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Abstract 

Background: To investigate the magnetic resonance imaging (MRI)-based radiomics value in predicting the survival 
of patients with locally advanced cervical squamous cell cancer (LACSC) treated with concurrent chemoradiotherapy 
(CCRT).

Methods: A total of 185 patients (training group: n = 128; testing group: n = 57) with LACSC treated with CCRT 
between January 2014 and December 2018 were retrospectively enrolled in this study. A total of 400 radiomics 
features were extracted from T2-weighted imaging, apparent diffusion coefficient map, arterial- and delayed-phase 
contrast-enhanced MRI. Univariate Cox regression and least absolute shrinkage and selection operator Cox regression 
was applied to select radiomics features and clinical characteristics that could independently predict progression-free 
survival (PFS) and overall survival (OS). The predictive capability of the prediction model was evaluated using Harrell’s 
C-index. Nomograms and calibration curves were then generated. Survival curves were generated using the Kaplan-
Meier method, and the log-rank test was used for comparison.

Results: The radiomics score achieved significantly better predictive performance for the estimation of PFS (C-index, 
0.764 for training and 0.762 for testing) and OS (C-index, 0.793 for training and 0.750 for testing), compared with the 
2018 FIGO staging system (C-index for PFS, 0.657 for training and 0.677 for testing; C-index for OS, 0.665 for training 
and 0.633 for testing) and clinical-predicting model (C-index for PFS, 0.731 for training and 0.725 for testing; C-index 
for OS, 0.708 for training and 0.693 for testing) (P < 0.05). The combined model constructed with T stage, lymph node 
metastasis position, and radiomics score achieved the best performance for the estimation of PFS (C-index, 0.792 
for training and 0.809 for testing) and OS (C-index, 0.822 for training and 0.785 for testing), which were significantly 
higher than those of the radiomics score (P < 0.05).

Conclusions: The MRI-based radiomics score could provide effective information in predicting the PFS and OS in 
patients with LACSC treated with CCRT. The combined model (including MRI-based radiomics score and clinical char-
acteristics) showed the best prediction performance.
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Background
Cervical cancer is the fourth most frequent malignancy 
in women worldwide, with the fourth highest mortal-
ity [1, 2]. Squamous cell carcinoma, which accounts for 
more than 75% of all cervical cancers, is a major con-
tributor to the overall burden of disease in females [3]. 
Concurrent chemoradiotherapy (CCRT) remains the 
standard treatment for patients with locally advanced 
cervical cancer (LACC) (i.e., those with stage IIB-IVA 
diagnosed according to the new 2018 International 
Federation of Gynecology and Obstetrics [FIGO] 
staging system [4]) according to the latest National 
Comprehensive Cancer Network Clinical Practice 
Guidelines in Oncology [5]. Although outcomes in 
patients with LACC had been improved with multimo-
dality treatment, the overall recurrence rate is 35%, and 
the median survival after recurrence is still low, only 
10–12 months [6, 7]. Moreover, women with recurrent 
cervical cancer are prone to first-line chemotherapy 
drug resistance. Thus, predicting cervical cancer out-
comes is one of the most challenging tasks. An early 
and reliable biomarker that can predict patients’ prog-
nosis may help clinicians adjust the treatment plan in 
time and conduct more intensive follow-up to improve 
patients’ survival rate and quality of life.

Magnetic resonance imaging (MRI) has excellent 
multi-planar capability and can produce cross-sectional 
images of the body with excellent soft-tissue contrast. 
It is the preferred imaging modality to evaluate locore-
gional tumor extent. Positron emission tomography-
computed tomography (PET/CT) is often used as a 
supplement for MRI for nodal and distant staging [8]. 
PET/CT and MRI have been widely used for progno-
sis evaluation in cervical cancer [9–11]. Compared to 
conventional PET/CT and MRI parameters, there has 
been a growing interest in radiomics in recent years. 
Radiomics is a technology that uses artificial intel-
ligence and machine learning to extract a large set of 
high-dimensional data from a series of medical images. 
The extracted features can be used as alternative mark-
ers for underlying gene expression patterns and related 
biological characteristics such as tumor morphol-
ogy and intratumor heterogeneity [12, 13]. Recent 
developments of radiomics have shown the potential 
added value in discriminatory and prognostic evalu-
ation of cervical cancer when using PET/CT and MRI 
[14–18]. Previous studies found that radiomics features 
extracted from PET/CT images could more accurately 
predict survival of cervical cancer patients compared 

to conventional clinical factors and  SUVmax; yet, these 
studies had a smaller sample size and PET/CT was less 
clinically used than MRI [14–16].

