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Abstract

Background: To evaluate a semi-automatic landmark-based lesion tracking software enabling navigation between
RECIST lesions in baseline and follow-up CT-scans.

Methods: The software automatically detects 44 stable anatomical landmarks in each thoraco/abdominal/pelvic
CT-scan, sets up a patient specific coordinate-system and cross-links the coordinate-systems of consecutive CT-scans.
Accuracy of the software was evaluated on 96 RECIST lesions (target- and non-target lesions) in baseline and follow-up
CT-scans of 32 oncologic patients (64 CT-scans). Patients had to present at least one thoracic, one abdominal and one
pelvic RECIST lesion. Three radiologists determined the deviation between lesions’ centre and the software’s navigation
result in consensus.

Results: The initial mean runtime of the system to synchronize baseline and follow-up examinations was 19.4 ± 1.2
seconds, with subsequent navigation to corresponding RECIST lesions facilitating in real-time. Mean vector length of the
deviations between lesions’ centre and the semi-automatic navigation result was 10.2 ± 5.1 mm without a substantial
systematic error in any direction. Mean deviation in the cranio-caudal dimension was 5.4 ± 4.0 mm, in the lateral
dimension 5.2 ± 3.9 mm and in the ventro-dorsal dimension 5.3 ± 4.0 mm.

Conclusion: The investigated software accurately and reliably navigates between lesions in consecutive CT-scans in
real-time, potentially accelerating and facilitating cancer staging.
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Background
Radiological staging of cancer patients, especially the time
consuming comparison of RECIST (Response Evaluation
Criteria in Solid Tumors) lesions in baseline and follow-up
CT-scans became a major part of daily radiological routine.
In the era of digital PACS (Picture Achieving And

Communication System) and state of the art medical im-
aging with multidetector computed tomography the
amount of image data markedly increased. Several au-
thors addressed the ever increasing image overload, the
workflow difficulties of handling huge data volumes and
the time-consuming radiological reading and interpret-
ation process [1,2]. Unified standards such as the
RECIST-criteria [3] for reading and reporting CTs of
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oncological patients aim to improve patient care and
treatment. However, RECIST-based reporting is known to
have the inherent disadvantage of being time-consuming
and results show low inter-reader comparability [4].
Previous research that engaged in solving radiological

image overload has mainly been directed at improving
radiologist’s user interface devices, which enable better
navigation in digital data. They conclude that hardware
other than the standard mouse, such as a 3D mouse, joy-
stick or infrared controller similar to the Nintendo Wii
controller can improve the workflow and optimize image
reviewing [5-7]. However, few research has been directed
at improving radiological reading software. Modern soft-
ware could assist radiologists in fulfilling their task of
quickly, reliably and comfortably browsing through pa-
tient examinations and comparing relevant findings in
multiple examinations. Existing radiological software such
as in current PACS or 3D image analysis systems feature
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image synchronisation by picture number, by table position
information or by manually assigning corresponding
images. These means do not offer a solution as to where
in a certain image to look for a finding. The software in-
vestigated in this research, is a lesion tracking device,
which automatically navigates to lesions in the follow-
up CT-examination in real time. The software, however,
does not indicate if navigated to lesions change their
size in the follow-up examination, instead localizes their
anatomical position while leaving the diagnosis up to
the radiologist.
The aim of this study was to evaluate the feasibility,

accuracy and reliability of an automatic landmark-based
lesion tracking software enabling navigation between
RECIST-lesions in baseline and follow-up CT-scans.

Methods
Institutional Review board approval was obtained for
this study and all procedures were in accordance with
the Helsinki Declaration.

