Classifier | Precision | Recall | Specificity | Accuracy | F1-Score | TP | FN | FP | TN | AUC |
---|---|---|---|---|---|---|---|---|---|---|
Linear SVM | 0.955 | 0.913 | 0.960 | 0.938 | 0.933 | 21 | 2 | 1 | 24 | 0.950 |
Linear Discriminant | 0.955 | 0.913 | 0.960 | 0.938 | 0.933 | 21 | 2 | 1 | 24 | 0.929 |
Medium Gaussian SVM | 0.909 | 0.870 | 0.920 | 0.896 | 0.889 | 20 | 3 | 2 | 23 | 0.908 |
Fine Gaussian SVM | 0.870 | 0.870 | 0.880 | 0.875 | 0.870 | 20 | 3 | 3 | 22 | 0.920 |
Coarse Gaussian SVM | 0.840 | 0.913 | 0.840 | 0.875 | 0.875 | 21 | 2 | 4 | 21 | 0.920 |
Weighted KNN | 0.870 | 0.870 | 0.880 | 0.875 | 0.870 | 20 | 3 | 3 | 22 | 0.903 |
Medium KNN | 0.895 | 0.739 | 0.920 | 0.833 | 0.810 | 17 | 6 | 2 | 23 | 0.906 |
Cosine KNN | 0.895 | 0.739 | 0.920 | 0.833 | 0.810 | 17 | 6 | 2 | 23 | 0.910 |
Fine Tree | 0.792 | 0.826 | 0.800 | 0.813 | 0.809 | 19 | 4 | 5 | 20 | 0.813 |
Medium Tree | 0.792 | 0.826 | 0.800 | 0.813 | 0.809 | 19 | 4 | 5 | 20 | 0.813 |
Coarse Tree | 0.792 | 0.826 | 0.800 | 0.813 | 0.809 | 19 | 4 | 5 | 20 | 0.765 |
Binary GLM Logistic Regression | 0.792 | 0.826 | 0.800 | 0.813 | 0.809 | 19 | 4 | 5 | 20 | 0.847 |
Fine KNN | 0.818 | 0.783 | 0.840 | 0.813 | 0.800 | 18 | 5 | 4 | 21 | 0.811 |
Cubic KNN | 0.889 | 0.696 | 0.920 | 0.813 | 0.781 | 16 | 7 | 2 | 23 | 0.902 |
Kernel Naive Bayes | 0.833 | 0.652 | 0.880 | 0.771 | 0.732 | 15 | 8 | 3 | 22 | 0.889 |
Quadratic Discriminant | 0.824 | 0.609 | 0.880 | 0.750 | 0.700 | 14 | 9 | 3 | 22 | 0.819 |
Gaussian Naive Bayes | 0.867 | 0.565 | 0.920 | 0.750 | 0.684 | 13 | 10 | 2 | 23 | 0.810 |
Cubic SVM | 1.000 | 0.087 | 1.000 | 0.563 | 0.160 | 2 | 21 | 0 | 25 | 0.087 |
Quadratic SVM | 1.000 | 0.044 | 1.000 | 0.542 | 0.083 | 1 | 22 | 0 | 25 | 0.043 |
Coarse KNN | NaN | 0.000 | 1.000 | 0.521 | NaN | 0 | 23 | 0 | 25 | 0.000 |