MRI plays an essential role in the initial staging of dis-
ease, therapeutic strategy, treatment planning, and evalu-
ation of tumor response [19]. Both T2-weighted imaging 
(T2WI) and diffusion-weighted imaging (DWI) are now 
recommended for initial staging, assessment of treatment 
response, and evaluation of recurrence [8]. This study 
aims to develop radiomics features extracted from pre-
treatment MRI to predict the progression-free survival 
(PFS) and overall survival (OS) in patients with locally 
advanced cervical squamous cell cancer (LACSC) treated 
with CCRT and then compared their predictive value 
with clinical characteristics and the new 2018 FIGO stag-
ing system.

Methods
Research subjects
The institutional review board approved this study and 
waived the need for informed consent. A retrospective 
review was performed on patients with cervical cancer 
treated in our hospital between January 2014 and Decem-
ber 2018. Inclusion criteria were the following: (1) histo-
logically proven cervical squamous cell cancer; (2) FIGO 
stage IIB to IVA, according to the 2018 FIGO staging 
system [4]; (3) undergoing pelvic MRI before treatment, 
including DWI; (4) treated with definitive curative CCRT. 
Exclusion criteria were: (1) history of other cancers; (2) 
history of previous chemotherapy or radiotherapy; (3) 
pretreatment pelvic MRI did not include multi-phase 
contrast enhanced scannig; (4) images with artifacts; (5) 
patient that failed to complete the treatment.

Finally, 185 patients were included in this study (mean 
age, 52.8 ± 8.8 years; age range, 24–73 years). A flow-
chart of the study population is shown in Fig. 1. Eligible 
patients’data were randomly divided into a training group 
(n = 128) and a testing group (n = 57) at a ratio of 7:3.

The clinical characteristics included age, body mass 
index (BMI), squamous cell carcinoma antigen (SCC-
Ag), tumor grade (low-grade: well/moderately differenti-
ated; high-grade: poorly differentiated), 2018 FIGO stage, 
primary tumor invasion (T stage), tumor maximum-
diameter, lymph node metastasis (LNM) (number and 
position [pelvic/para-aortic]). A radiologist with 18 years 
of experience in gynecological imaging (X. Y.) and a clini-
cian with 20 years of experience in gynecological tumor 
(J. A.) who were blinded to clinical outcomes of the 
patients restaged all patients based on clinical records 
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and imaging examination results using the revised 2018 
FIGO staging system [4]. The two doctors also classified 
the T stage in consensus according to TNM  9th edition 
[20]. Tumor maximum-diameter was determined by 
the longest diameter measured on T2WI in the sagittal 
or transverse axial planes. Lymph node with short-axis 
diameter ≥ 1.0 cm or liquefaction necrosis was assessed 
as LNM.

MR techniques
All patients underwent routine contrast-enhanced pel-
vic MRI before CCRT. MRI acquisitions were performed 
on two 3.0-T MR imaging units (Discovery MR 750 and 
Signa Excite HDx, GE Medical System) using an eight-
element phased coil with patients in the supine position. 
Patients with no contraindications received an intramus-
cular injection of 10 mg raceanisodamine hydrochlo-
ride before image acquisition to reduce bowel motion 
artifacts. DWI was performed using a single-shot spin 
echo-planar imaging sequence with b values of 0 and 
800 s/mm2. Sagittal multi-phase contrast enhanced scan-
nig was performed using liver acquisition with volume 
acceleration-extended volume (LAVA-XV) sequence 
15 seconds after an intravenous injection contrast agent 
(gadodiamide, 0.1 mmol/kg; Omniscan; GE Health-
care, Co. Cork, Ireland) at a rate of 2.0 ml/s, per phase of 
15 seconds with a total acquisition time of 105 seconds, 

followed by 20 mL of normal saline to flush the tubing. 
Detailed information on the MR sequences is listed in 
Supplementary Table S1.