Patient selection and scan technique
We searched the Radiological Information System (RIS)
for consecutive oncologic patients that presented at least
one lesion in the thorax, one lesion in the abdomen and
one lesion in the pelvis and that received at least two
computed tomography (CT)-scans within 6 months. 32
patients (26x lymphoma, 4x melanoma, 2x prostate can-
cer; 21 males 11 females; mean age 51.2 ± 15.3 years,
range 21 to 76) were enrolled for experimental analysis.
Two consecutive CT-scans were read according to the
RECIST guidelines.
CT-examinations were indicated by clinical needs in

all cases. Patients were examined with a 64-row multide-
tector CT-scanner (Somatom 64, Siemens AG, Erlangen,
Germany). The tube voltage was 120 kV, the pitch was
0.75 and the collimation was 0.6 mm. Further, the mean
CTDIvol value in investigated scans was 11.2 ± 2.4 (range
6.7 – 16.3). A weight-dependent dose of 350 mg per ml
iodine i.v. contrast agent (Imeron 350®, Bracco Imaging,
Konstanz, Germany) was administered to all patients with
a flow-rate of 3 ml/sec.. Images were acquired in the
portal-venous contrast agent phase. For every patient a
data-set with 1 mm slice thickness and a soft tissue kernel
was calculated. If clinically indicated contrast agent was ad-
ministered orally or rectally in accordance with guidelines
(1.5 liters of water containing 60 ml of Gastrografin®, Bayer,
Leverkusen, Germany). All CT-scans were performed in
the Department of Radiology of the University Hospital
Erlangen.

Lesion tracking software
The software was developed within the scope of the
Theseus-Medico research project. This is a 5-year non-
commercial, nationwide multi-centre research project
started in 2007, with physicians, university health care
professionals, technicians and computer scientists as joint
venture.
The lesion tracking software features a novel pattern

recognition method based on the principles of machine
learning [8] which enables automated detection of stable
anatomical landmarks. Landmarks are hereby defined as
three dimensional points in CT-scans, for instance the
inner tip of left and right clavicle, the dorsal tip of left and
right spina scapulae, the top of both lungs, the bronchial
bifurcation, the front and back of base plate of lumbar
vertebra 5, etc. (Figure 1). Their detection is supposed to
be independent of contrast enhancement and contrast
agent phase (native, portal venous, arterial, etc.) [8]. In
total, 44 landmarks are automatically detected in every
thoraco/abdominal/pelvic CT-scan in each patient. To
enable robust and quick landmark detection, anatomic/
geographical information, such as “to the right of”, “close
to”, “above”, etc. is computed with the position of detected
landmarks and supports the localization of further land-
marks [8]. Then a patient specific graphical network
between all detected landmarks is set up for each CT-
scan. Synchronizing the graphical networks from the
baseline and follow-up CT-scan of one patient enables
the computer-aided-navigation [8]. Absence of certain
landmarks in a given CT-scan, for example if only an
abdominal scan was performed, is notified as well. This
facilitates the software to recognise which body region
was scanned [9]. The lesion tracking software facilitates
side-by-side comparison of consecutive examinations
by indicating corresponding findings with a crosshair.
Radiologist can automatically navigate to corresponding
locations in the follow-up examinations by clicking on
a lesion in the baseline-study, all in real time. The
crosshair synchronization is accomplished by an elastic
image registration method based on corresponding
anatomical landmarks and approximating by thin-plate
splines [8]. For this purpose, the detected landmarks
from the currently considered images are related to the
manually annotated landmarks of an atlas. The investi-
gated application further utilizes the mathematical algo-
rithms “Marginal Space Learning”, “Probabilistic Boosting
Tree” and “3D Haar features”. Technical and mathemat-
ical (algorithm) details are described more detailed in the
Additional file 1.

Experimental setup and evaluation
To determine the accuracy of the lesion tracking software
we evaluated the deviation between the centre of each
lesion (reference standard) and the location the automated
lesion tracking software navigated to in the follow-up
examination. The centre of 96 RECIST target and non-
target lesions (such as metastasized lymph nodes or



Figure 1 Detected CT landmarks. Examples of automatically detected anatomical landmarks in a thoraco/abdominal/pelvic CT-scan (inner tips
of left and right clavicle, top of right and left lung, bronchial bifurcation, front and back of bottom plate of lumbar vertebra 5, pubic symphysis
and coccygeal bone). Automatic detection of 44 thoracic, abdominal and pelvic landmarks in each CT-scan enables setting up a patient specific
coordinate-system, cross-linkage of the coordinate-systems of consecutive CT-scans and a software-based navigation between baseline and
follow-up CT-scans.
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metastases of the lung or parenchymal abdominal organs)
was marked in every baseline and follow-up CT-scan.
In a consensus assessment of three readers (with 16, 4
and 3 years of work experience) the centre of each
lesion and the deviation to the navigation result of the
software was documented (Figure 2). To increase the
power and validity of our study we investigated various
individuals and independent lesions in different body
regions with continuous instead of categorized measure-
ment [10]).
The lesion tracking software was evaluated on a standard

computer (Dual Core Xeon 2.66 GHz; Windows XP, 32
Bit) and dedicated diagnostic displays (Coronis Fusion
6MP LED, Barco, Kortrijk, Belgium).

