
RESEARCH ARTICLE Open Access

Are radiomics features universally
applicable to different organs?
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Abstract

Background: Many studies have successfully identified radiomics features reflecting macroscale tumor features and
tumor microenvironment for various organs. There is an increased interest in applying these radiomics features
found in a given organ to other organs. Here, we explored whether common radiomics features could be identified
over target organs in vastly different environments.

Methods: Four datasets of three organs were analyzed. One radiomics model was constructed from the training
set (lungs, n = 401), and was further evaluated in three independent test sets spanning three organs (lungs, n = 59;
kidneys, n = 48; and brains, n = 43). Intensity histograms derived from the whole organ were compared to establish
organ-level differences. We constructed a radiomics score based on selected features using training lung data over
the tumor region. A total of 143 features were computed for each tumor. We adopted a feature selection approach
that favored stable features, which can also capture survival. The radiomics score was applied to three independent
test data from lung, kidney, and brain tumors, and whether the score could be used to separate high- and low-risk
groups, was evaluated.

Results: Each organ showed a distinct pattern in the histogram and the derived parameters (mean and median) at
the organ-level. The radiomics score trained from the lung data of the tumor region included seven features, and
the score was only effective in stratifying survival for other lung data, not in other organs such as the kidney and
brain. Eliminating the lung-specific feature (2.5 percentile) from the radiomics score led to similar results. There were
no common features between training and test sets, but a common category of features (texture category) was
identified.

Conclusion: Although the possibility of a generally applicable model cannot be excluded, we suggest that
radiomics score models for survival were mostly specific for a given organ; applying them to other organs would
require careful consideration of organ-specific properties.

Keywords: Radiomics, Macroscale tumor features, Tumor microenvironment, Computed tomography, Magnetic
resonance imaging, Survival analysis
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Background
Modern oncology is moving toward pursuing precision
medicine, and medical imaging is an important factor in
such an environment [1]. Traditionally, medical imaging
has been interpreted by trained expert radiologists using
imaging features. A few imaging features (e.g., tumor vol-
ume and shape) were used to assess tumor properties of
various target organs [2–4]. Recently, medical imaging has
been analyzed using a radiomics approach, which con-
siders hundreds or even thousands of mineable features
[5, 6]. With so many available features, radiomics has the
potential to provide personalized information for various
organs over different diseases [5, 7, 8]. There have been
many successful radiomics studies reporting better per-
formance than conventional imaging studies [9–11].
Macroscale features of the tumor such as size, shape,

and texture are reflected in radiomics features [5, 12].
These features were useful in quantitively describing
various aspects of tumor especially for evaluating re-
gional heterogeneity. The tumor margin is an extremely
dynamic area composed of immune cells, rich vascula-
ture, lymphatics, fibroblasts, pericytes, and adipocytes,
related to the tumor microenvironment [13–15]. It plays
a vital role in prognosis and therapy response, especially
for immunotherapy [16, 17]. Hence, the radiomics fea-
tures in the marginal region might reflect the tumor
microenvironment. Radiomics studies have identified
essential features that non-invasively capture informa-
tion related to the tumor microenvironment. In particu-
lar, quantitative imaging features based on histogram,
texture, and shape provide information about the tumor
microenvironment [5, 18]. One study showed that
homogeneity, dissimilarity, contrast, and energy from
the texture category of features reflected the local im-
mune microenvironment of non-small cell lung cancer
(NSCLC) [15]. Another study identified homogeneity
and difference entropy from the texture category as bio-
markers that could predict immune response [19]. The
identified radiomics features are largely specific to the
organ being modeled, the associated macroscale features
and tumor microenvironment, imaging modality, and ac-
quisition parameters. Still, many studies evaluated
models trained in one setting to another setting possibly
in different organs [17, 18]. This is because tumors in
different organs might share common properties. Thus,
there is a scientific curiosity in applying radiomics fea-
tures found in a given organ to other tumors in different
organs [20, 21]. A seminal study by Aerts et al. explored
the application of the same radiomics features to two
different organs, but this topic was not their primary
aim and was thus insufficiently explored. A seminal
study explored the application of the same radiomics
features to two different organs (i.e., lung and head &
neck cancers) and was successful at classifying the risk