Treatment
All patients received whole pelvic external pelvic 
beam radiation therapy (EBRT) or extended-field RT 
to the para-aortic area depending on their work up at 
1.8–2.4 Gy daily, for 5 days a week, with a total dose of 
45–61.6 Gy. Subsequent high-dose-rate brachytherapy 
(HDR-BT) treatments were performed one week after 
EBRT, with a total dose range between 21 and 47 Gy at 
5.6–8.6 Gy per fraction. In addition, all patients received 
concurrent chemotherapy with weekly cisplatin or neda-
platin at a dose of 50 mg/m2.

Follow‑up
Regular follow-up was conducted every third month until 
the  2nd year after treatment, twice per year in the  3rd, 
 4th, and  5th year, and once a year after that. Disease pro-
gression or recurrence was confirmed by gynecological 
examination, tumor marker measurements, and imaging 
modalities such as CT, MRI, and PET-CT. In addition, 
PFS and OS were chosen as two separate endpoints. PFS 
was defined as the time from the start of the treatment 
to disease progression, recurrence, death, or the last 

Fig. 1 The flowchart of the study cohort
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follow-up visit. OS was the time from the date of treat-
ment to death by any cause or the last follow-up visit.

Tumor image segmentation
ITK-SNAP (v.3.6.0; www. itksn ap. org) was used for 
manual 3D segmentation of MR images. The volume of 
interest (VOI) of the tumor was segmented by manu-
ally drawing regions of interest (ROIs) by an experienced 
radiologist (X.Z. with 5 years of experience in gyneco-
logic MR), who was blinded to the results of patients’ 
outcomes. The apparent diffusion coefficient (ADC) map 
was derived from DWI by a workstation (Advantage 
Workstation 4.6; GE Medical System). The ROIs were 
drawn along the margin of the tumor on each slice of the 
(i) axial oblique T2WI, (ii) sagittal arterial-phase con-
trast-enhanced MRI, (iii) sagittal delayed-phase contrast-
enhanced MRI, and (iv) DWI images, carefully avoiding 
cystic, necrotic, or hemorrhagic tumor regions. The VOIs 
of DWI images were then finally copied into ADC maps.

To evaluate the inter-observer reproducibility of ROIs, 
60 patients were randomly selected for tumor segmen-
tation by another radiologist with 8 years of experience 
in gynecological imaging (Q.Z.). Subsequently, images 
drawn by two radiologists were analyzed for inter-group 
consistency.

Radiomics feature extraction
Each MRI scan of each patient was normalized with 
Z-scores in order to get a standard normal distribution of 
image intensities, a set of 100 normalized radiomics fea-
tures were extracted from each VOI segmented on each 
sequence by using the PyRadiomics (https:// pyrad iom-
ics. readt hedocs. io). These radiomics features included (i) 
14 shape features, (ii) 18 first-order features, (iii) 22 gray 
level co-occurrence matrix (GLCM) features, (iv) 16 gray 
level run length matrix (GLRLM) features, (v) 16 gray 
level size zone matrix (GLSZM) features, and (vi) 14 gray 
level dependence matrix (GLDM) features. In total, 400 
radiomics features were extracted from each patient. The 
agreement between the two radiologists was assessed by 
the intraclass correlation coefficient (ICC). Features with 
an ICC higher than 0.75 were reserved.

Radiomics feature selection and signature construction
The predictive performance in predicting PFS and OS of 
each feature was evaluated by univariate Cox regression 
in the training group. The features with P-value < 0.05 
were treated as significant prognostic factors and selected 
as candidate features. To eliminate the redundant, the 
correlation between the features was then calculated by 
Spearman or Pearson correlation analysis according to 
their distribution types; features with coefficient r ≥ 0.8 
were removed accordingly. The least absolute shrinkage 

and selection operator (LASSO) Cox regression method 
was used to multivariate feature selection and to con-
struct the final model. The optimal λ was selected using 
5-fold cross-validation in the training group to obtain 
an optimal feature number and avoid over-fitting, and 
the feature number was therefore determined automati-
cally by the λ. Radiomics score (Rad-score) was calcu-
lated by summing the selected features weighted by their 
coefficients.

