True Negative TP: True Positive