groups [20]. Furthermore, the study had issues regarding
how the features were selected. A recent study explored
the feasibility of applying the same set of radiomics fea-
tures to intrahepatic cholangiocarcinoma, osteosarcoma,
and pancreatic neuroendocrine tumors [21]. This trans-
lates to finding a “universal” set of radiomics features
that can be applied to potentially different tumor micro-
environments, in which they succeeded. Therefore, there
is a need to investigate this issue further.
To this end, our study aimed to explore whether com-

mon radiomics features can be identified across different
target organs. We evaluated the radiomics features of tu-
mors in three organs (i.e., lungs, kidneys, and brains).
We trained a radiomics model and chose features using
lung data for survival analysis. The chosen features were
applied to three independent test datasets of lung, kid-
ney, and brain tumors, and the possibility of using the
features to separate high- and low-risk groups was
explored.

Methods
Patients and imaging datasets
Retrospective analysis of publicly available datasets was
performed after receiving approval from the Institutional
Review Board at the Sungkyunkwan University, Korea.
This study considered four independent datasets: two
lung cancer, one kidney cancer, and one brain cancer
datasets. We considered only primary cancers of each
dataset in this study. Table 1 and supplementary mater-
ial provide a detailed description of each dataset.

Imaging differences at the whole organ level
Each of the three organs that we studied might have a
distinct intensity distribution due to inherent differences
in an organ, as well as the differences in an imaging mo-
dality. A region of interest (ROI) was specified for each
organ as a whole, and intensity histogram and the
derived parameters of the histogram were compared.
The training set (lung), test set2 (kidney), and test set3
(brain) were used for the analysis. Test set1 (lung) was
not analyzed as it was the same organ as that in the
training set (lung). Detailed segmentation methods are
described in the supplementary methods. Histogram
shapes were visually compared. Means and medians of the
ROIs were also compared using two-sample t-tests.
Within CT imaging (i.e., lung and kidney), the histogram
shape was directly compared. Across imaging modalities
(CT [lung and kidney] and MRI [brain]), we normalized
the histograms using z-scores. The z-score normalization
was one way to compare CT that has the standard Houns-
field unit (HU) with MRI that has an arbitrary unit. We
only applied histogram normalization to compare histo-
grams from different organs and did not apply the
normalization when extracting the radiomics features.
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ROI segmentation and feature extraction
On axial CT and MRI images, tumors were segmented
using in-house semi-automated software by a single ex-
pert (H.Y.L) [22]. A total of 143 radiomics features were
computed from the native volume space over the ROIs
[8, 22, 23]. The features were computed using a combin-
ation of open-source (PyRadiomics) and in-house codes
in MATLAB (MathWorks, Inc., Natick, USA) [24].
Features that were unavailable in the PyRadiomics were
locally implemented. The features consisted of 19
histogram-based, 11 shape-based, three fractal-based, 18
sigmoid function-based, 29 texture-based, and 63 filter-
based features. Eight shape-based features were ex-
tracted using a three-dimensional (3D) ROI, and three
shape-based features were two-dimensional (2D) [25].
The 2D shape-feature used the center slice of the 3D
ROI. Three fractal-based features were the fractal di-
mension, fractal signature dissimilarity, and lacunarity
[26, 27]. Fractal dimension was computed using the box-
counting, and fractal signature dissimilarity (FSD) was
computed using the blanket method. Eighteen sigmoid
function-based features were computed to quantify the
tumor margin properties [25]. Twenty-nine texture-
based features were computed using gray-level co-
occurrence matrix (GLCM, 256 bins, n = 22), gray-level
size zone matrix (GLSZM, 32 bins, n = 2), and neighbor-
hood gray-tone difference matrix (NGTDM, n = 5) [20,
28–30]. GLCM features were computed in two ROI
types using the whole ROI and sub-sampled ROI [23].
The filter-based features were computed using a 3D
Laplacian of Gaussian (LoG) filter. The sigma values of
the LoG filter were computed with σ in 0.5 voxel incre-
ments (range, 0.5–3.5) [25]. A detailed description of the
features is given in the supplement.