Statistical analysis
The Kolmogorov-Smirnov test examined whether the 
data followed a normal distribution. Levene test was used 
to test homogeneity of variance. The Mann-Whitney U 
test or independent sample t-test was used to compare 
the differences in the continuous variables between the 
training group and the testing group. Chi-squared test 
or Fisher’s exact test was employed for categorical vari-
ables. Univariate Cox regression analysis and LASSO 
Cox regression analysis were used to assess the prognos-
tic significance of Rad-score and clinical characteristics. 
The predictive capability of the prediction model was 
evaluated using Harrell’s C-index and then presented 
as a nomogram. C-index of 0.50–0.70 indicates poor 
accuracy; 0.71–0.90 indicates moderate accuracy; > 0.90 
indicates high accuracy. Cut-off values of the Rad-score 
and the risk score based on the combined model were 
obtained by Maximally Selected Test Statistics. Patients 
were then subdivided into low-risk and high-risk groups. 
Survival curves were generated using the Kaplan-Meier 
method, and the log-rank test was used to examine the 
statistical difference between curves. A likelihood ratio 
test was used to compare the differences of the C-index. 
P-value < 0.05 was considered statistically significant. All 
the statistical analyses were performed with SPSS Statis-
tics, version 19.0, and R software, version 3.4.4.

Results
Patient characteristics
In the training group, the median follow-up duration was 
47.7 months (range, 12.0–83.4 months). At the end of the 
follow-up period, tumor progression/recurrence was 
observed in 47 (36.7%) patients, and 29 (22.7%) patients 
died of persistent or recurrent disease.

In the testing group, after a median follow-up of 
42.0 months (range, 6.6–80.7 months), tumor progres-
sion/recurrence was observed in 21 (36.8%) patients, and 
12 (21.1%) patients died of persistent or recurrent dis-
ease. There were no differences in the clinical character-
istics between the training and testing groups (P > 0.05, 
Table 1).

http://www.itksnap.org
https://pyradiomics.readthedocs.io
https://pyradiomics.readthedocs.io
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Performance of the clinical characteristics in PFS and OS 
prediction
Univariate Cox regression analysis for PFS and OS are 
shown in Table 2. The multivariate analysis showed that 
T stage, tumor maximum-diameter, and LNM position 
were independent prognostic predictors for PFS, while T 

stage and LNM position were independent predictors for 
OS (Table 2).

Clinical-predicting models were constructed based on 
the results. The C-index values in the training and test-
ing groups were 0.731 and 0.725 for PFS, and 0.708 and 
0.693 for OS, respectively (Table  3). In the training and 

Table 1 Comparison of clinical characteristics between training and testing groups

SD Standard deviation, BMI Body mass index, SCC-Ag Serum levels of squamous cell carcinoma antigen, FIGO Federation of Gynecology and Obstetrics, LNM Lymph 
node metastasis.

Parameters Training (n = 128) Testing (n = 57) P‑value

Age (years, mean ± SD) 52.83 ± 8.76 52.63 ± 9.11 0.891

BMI (kg/m2, mean ± SD) 24.80 ± 3.44 24.63 ± 3.78 0.757

SCC-Ag (ng/mL, mean ± SD) 11.90 ± 22.20 11.02 ± 17.99 0.792

Tumor grade (%) 0.062

Low-grade (well/moderately differentiated) 81 (63.3%) 44 (77.2%)

High-grade (poorly differentiated) 47 (36.7%) 13 (22.8%)

T stage (%) 0.435

  T2 98 (76.6%) 39 (68.4%)

  T3 25 (19.5%) 16 (28.1%)

  T4 5 (3.9%) 2 (3.5%)

2018 FIGO stage (%) 0.928

  II 64 (50.0%) 27 (47.4%)

  III 59 (46.1%) 28 (49.1%)

  IVA 5 (3.9%) 2 (3.5%)

Tumor maximum-diameter (cm, mean ± SD) 4.49 ± 1.13 4.33 ± 1.35 0.400

LNM position (%) 0.906

  Negative 74 (57.8%) 31 (54.4%)

  Pelvic LNM 40 (31.3%) 19 (33.3%)

  Para-aortic LNM 14 (10.9%) 7 (12.3%)

LNM number (%) 0.813

  0 74 (57.8%) 31 (54.4%)

  ≤2 24 (18.8%) 13 (22.8%)

  >2 30 (23.4%) 13 (22.8%)

Table 2 Clinical characteristics analysis for progression-free survival and overall survival

BMI Body mass index, SCC-Ag Serum levels of squamous cell carcinoma antigen, LNM Lymph node metastasis.