Statistical analysis
System’s runtime was computed and mean runtime ±
standard deviation was calculated.
Mean deviation ± standard deviation was calculated

for every spatial direction (cranial, caudal, ventral, dorsal,
lateral-left and lateral-right). To investigate a possible
systematic error differences between mean deviations were
calculated. Furthermore the unsigned mean deviation ±
standard deviation for each of the three spatial dimensions
(cranio-caudal, ventro-dorsal and lateral) was calculated
and therefrom mean vector length ± standard deviation of
deviations between lesions’ centre and the semi-automatic
navigation result was calculated.

Results
The mean runtime the lesion tracking software required
to initially synchronize baseline and follow-up examina-
tions was 19.4 ± 1.2 seconds. Thereafter, the navigation
between corresponding RECIST lesions in baseline and
follow-up examinations was performed in real-time.
Mean deviations were the following: 5.1 ± 4.1 mm (range
1.0 – 14.7) lateral-right, 5.2 ± 3.7 mm (range 0.7 – 14.2)
lateral-left, 5.5 ± 4.2 mm (range 0.8 – 14.3) ventral, 5.1 ±
3.8 mm (range 0.7 – 13.8) dorsal, 4.7 ± 3.4 mm (range 0.8
– 12.8) cranial and 5.9 ± 4.3 mm (range 1.2 – 11.9) caudal
(Table 1). Figure 3 depicts deviation vector lengths between
the reference standard and the location the automated
lesion tracking software navigated to in the follow-up
examination. Differences between mean deviations within
the dimensions were 0.1 mm toward lateral left, 0.4 mm
toward ventral and 1.2 mm toward caudal.
The calculated unsigned mean deviation was 5.4 ±

4.0 mm (range 0.8 – 12.8) in the cranio-caudal dimen-
sion, 5.2 ± 3.9 mm (range 0.7 – 14.7) in the lateral di-
mension and 5.3 ± 4.0 mm (range 0.7 – 14.3) in the
ventro-dorsal dimension. This resulted in a mean length
of the deviation vector of 10.2 ± 5.1 mm (range 2.4 –
21.9).
Examples of lesion tracking software’s results are dem-

onstrated for a lung metastasis (RECIST target lesion)
and for a liver metastasis (RECIST non-target lesion)
(Figure 4).

Discussion
The investigated lesion tracking software demonstrated
a deviation vector of roughly 1 cm length on average,
when semi-automatically navigating from lesions in the
baseline CT-examinations to the corresponding loca-
tions in follow-up scans. The average deviation vector
composes of divergences in all three spatial directions. It
is the three-dimensional distance between the location
the software automatically navigated to in the follow-up
scan and the reference standard. This does not corres-
pond to an absolute two-dimensional deviation (e.g. in
the axial plain) of 10 mm – in fact the average two-



Table 1 Mean runtime (± standard deviation) the lesion
tracking software required to initially synchronize
baseline and follow-up CT-scans is shown in seconds

Software’s initial runtime (sec) 19.4 ± 1.2

Deviation (mm)

Lateral-right 5.1 ± 4.1 (1.0 – 14.7)

Lateral-left 5.2 ± 3.7 (0.7 – 14.2)

Ventral 5.5 ± 4.2 (0.8 – 14.3)

Dorsal 5.1 ± 3.8 (0.7 – 13.8)

Cranial 4.7 ± 3.4 (0.8 – 12.8)

Caudal 5.9 ± 4.3 (1.2 – 11.9)

Lateral dimension 5.2 ± 3.9 (0.7 – 14.7)

Ventro-dorsal dimension 5.3 ± 4.0 (0.7 – 14.3)

Cranio-caudal dimension 5.4 ± 4.0 (0.8 – 12.8)

Mean length of the deviation vector (mm) 10.2 ± 5.1 (2.4 – 21.9)

Mean distances ± standard deviations between the software-based navigation
results and the centre of the lesions in follow-up CT-scans is shown for all di-
rections and dimensions. Mean length ± standard deviation of the deviation
vector was calculated.
Range is given in brackets.