Selection of features
Radiomics analysis involved choosing a few features that
can explain the intended target clinical variable well

from many features. The feature selection was carried
out in two steps in the training set. First, we chose stable
features using the intra-class correlation (ICC) with IBM
SPSS statistical software (IBM Corp., Armonk, USA).
The stability of the 143 extracted features was assessed
using the Reference Image Database to Evaluate Therapy
Response (RIDER) dataset [31, 32]. We retained features
with ICC values above 0.9 [33]. Second, we applied Cox
- least absolute shrinkage selector operator (Cox-
LASSO) to select a few features related to survival from
the selected features obtained from the first step. The
hyperparameter of LASSO (i.e., regularization strength)
was optimized using cross-validation. The MATLAB
(MathWorks, Inc., Natick, USA) and “glmnet” R package
(R Foundation for Statistical Computing, Vienna,
Austria) were used for the Cox-LASSO. The Cox-
LASSO method was repeated 20 times, and only features
that were selected more than ten times were chosen as
the final selected features. In addition, we applied the
Cox-LASSO feature selection to other datasets (test set1,
2, and 3) to seek common features between the training
set and each test set and test alternative models based
on different datasets. The procedure was applied with a
reduced threshold (10 times out of 40) due to conver-
gence issues.

Construction of radiomics score model and survival
analysis
We built a radiomics score related to survival using the
selected features. Regression coefficients from the Cox-
LASSO were linearly combined with the feature values
to yield a radiomics score. The radiomics score is a
weighted (weights obtained from regression coefficients)
sum of feature values [34, 35]. Each patient’s radiomics
score was computed. Patients were stratified into low-
and high-risk groups using the median radiomics score
as the cutoff [36]. Kaplan-Meier (KM) survival analysis
was performed, and a log-rank test was used to compare

Table 1 Summary of all datasets

Training set Test set1 Test set2 Test set3

Reference NSCLC radiomics TCIA lung CT diagnosis TCGA-KIRC CPTAC-GBM

Organ Lung Lung Kidney Brain

Modality CT CT CT MRI

Number of patients 422 (M: 290, F:132) 61 (M: 31, F:30) 48 (M:29, F: 19) 43 (M: 31, F:12)

Age 68.1 years (Avg.) ≥ 65 years: 41;
< 65 years: 20

65.3 years 63 years

Stage I–IIIb I–IV I–IV N/A

In-plane range (mm) 0.721–0.977 (Avg. 0.976) 0.586–0.953
(Avg. 0.736)

0.617–0.977 (Avg. 0.785) 0.469–1.016 (Avg. 0. 598)

Avg Slice thickness (mm) 3.022 4.443 4.708 1.575

NSCLC non-small cell lung cancer, TCIA The Cancer Imaging Archive, TCGA-KIRC The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma, CPTAC-GBM Clinical
Proteomic Tumor Analysis Consortium Glioblastoma Multiforme, Avg average, M males, F females
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the two risk groups using SPSS. The procedure was ap-
plied to the training set and validated in the three test
sets. We developed the radiomics score model consisting
of the selected features from the lung dataset and ap-
plied the model using the same features but refitted the
coefficients to test it on the brain and kidney cases. The
overall scheme of the study is given in Fig. 1.