Characteristics Progression‑free survival Overall survival

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR (95% CI) P‑value HR (95% CI) P‑value HR(95% CI) P‑value HR (95% CI) P‑value

Age 0.972(0.942, 1.002) 0.069 0.994(0.950, 1.041) 0.807

BMI 0.954(0.877, 1.037) 0.265 1.003(0.895, 1.124) 0.960

SCC 1.001(0.990, 1.012) 0.875 1.008(0.995, 1.021) 0.231

Tumor grade 1.327(0.744, 2.366) 0.338 2.220(1.013, 4.867) 0.046

T stage 2.934(1.952, 4410) <0.001 1.849(1.116, 3.063) 0.017 3.332(1.897, 5.589) <0.001 2.409(1.161, 5.002) 0.018

Tumor maximum diameter 1.508(1.178, 1.930) 0.001 1.206(0.923, 1.577) 0.170 1.610(1.171, 2.214) 0.003

LNM position 2.476(1.666, 3.679) <0.001 1.678(1.049, 2.684) 0.031 2.606(1.555, 4.366) <0.001 1.521(0.758, 3.054) 0.238

LNM number 1.910(1.377, 2.650) <0.001 2.054(1.298, 3.252) 0.002
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testing groups, the 2018 FIGO staging system showed 
predictive performance with C-index values of 0.657 
and 0.677 for PFS estimation (HR: 3.137; 95% CI: 1.920–
5.127, P < 0.001), and 0.665 and 0.633 for OS estimation 
(HR: 3.166; 95% CI: 1.673–5.992, P < 0.001), respectively 
(Table  3). The prediction performance of the clinical-
predicting model for PFS and OS estimation was signifi-
cantly higher than that of the 2018 FIGO staging system 
(P < 0.05).

Performance of the radiomic score in PFS and OS 
prediction
A total of twelve radiomics features were selected 
for Rad-score building for PFS estimation (Rad-PFS) 
(Table  4). Eleven radiomics features were selected for 

Rad-score building for OS estimation (Rad-OS) (Table 5). 
The features selected for the Rad-score are presented 
along with their calculation formulas in Supplementary 
Appendix E1 and E2.

Rad-PFS achieved significantly better predictive per-
formance with C-index values of 0.764 and 0.762 in the 
training and testing groups, compared with the 2018 
FIGO staging system (training and testing: P  < 0.001) 
and clinical-predicting model (training: P = 0.037; test-
ing: P < 0.001) (Table 3). Rad-OS showed predictive per-
formance with C-index values of 0.793 and 0.750 in the 
training and testing groups, which were significantly 
higher than those of the 2018 FIGO staging system (train-
ing and testing: P < 0.001) and clinical-predicting model 
(training: P = 0.002; testing: P < 0.001) (Table 3). Patients 

Table 3 Prognostic prediction models for the outcomes of patients with locally advanced cervical squamous cell cancer

PFS progression-free survival, OS overall survival, FIGO Federation of Gynecology and Obstetrics.

Prediction Models Training Testing

Wald Test P‑value C‑index Wald Test P‑value C‑index

Progression‑free survival
 2018 FIGO staging system 20.83 <0.001 0.657 10.82 0.001 0.677

 Clinical model 33.57 <0.001 0.731 15.94 <0.001 0.725

 Rad-PFS 40.17 <0.001 0.764 13.62 <0.001 0.762

 Combined model 50.67 <0.001 0.792 21.28 <0.001 0.809

Overall survival
 2018 FIGO staging system 12.54 <0.001 0.665 5.54 0.02 0.633

 Clinical model 22.53 <0.001 0.708 5.96 0.01 0.693

 Rad-OS 23.97 <0.001 0.793 12.72 <0.001 0.750

 Combined model 31.59 <0.001 0.822 13.43 <0.001 0.785

Table 4 Radiomics features included in the construction of the 
Rad-PFS

T2WI T2-weighted imaging, ADC apparent diffusion coefficient, GLSZM gray 
level size zone matrix, GLCM gray level co-occurrence matrix, GLDM gray level 
dependence matrix.

