Classifier | Precision | Recall | Specificity | Accuracy | F1-Score | TP | FN | FP | TN | AUC |
---|---|---|---|---|---|---|---|---|---|---|
Coarse Gaussian SVM | 0.800 | 0.870 | 0.800 | 0.833 | 0.833 | 20 | 3 | 5 | 20 | 0.859 |
Medium KNN | 0.850 | 0.739 | 0.880 | 0.813 | 0.791 | 17 | 6 | 3 | 22 | 0.851 |
Linear Discriminant | 0.800 | 0.870 | 0.800 | 0.833 | 0.833 | 20 | 3 | 5 | 20 | 0.845 |
Linear SVM | 0.800 | 0.870 | 0.800 | 0.833 | 0.833 | 20 | 3 | 5 | 20 | 0.833 |
Weighted KNN | 0.792 | 0.826 | 0.800 | 0.813 | 0.809 | 19 | 4 | 5 | 20 | 0.833 |
Cubic KNN | 0.762 | 0.696 | 0.800 | 0.750 | 0.727 | 16 | 7 | 5 | 20 | 0.831 |
Kernel Naive Bayes | 0.708 | 0.739 | 0.720 | 0.729 | 0.723 | 17 | 6 | 7 | 18 | 0.828 |
Cosine KNN | 0.800 | 0.696 | 0.840 | 0.771 | 0.744 | 16 | 7 | 4 | 21 | 0.811 |
Medium Gaussian SVM | 0.783 | 0.783 | 0.800 | 0.792 | 0.783 | 18 | 5 | 5 | 20 | 0.809 |
Fine Gaussian SVM | 0.773 | 0.739 | 0.800 | 0.771 | 0.756 | 17 | 6 | 5 | 20 | 0.800 |
Binary GLM Logistic Regression | 0.760 | 0.826 | 0.760 | 0.792 | 0.792 | 19 | 4 | 6 | 19 | 0.793 |
Gaussian Naive Bayes | 0.818 | 0.391 | 0.920 | 0.667 | 0.529 | 9 | 14 | 2 | 23 | 0.772 |
Quadratic Discriminant | 0.688 | 0.478 | 0.800 | 0.646 | 0.564 | 11 | 12 | 5 | 20 | 0.717 |
Fine Tree | 0.682 | 0.652 | 0.720 | 0.688 | 0.667 | 15 | 8 | 7 | 18 | 0.708 |
Medium Tree | 0.682 | 0.652 | 0.720 | 0.688 | 0.667 | 15 | 8 | 7 | 18 | 0.708 |
Coarse Tree | 0.696 | 0.696 | 0.720 | 0.708 | 0.696 | 16 | 7 | 7 | 18 | 0.706 |
Fine KNN | 0.667 | 0.696 | 0.680 | 0.688 | 0.681 | 16 | 7 | 8 | 17 | 0.688 |
Cubic SVM | 0.500 | 0.044 | 0.960 | 0.521 | 0.080 | 1 | 22 | 1 | 24 | 0.115 |
Quadratic SVM | NaN | 0.000 | 1.000 | 0.521 | NaN | 0 | 23 | 0 | 25 | 0.000 |
Coarse KNN | NaN | 0.000 | 1.000 | 0.521 | NaN | 0 | 23 | 0 | 25 | 0.000 |