Results
Whole organ level imaging differences
Based on the two-sample t-tests, mean values were sig-
nificantly different between lung and kidney (p < 0.001,
3.43 × 10− 9), lung and brain (p = 1.41 × 10− 8), and kidney
and brain (p = 9.53 × 10− 6). Similarly, median values
were significantly different between lung and kidney
(p = 7.07 × 10− 19), lung and brain (p = 1.22 × 10− 5), and
kidney and brain (p = 1.74 × 10− 8). The box plots for
mean and median values are shown in Fig. 2a.
The histogram shape was compared between CT im-

ages (lung and kidney) for a representative case (Fig. 2b).
Intensity distribution did not overlap much between the
two organs. Histogram was normalized to z-scores to
make a comparison between CT and MRI modalities.
All three distributions of the organs were centered at
zero with distinct shapes for each organ (Fig. 2c).

Selected features and radiomics score
In the first selection step using the ICC threshold, 97
features were selected as stable features. The selected 97
features were used in the second feature selection step
using Cox-LASSO. Finally, 7 features were selected from
the training set. The final selected features were as

follows: histogram-based features (2.5 percentile and
97.5 percentile); shape-based features (sphericity, max-
imum 3D diameter, and roundness factor [2D]); and
texture-based feature (an informational measure of cor-
relation [sub-sampled GLCM] and size-zone variability).
One of the features, 2.5 percentile, is a well-known lung-
specific feature [37]. We computed another radiomics
score with the 2.5 percentile feature removed using the
six features, to see if removing lung-specific features
would lead to better generalization to other organs (i.e.,
kidney and brain). The ensuing survival analysis was per-
formed using two radiomics scores.

Survival analysis using all the selected features
Survival analysis was performed, and patients were di-
vided into high- and low-risk groups using the median
radiomics score as the cut-off. The radiomics score was
computed using all seven selected features from the
training set. In the training set (lung), two risk groups
were well-stratified using the log-rank test (p < 0.001)
(Fig. 3a). There was a similar significant difference (p =
0.012) in survival between the two risk groups in the test
set1 (lung) using the radiomics score computed from the
test set1 (Fig. 3b). However, the results from test set2
and test set3 were different. The test set2 (kidney) did
not show any significant differences in survival between
the two risk groups, and the log-rank test was not
statistically significant (p = 0.713) (Fig. 3c). In the test
set3 (brain), differences in survival between the two risk
groups were visually noticeable in the plot, but the
difference was not statistically significant (p = 0.105) (Fig.
3d). In summary, the radiomics model trained from the

Fig. 1 Overall scheme of the study
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lung data was only useful for stratifying survival in the
other lung data, and not in other organs like the kidney
and brain. Additional results of using kidney and brain
datasets to build survival models were shown in the
Supplement.

Survival analysis without the lung-specific feature
The same survival analysis was performed using the
radiomics score without the lung-specific 2.5 percentile
feature. The results were largely similar to those using
the radiomics score for all the features. In the training

Fig. 2 Imaging differences at the whole-organ level. a Box plots for mean and median; b comparison of histogram within CT for lung (gray color)
and kidney (green color); and c comparison of normalized histogram across modalities for lung (gray color), kidney (green color), and brain
(yellow color)
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set (lung), the two risk groups were well-stratified using
the log-rank test (p < 0.001) (Fig. 4a). There was a similar
significant difference (p = 0.033) in the survival between
the two risk groups in test set1 (lung) using the radio-
mics score computed from the test set1 (Fig. 4b). How-
ever, the results from test set2 and test set3 were
different. The test set2 (kidney) showed visual differ-
ences in the survival plot but did not show any signifi-
cant differences (p = 0.062) (Fig. 4c). In the test set3
(brain), differences in survival between the two risk
groups were visually noticeable in the plot, but there was
no statistical significance (p = 0.356) (Fig. 4d). In sum-
mary, the radiomics model trained from the lung data
was only effective in stratifying survival in the other lung
data, and not in other organs like the kidney and brain.