Feature name

feature 1 T2WI_original_glszm_LargerAreaLowGrayLevelEmphasis

feature 2 T2WI_original_glszm_SizeZoneNonUniformity

feature 3 ADC_original_shape_Sphericity

feature 4 ADC_original_firstorder_Kurtosis

feature 5 ADC_original_firstorder_Mean

feature 6 ADC_original_glcm_ClusterShade

feature 7 ADC_original_glcm_DifferenceVariance

feature 8 ADC_original_glcm_Imc1

feature 9 ADC_original_glcm_Idmn

feature 10 Arterial-phase_original_gldm_LowGrayLevelEmphasis

feature 11 Delayed-phase_original_firstorder_TotalEnergy

feature 12 Delayed-phase_original_glszm_ZoneEntropy

Table 5 Radiomics features included in the construction of the 
Rad-OS

ADC apparent diffusion coefficient, GLCM gray level co-occurrence matrix, 
GLSZM gray level size zone matrix, GLDM gray level dependence matrix, GLRLM 
gray level run length matrix.

Feature name

feature 1 ADC_original_firstorder_Maximum

feature 2 ADC_original_glcm_ClusterProminence

feature 3 ADC_original_glcm_DifferenceVariance

feature 4 ADC_original_glcm_JointEntropy

feature 5 ADC_original_glcm_Imc1

feature 6 Arterial-phase_original_shape_Maximum2DDiameterCol-
umn

feature 7 Arterial-phase_original_firstorder_Skewness

feature 8 Arterial-phase_original_glszm_LowGrayLevelZoneEmphasis

feature 9 Arterial-phase_original_gldm_LowGrayLevelEmphasis

feature 10 Delayed-phase_original_firstorder_TotalEnergy

feature 11 Delayed-phase_original_glrlm_RunLengthNonUniformity
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were then further divided into high-risk and low-risk 
groups according to the cut-off values of Rad-PFS (0.56) 
and Rad-OS (1.12). The Kaplan-Meier curves for PFS and 
OS are shown in Fig. 2. Patients with the lower value of 
Rad-PFS or Rad-OS had significantly longer PFS and OS 
in the training and testing groups (P < 0.05).

Performance of the combined models in PFS and OS 
prediction
For PFS estimation, the further multivariable Cox regres-
sion analyses incorporating the Rad-score and clinical 

characteristics identified Rad-PFS (HR: 2.201; 95% CI: 
1.570–3.084, P < 0.001), T stage (HR: 1.390; 95% CI: 
0.806–2.298, P = 0.237), and LNM position (HR: 1.435; 
95% CI: 0.906–2.273, P = 0.124) as independent predic-
tors. The combined model achieved the best predictive 
performance with C-index values of 0.792 and 0.809 in 
the training and testing groups, respectively, which were 
significantly higher than those of the single Rad-PFS 
(training: P = 0.002; testing: P < 0.001), clinical-predicting 
model (training and testing: P  < 0.001), and 2018 FIGO 
staging system (training and testing: P < 0.001) (Table 3).

Fig. 2 Kaplan-Meier curves of the Rad-PFS in the training group (a) and testing group (b); Kaplan-Meier curves of the Rad-OS in the training group 
(c) and testing group (d) 
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For OS estimation, the further multivariable Cox 
regression identified Rad-OS (HR: 2.297; 95% CI: 1.428–
3.696, P < 0.001), T stage (HR: 1.564; 95% CI: 0.715–
3.424, P = 0.263), and LNM position (HR: 1.321; 95% 
CI: 0.631–2.765, P = 0.461) as independent predictors. 
The combined model also achieved the best discrimina-
tion performance with C-index values of 0.822 and 0.785 
in the training and testing groups, respectively, which 
were significantly higher than those of the single Rad-OS 
(training: P = 0.041; testing: P < 0.001), clinical-predicting 

model (training and testing: P  < 0.001), and 2018 FIGO 
staging system (training and testing: P < 0.001) (Table 3).