Figure 2 Experimental setup. In a consensus assessment of three readers the centre of each RECIST target and non-target lesion was marked in
every baseline and follow-up CT-scan (red X). Next, the readers applied the lesion-tracking software by clicking on each defined centre of the lesions
in the baseline CT-scans. Thus, the software automatically navigated to the predicted corresponding location in the follow-up CT-scan (yellow crosshair).
The deviation between lesion’s centre and the navigation result of the software was documented as distance (blue dotted line) in all three special
dimensions (cranio-caudal, ventro-dorsal, lateral).
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dimensional deviation error (deviations in each direc-
tion) in our study was never greater than 5.9 mm. We
hold this deviation to be clinically tolerable as lesions
which are to be classified as RECIST-target lesions
(which have to be compared in baseline and follow-up
CT-scans) have to be of a certain size. Lung nodules or
liver lesions have to be 10 mm in largest diameter,
while lymph nodes even have to measure 15 mm in the
short axis (RECIST 1.1 [11]). As no single of our spatial
deviations was greater than 5.9 mm, we conclude that
navigation to target lesions with the presented software
is very accurate and of clinically tolerable error.
The semi-automatic navigation between corresponding

lesions in consecutive CT-examinations presumably
saves time during tumor response evaluation. Moreover,
only few navigational results demonstrated larger (of
about 15 mm) deviation errors. In these cases, the le-
sions were located in or close to the abdominal wall and
thereby relatively far away from the majority of software
detected landmarks (mostly located in the spine and the
pelvis). This deviation error can even be reduced when
more landmarks are implemented into the system.
Another possibility for deviational errors might be an
uncertain reference point of the lesions in baseline and
follow-up due to changes in lesion dimension after
chemotherapy. In order to minimize this error, 3 radio-
logical readers determined the reference points in con-
sensus. If certain landmarks cannot be detected (e.g. in
osteochondrosis between lumbar vertebra 5 and sacral
vertebra 1, or scoliosis) within a certain computational
time this landmark is ignored by the algorithm and the
graphical network is constructed with the remaining
landmarks. Thereby the software system remains stable
and functioning even if it cannot detect all landmarks.
In our patients the software did not fail to detect
landmarks.
To investigate the clinical feasibility of this software,

we examined the software utilizing consecutive routine
clinical CT-scans, as requested by van Ginneken [12].
The only inclusion criterion was that patients show at
least one lesion in the thorax, in the abdomen and in the
pelvis to prove accuracy of the software in different body
regions. The software apprehended all CT-examinations
and no scan was excluded due to software inability.
Therefore, the presented lesion tracking software proofed
to be feasible and reliable in clinical routine CT-scans.
After the initial synchronization of the data sets, which

takes about 20 seconds and can be performed as a pre-
processing step, subsequent navigation between lesions
in different CT-scans is realized in real time. Therefore,
the software facilitates handling of large data sets with-
out delay. Andriole et al. address the increasing image
overload and the thereby resulting increased workload
for radiologists [1,2]. However they do not offer a solu-
tion from a software standpoint. Addressing this issue,



Figure 3 Deviation vectors. Graphical display of deviation vector length between the center of 96 RECIST target and non-target lesions (reference
standard) and the locations the automated lesion tracking software navigated to in the follow-up examination. a) presents the deviation vector lengths
as a scatter plot; b) as a histogram.
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usage of a robust lesion tracking tool is an important
point.
The presented software tool is unique in various ways.

