Skip to main content

Table 3 Performance of seizure prediction models using radiomics features for pediatric patients with supratentorial glioma

From: Morphometric and radiomics analysis toward the prediction of epilepsy associated with supratentorial low-grade glioma in children

Classifier

Precision

Recall

Specificity

Accuracy

F1-Score

TP

FN

FP

TN

AUC

Coarse Gaussian SVM

0.800

0.870

0.800

0.833

0.833

20

3

5

20

0.859

Medium KNN

0.850

0.739

0.880

0.813

0.791

17

6

3

22

0.851

Linear Discriminant

0.800

0.870

0.800

0.833

0.833

20

3

5

20

0.845

Linear SVM

0.800

0.870

0.800

0.833

0.833

20

3

5

20

0.833

Weighted KNN

0.792

0.826

0.800

0.813

0.809

19

4

5

20

0.833

Cubic KNN

0.762

0.696

0.800

0.750

0.727

16

7

5

20

0.831

Kernel Naive Bayes

0.708

0.739

0.720

0.729

0.723

17

6

7

18

0.828

Cosine KNN

0.800

0.696

0.840

0.771

0.744

16

7

4

21

0.811

Medium Gaussian SVM

0.783

0.783

0.800

0.792

0.783

18

5

5

20

0.809

Fine Gaussian SVM

0.773

0.739

0.800

0.771

0.756

17

6

5

20

0.800

Binary GLM Logistic Regression

0.760

0.826

0.760

0.792

0.792

19

4

6

19

0.793

Gaussian Naive Bayes

0.818

0.391

0.920

0.667

0.529

9

14

2

23

0.772

Quadratic Discriminant

0.688

0.478

0.800

0.646

0.564

11

12

5

20

0.717

Fine Tree

0.682

0.652

0.720

0.688

0.667

15

8

7

18

0.708

Medium Tree

0.682

0.652

0.720

0.688

0.667

15

8

7

18

0.708

Coarse Tree

0.696

0.696

0.720

0.708

0.696

16

7

7

18

0.706

Fine KNN

0.667

0.696

0.680

0.688

0.681

16

7

8

17

0.688

Cubic SVM

0.500

0.044

0.960

0.521

0.080

1

22

1

24

0.115

Quadratic SVM

NaN

0.000

1.000

0.521

NaN

0

23

0

25

0.000

Coarse KNN

NaN

0.000

1.000

0.521

NaN

0

23

0

25

0.000

  1. AUC, area under receiver operating characteristic curve; FN: False Negative; FP: False Positive; GLM: Generalized linear models; KNN: k-nearest neighbors; SVM: Support Vector Machines; TN: True Negative TP: True Positive