The calculation formulas of the risk scores were shown 
in Supplementary Appendix E3 and E4. Patients were 
then subdivided into low-risk and high-risk groups 
according to the cut-off values of the risk scores of 
the combined models for PFS (1.44) and OS (1.95); the 
Kaplan-Meier curves for PFS and OS of the combined 
model are shown in Fig.  3. Patients with the lower risk 
score value had significantly longer PFS and OS in the 

Fig. 3 Kaplan-Meier curves of the combined model for PFS in the training group (a) and testing group (b); Kaplan-Meier curves of the combined 
model for OS in the training group (c) and testing group (d) 



Page 9 of 12Zhang et al. Cancer Imaging           (2022) 22:35  

training and testing groups (P < 0.05). The nomograms 
and calibration curves of the combined models for PFS 
and OS are shown in Fig. 4 and Fig. 5, respectively.

Discussion
This study developed and validated Rad-score from 
MRI for prognosis estimation in patients with LACSC 
treated with chemoradiotherapy. The MRI-based Rad-
score showed moderate accuracy in PFS and OS pre-
diction, which was more accurate than the 2018 FIGO 
staging system and the clinical model. The combined 
model, including Rad-score and clinical characteristics, 
showed the best prediction performance in PFS and OS 
prediction. Moreover, patients were subdivided into low-
risk and high-risk groups according to the risk score of 
the combined model, which can further facilitate indi-
vidualized PFS and OS estimation prior to initiation of 
chemoradiotherapy.

Until 2018, cervical cancer was the only gynecologic 
malignancy staged primarily based on clinical findings. 

Importantly, LNM is not part of the previous FIGO sys-
tem, despite LNM is one of the most important prognos-
tic indicators for recurrence and death in patients with 
cervical cancer [21]. In 2018, the FIGO classification was 
revised, further incorporating imaging and pathologic 
findings, and allowing the addition of LNM. The new 
2018 FIGO staging system has a better stage differen-
tiation and predictive accuracy for disease-free survival 
(DFS) compared to the 2014 FIGO staging system [22]. 
However, the modified 2018 FIGO staging system is still 
under evaluation and needs to be further improved. This 
study pointed out that the discrimination of the 2018 
FIGO staging system for PFS and OS is still not visually 
ideal. Our results showed that the LNM was the inde-
pendent prognostic factor for PFS and OS; the patients 
with LNM had worse PFS and OS, especially those with 
para-aortic LNM. We also found that a higher T stage is 
correlated with worse PFS and OS, which was consistent 
with previous studies [23–25], indicating that local tumor 
factors remain salient prognostic factors in cervical 

Fig. 4 The nomogram (a) and calibration curves of training group (b) and testing group (c) for the combined PFS prediction model. The diagonal 
dashed line represents a perfect prediction by an ideal model. The blue, red, and green line represents the performance of the nomogram, of which 
a closer fit to the diagonal line represents a better prediction

Fig. 5 The nomogram (a) and calibration curves of training group (b) and testing group (c) for the combined OS prediction model. The diagonal 
dashed line represents a perfect prediction by an ideal model. The blue line represents the performance of the nomogram, of which a closer fit to 
the diagonal line represents a better prediction
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cancer. Moreover, Mu et  al [26] found that the clinical-
predicting model including T stage and LNM for PFS 
and OS had a significantly higher C-index than the 2018 
FIGO staging system in the patients with LACC, which 
was consistent with our study. However, the clinical-pre-
dicting model lacks features reflecting tissue microstruc-
ture. Currently, the intratumor heterogeneity has been 
reported to have pronounced effects on the prognosis of 
tumor [27]. Further study about it may be helpful in the 
more precise prediction of PFS and OS in patients with 
LACSC treated with CCRT.