It automatically detects stable anatomical landmarks
throughout the body and sets up a patient specific
graphical network between the landmarks, comparable
to the global positioning system (GPS) navigation. Beside
navigation in matching CT-scans, GPS-like navigation
potentially enables comparing findings in non-matching
body regions (e.g. comparing a thoracic with a thoraco/
abdominal CT-scan). At present, commercial tools by
various vendors, for instance for the follow-up of lung
lesions are available. However, these tools mainly rely on
deforming of images based upon Hounsfield Unit (HU)
similarities. According to Seifert et al. [8] this strategy
has the drawback that changes in organ size, e.g. spleno-
megaly, or topographical changes like nephrectomy can-
not be apprehended. Moreover, synchronous navigation
to findings in organs of non-matching body areas is a
big obstacle for such software [8]. As an example a liver



Figure 4 Examples. a) An example navigation result of the lesion tracking software applied to a thoracic lesion (lung metastasis). b) An example
navigation result of the lesion tracking software applied to an abdominal lesion (liver metastasis). First row shows the manually marked centre of
a target lesion in the baseline CT-scan (red X = reference standard; axial, coronal and sagittal view). Second row shows the manually marked
centre of a target lesion in the follow-up CT-scan of the same patient (red X = reference standard; axial, coronal and sagittal view). Third row
shows the follow-up CT-scan with the software-based navigation result (yellow crosshair) and the reference standard (red X).
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lesion included in a baseline thoracic/upper abdomen
CT-scan and a follow-up abdominal/pelvic CT-scan can-
not be synchronized by HU similarities or table position.
Presented landmark based navigation software possibly
overcomes these limitations due to its underlying
algorithm [8].
Another approach for navigation assistive software is

to just align axial CT-slices according to picture number.
Here different patient positioning on the CT-table and
different scanning start points result in poor matches.
Further these pieces of software do not indicate which
explicit finding on an axial slice was evaluated in the
previous examination if there are multiple lesions on the
same slice. In contrast, the evaluated software navigates
to a certain finding and specifically indicates it by pla-
cing a crosshair on the corresponding finding. Finally,
the landmark-based approach requires less computa-
tional power and consequently less run-time than
systems relying on matching HU similarities [8].
CAD systems have two common goals, to improve

accuracy and increase radiologists’ productivity [13]. Re-
cently, various computer-aided detection (CAD) systems
for multiple clinical tasks have been developed, such as
CAD for lung cancer [14], pulmonary embolism [15],
breast cancer [16], colon cancer [17], liver cancer [18],
prostate cancer [19] and coronary artery stenoses [20].
Due to its landmark based framework the software
fulfills two of Kauczor’s demands for a CAD system [21]:
It generates a 3D map and registrates different imaging
series facilitating orientation and navigation in CT-scans.
In order to compare consecutive oncological measure-

ments the same, and if possible thinnest slice thickness
should be used [22]. This calls for radiological reading
with a 3D radiological image analysis system (e.g.
MicroView® (Parallax Innovations, Ilderton, Canada),
Aquarius® (TeraRecon, Foster City, CA, USA) or SyngoVia®
(Siemens AG, Erlangen, Germany)). These, however do
not feature image numbers. This even complicates the
evaluation of findings in baseline and follow-up studies
when having to navigate manually between lesions (e.g. by
scrolling through the examinations). For this workflow an
additional automatic or semi-automatic navigation solution
seems even more needed than with conventional PACS
reading (e.g. reconstructed 5 mm slice thickness data sets).
Our study faces some limitations that suggest directions

for future work. One limitation was that the software’s
proposed time saving effect for oncological reading was
not assessed. This is owed to the fact that the aim of our
research was to evaluate the clinical feasibility, accuracy
and reliability of the software.
Another limitation was that in this study we concen-

trated on navigation within full-body (thoraco/abdom-
inal/pelvic) CT-scans. However, we did not investigate
the technically possible [8] navigation between non-
matching body regions.
One further plan is to combine the features of presented

lesion tracking software with features of automatic lesion
volumetry software.
Conclusions
The presented and evaluated lesion tracking software
reliably handled clinical routine CT-scans and accurately
enabled semi-automated real-time lesion tracking with a
clinically tolerable accuracy. The software presumably
facilitates the handling of large CT data sets, eases the
visualization and evaluation of tumor response in consecu-
tive CT-scans, and potentially speeds up radiological reading.
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