Common features between the training set and test sets
We observed that the radiomics model trained from the
lung data was only effective in stratifying survival in the
other lung data, and not in other organs like the kidney

and brain. This might imply that features reflecting sur-
vival could be different for different organs. Thus, we
performed the same feature selection approach on all
four datasets and compared the features selected among
different datasets across three organs. In the test set1,
variance, standard deviation, 50 percentile (histogram),
homogeneity (sub-sampled GLCM), roundness factor
(2D shape), and FSD (fractal) were selected. In test set2,
energy, difference entropy (sub-sampled GLCM), and
contrast (NGTDM) were selected. In the last test set3,
informational measures of correlation (sub-sampled
GLCM) and coarseness (NGTDM) were selected. The
roundness factor (2D shape) was a common feature be-
tween the training set and test set1. No common fea-
tures were found between the training set and test set2.
The informational measure of correlation (sub-sampled
GLCM) was a common feature between the training set
and test set3. There were no common features between
the training set and various test sets, but there was a cat-
egory of features that was common. All datasets had at

Fig. 3 The Kaplan-Meier plots using the radiomics score of all the selected features of (a) training set (top left), (b) test set1 (top right), (c) test
set2 (bottom left), and (d) test set3 (bottom right). The blue line is the low-risk group (≤ Median), and the green line is the high-risk group
(> Median)
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least one GLCM feature as the chosen feature denoting
the importance of texture feature in radiomics. Full
details are given in Table 2.

Discussion
We confirmed that there were obvious differences in im-
aging at the organ level for the three organs by compar-
ing their intensity histograms. The radiomics score and
the associated features derived from the training set
(lung) were effective for the test set1 (the other lung) in
stratifying survival, but not for the kidney and brain (test
set2 and set3). A similar trend was observed even when
we removed the lung-specific feature (2.5 percentile)
from the radiomics score.
Many radiomics studies have discovered features re-

lated to the tumor microenvironment and the associated
macroscale features. In particular, features in the texture
category have been commonly selected for various radio-
mics studies. In one study, GLCM-based features con-
tributed to the discovery of radiomics signatures
predicting immune microenvironment and patient

outcomes [15]. Texture-based features were identified as
important features to predict immune responses [19].
Texture-based features, unlike the histogram and shape-
based features, incorporate the neighborhood informa-
tion and hence are better suited to describe the tumor
microenvironment.
We explored whether features trained in a specific

organ can be applied to other organs. In Fig. 2, we con-
firmed that different organs have distinct differences in
intensity distribution. Figure 2b shows that a lung CT
scan is quite different from that of the kidney due to
the unique environment of the lungs, which includes a
large proportion of air. This distinct information for
each organ makes finding a universal feature set diffi-
cult across different organs. The features derived from
the training set (lung) were not useful in stratifying sur-
vival in the kidney and brain (test set2 and set3) data-
sets. To correct for the differences among organs,
additional experiments to remove the feature related to
air components (2.5 percentile) were performed. This
was to test whether removing the lung-specific feature

Fig. 4 The Kaplan-Meier plots using radiomics score with the lung-specific feature removed of ((a) training set (top left), (b) test set1 (top right),
(c) test set2 (bottom left), and (d) test set3 (bottom right). The blue line is the low-risk group (≤ Median), and the green line is the high-risk group (> Median)
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could lead to better generalizability to the other two or-
gans. However, the results were somewhat similar. Des-
pite the lung-specific feature removed, the features
derived from the training data could not be applied to
the other two organs. This observation indicated that
radiomics features of a given organ from a tumor ROI
reflected a specific tumor microenvironment and the
associated macroscale features. Therefore, applying the
radiomics feature derived from one organ to other
organs requires careful consideration of specific proper-
ties of the target organ.
Both training set and test set1 were from lung-cancer

databases, but there was only one common feature se-
lected (Table 2, roundness factor). This might imply that
circularity is more important in lung cancer compared
to other organs. The data of the training set came from
various types of lung cancer patients: large cell, squa-
mous cell carcinoma, and adenocarcinoma. However,
the entire data of test set1 were derived from patients
with adenocarcinoma. Thus, this difference in subtype
composition could have led to different features being
selected. Between the training set and test set3, one
common feature was selected, the informational measure
of correlation. This confirmed that lung cancer and glio-
blastoma were both associated with the secondary
measure of homogeneity.
To the best of our knowledge, no radiomics study has