The radiomics approach could noninvasively extract 
useful imaging features from medical images, which 
may help reflect the intratumor heterogeneity and pro-
vide underlying diagnostic, therapeutic, and prognostic 
information [28]. Preliminary reports suggested a poten-
tial use of radiomics analysis in cervical cancer imaging. 
The value of MRI radiomics model has been proven in 
predicting the LNM and lymph-vascular space invasion 
status in patients with cervical cancer preoperatively [29, 
30]. Becker et  al [31] reported that the textural param-
eter of the ADC map correlates with the differentiation 
of cervical cancer. Giving this background, radiomics fea-
tures based on MRI were used to predict the survival of 
cervical cancer patients in recent years. Wormald et  al 
[32] found that radiomics features from ADC maps and 
T2WI could potentially predict recurrence in patients 
with stage I-II low-volume cervical cancer. Moreover, 
Laliscia et al [19] found that the radiomics features from 
T2WI are useful for predicting the prognosis of LACC. 
In addition, a retrospective study of 248 stage IB–IIA 
cervical cancer patients investigated the prognostic value 
of the pretreatment MRI (T2WI and contrast-enhanced 
T1WI) based Rad-score for DFS estimation [33], and 
18 radiomics features were identified to be predictive 
for DFS, including 10 features derived from contrast-
enhanced T1WI and 8 features extracted from T2WI; the 
Rad-score yielded a C-index of 0.753 on DFS prediction. 
This may suggest that contrast-enhanced T1WI probably 
contains more prognostic information than T2WI and 
that MRI-derived Rad-score can be used as a prognostic 
biomarker for patients with early-stage cervical cancer.

This study used radiomics features from multi-para-
metric MRI to establish the Rad-score. The multi-para-
metric MRI could reduce the risk of bias of the radiomics 
features obtained from a single sequence. We included 
the multi-phase contrast enhanced MRI (arterial-phase 
and delayed-phase) in addition to T2WI and ADC, dif-
ferent sequences could reflect different characteris-
tics of tumors, including tumour intensity, cellularity 
and vascularisation [34]. ADC map with a reflection of 
the biological heterogeneity of tumors can provide bet-
ter characterization of tissue and their pathological 

processes at the microscopic level [35]. The multi-phase 
contrast enhanced MRI may reflect intratumoral hetero-
geneity and architecture (e.g., tumor angiogenesis) and 
the changes in the tumor’s blood supply, while T2WI can 
detect tumor density [36]. Most locally advanced cervi-
cal tumors present with high intratumoral heterogeneity 
in virtually all distinguishable phenotypes, such as prolif-
eration, vascularity, metabolism, oxygenation, etc., which 
directly suggests tumor resistance to therapy and poor 
prognosis [37, 38]. Our study revealed that the predic-
tion performance of the Rad-PFS and Rad-OS was better 
than that of the clinical-predicting models, and the com-
bination of Rad-score and clinical features can achieve 
the best prediction performance, indicating that radiom-
ics can mine more prognostic information than clinical 
factors by observing the whole tumor scope and extract-
ing high-dimensional features. Thus, it could be used as 
a surrogate biomarker to improve the prognostic ability 
pretreatment.

Despite the favorable results of MRI-based radiomics, 
this study has several limitations. First, this study was a 
single-center and retrospective study. Thus, further vali-
dation of the prediction model based on external centers 
and large-scale cohorts is required. Second, the follow-
up was relatively short; a longitudinal study is needed to 
further evaluate the long-term prognostic value of MRI-
based radiomics analysis in LACSC. Third, the selection 
criteria of LNM might lead to the exclusion of patients 
with smaller LNM or a false positive of the included 
LNM, it is hoped to plan a prospective study in patients 
with a pathological assessment of LNM in the future.

Conclusions
In conclusion, this study suggests that MRI-based Rad-
score could provide effective information for predicting 
the outcomes of LACSC treated with CCRT. Compared 
with the commonly used 2018 FIGO staging system and 
clinical characteristics, the Rad-score could significantly 
improve the prediction performance. The combined 
model (including Rad-score and clinical characteristics) 
showed the best prediction performance. The patients 
stratified by the combined model can be classified into 
low-risk and high-risk groups for PFS and OS, which 
might provide clinicians with new insights into individu-
alized follow-up and guiding therapeutic strategies.
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