attempted to find common features in different organs

systematically. Some studies explored the concept of
universal radiomics features, but it was their secondary
objective, not the main one. One study adopted a pro-
cedure similar to ours. The study built radiomics models
using lung cancer data and applied them to H&N cancer
data. They showed that the same radiomics model was
effective for predicting survival in two organs, but the
results could be invalid because their feature selection
approach was biased [20]. Another study attempted to
explore the feasibility of applying the same set of radio-
mics features [21]. However, the goal was not to find
common features but to compare the performance of 2D
and 3D radiomics in intrahepatic cholangiocarcinoma,
osteosarcoma, and pancreatic neuroendocrine tumors.
Although common features were elusive, we recon-

firmed that texture features could be a common category
of features for the three organs. This finding is largely in
line with many radiomics studies emphasizing the im-
portance of texture features to capture tumor heteroge-
neity. Active research is ongoing to propose new texture
features, some of which could be applied to many organs.
Recently, we witnessed increased adoption of deep

learning (DL) in imaging analysis that led to improved
performances in many organs [38–40]. DL approaches
use more features (even in tens of thousands) than
radiomics approaches (hundreds to thousands) in a
data-driven fashion. The intermediate layers of the DL
network are commonly used for data-driven feature

Table 2 Results of feature selection for each dataset

Dataset Feature category Feature name Repetition times

Training (7 features) Histogram-based 2.5 percentile 20

97.5 percentile 20

Shape-based (3D) Sphericity 20

Max 3D diameter 20

Shape-based (2D) Roundness factor 20

Texture-based Informational Measure of Correlation, subsampled GLCM 17

Size zone variability 10

Test set1
(6 features)

Histogram-based Variance 20

50 Percentile 20

Texture-based Homogeneity, subsampled GLCM 15

Shape-based (2D) Roundness factor 9

Fractal-based FSD 4

Histogram-based Standard deviation 1

Test set2
(3 features)

Texture-based Energy, subsampled GLCM 1

Contrast, NGTDM 1

Difference entropy, subsampled GLCM 1

Test set3
(2 features)

Texture-based Informational Measure of Correlation, subsampled GLCM 19

Coarseness, NGTDM 3

Bold font indicates the features commonly selected between the training set and given test sets. 2D two-dimensional, 3D three-dimensional, GLCM gray-level co-
occurrence matrix, FSD fractal signature dissimilarity, NGTDM neighborhood gray-tone difference matrix
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representation. As there are more features to choose
from, there could be a better chance of finding common
features between different organs. DL approaches are in-
herently multi-scale, and thus common features might
be found in small-scale low-level features.
Our study has some limitations. The sample size of

the test sets was rather small (n < 100); thus, further
studies using larger samples are necessary to validate the
results of our study. We explored radiomics models for
survival analysis and did not consider other clinical out-
comes, such as tumor grading, that need to be explored
in the future. Our results were limited to three organs
(lung, kidney, and brain) and two imaging modalities
(CT and MRI). Therefore, future studies may extend this
approach to more organs and modalities. Our model
from the training set had three subtypes of NSCLC and
thus might not have the transfer capability to one spe-
cific subtype of NSCLC. Exploring the subtype-specific
transferability is an important future research direction.
Finally, there is no agreed standard method to extract
and select radiomics features, which makes tight control-
ling of the experiments difficult. Although our method is
a widely used one [23, 36, 41], our results were specific
to the adopted methods and thus should be interpreted
with care.

Conclusion
Overall, we suggest that radiomics score models for sur-
vival were mostly specific for a given organ. This was
confirmed by the absence of any common features being
identified between the training set and various test sets.
However, we noticed that one category of features (tex-
ture category) was common in all three organs. In sum,
applying radiomics score models to other organs would
require careful consideration of organ-specific proper-
ties. Still, caution should be taken when constructing
models with radiomics features because we cannot ex-
clude the possibility to construct a generally applicable
model for various organs given an optimal model.
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