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Abstract 

Purpose: To establish a nomogram for predicting the risk of adenocarcinomas in patients with subsolid nodules 
(SSNs) according to the 2021 WHO classification.

Methods: A total of 656 patients who underwent SSNs resection were retrospectively enrolled. Among them, 407 
patients were assigned to the derivation cohort and 249 patients were assigned to the validation cohort. Univariate 
and multi-variate logistic regression algorithms were utilized to identity independent risk factors of adenocarcinomas. 
A nomogram based on the risk factors was generated to predict the risk of adenocarcinomas. The discrimination abil-
ity of the nomogram was evaluated using the concordance index (C-index), its performance was calibrated using a 
calibration curve, and its clinical significance was evaluated using decision curves and clinical impact curves.

Results: Lesion size, mean CT value, vascular change and lobulation were identified as independent risk factors for 
adenocarcinomas. The C-index of the nomogram was 0.867 (95% CI, 0.833-0.901) in derivation cohort and 0.877 (95% 
CI, 0.836-0.917) in validation cohort. The calibration curve showed good agreement between the predicted and actual 
risks. Analysis of the decision curves and clinical impact curves revealed that the nomogram had a high standardized 
net benefit.

Conclusions: A nomogram for predicting the risk of adenocarcinomas in patients with SSNs was established in light 
of the 2021 WHO classification. The developed model can be adopted as a pre-operation tool to improve the surgical 
management of patients.
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Keypoints

• The performance and stability of the model was con-
firmed using internal and external validation cohorts

• Preoperative CT features can guide surgical interven-
tion or conservative screening

• A nomogram incorporating simple and intuitive CT 
features was developed for clinical use.
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Introduction
Lung cancer is ranked among the top leading causes of 
cancer deaths worldwide [1]. In most cases, lung adeno-
carcinoma (LUAD) is the most prevalent histological 
subtype of lung cancer accounting for approximately 
50%, followed by squamous cell carcinoma, small cell 
carcinoma, and large cell carcinoma [2]. Currently, early 
surgical intervention is the most effective treatment for 
early LUAD [3]. However, cancer overdiagnosis and over-
treatment have been shown to increase the demand for 
healthcare resources. Therefore, identifying strategies 
for avoiding these challenges may result in better clini-
cal management of patients. Using the next generation 
sequencing (NGS) technology, scientists have reported 
that the progression of LUAD involves many steps. 
For instance, invasive adenocarcinoma (IAC) develops 
sequentially from atypical adenomatous hyperplasia 
(AAH) and progresses to adenocarcinoma in  situ (AIS), 
to form a minimally invasive adenocarcinoma (MIA) [4, 
5]. In the revised 2021 classification of thoracic tumors, 
WHO includes AAH and AIS as precursor glandular 
lesions and classifies MIA and IAC as adenocarcinomas 
[6]. In the last decade, large-scale, systematic studies have 
shown that the long-term postoperative disease-specific 
survival of AIS and MIA may reach 100% [5, 7, 8]. The 
good long-term survival of patients with MIA indicates 
that surgical interventions may not benefit patients with 
AAH or AIS. Therefore, AAH or AIS are mainly managed 
conservatively and rarely require surgical intervention.

A nomogram has been widely used as a reliable and 
robust tool to create a visualized graph of a predictive 
model comprising the risk factors of a clinical event [9]. 
Some studies have demonstrated that nomogram models 
can improve disease diagnosis [10, 11]. To date, few nom-
ograms for predicting the risk of adenocarcinomas in 
patients with subsolid nodule (SSN) in light of the 2021 
WHO classification have been reported. In this study, we 
used pre-operative computed tomography (CT) features 
to predict the probability of adenocarcinomas in patients 
with SSN according to the 2021 WHO classification. The 
developed nomogram is expected to help clinicians make 
better decisions regarding the surgical management of 
patients.

Materials and methods
Patients
A total of 1054 patients with SSNs who underwent sur-
gery at our institution between April 2019 and Decem-
ber 2020 were retrospectively analyzed. All cases were 
enrolled based on a strict inclusion and exclusion cri-
teria. The inclusion criteria were as follows: (1) patients 
with SSNs on CT scan; (2) maximum diameter ≤ 30 mm; 
(3) complete surgical resection. Exclusion criteria were: 

(1) no detailed pathology; (2) history of other malignan-
cies; (3) neither precursor glandular lesions or adenocar-
cinomas; (4) anti-tumor therapy or biopsy; (5) CT scan 
and surgery were separated by more than one month; 
(6) missed complete thin-slice images (1 mm); (7) poor 
CT image quality. Finally, 656 cases were enrolled in 
this study. A flowchart showing participant recruitment 
is shown in Fig. 1. All clinical characteristics CT images 
of the participants were extracted from the Picture and 
Communication Systems (PACS) and the hospital’s elec-
tronic medical records (EMR) systems. The Ethics Com-
mittee of our institution approved the study (approval 
No. k2020-009) and waived the requirement of informed 
consent.

CT scan protocol
Chest CT images were acquired using a 64-slice spi-
ral CT system (SOMATOM Definition AS+; Siemens 
Healthcare, Germany) using a pulmonary window center 
of -500 Hounsfield units (HU), a window width of 1500 
HU, mediastinal window center of 50 HU, and a win-
dow width of 350 HU. Prior to examination, participants 
were trained on how to take a deep breath and hold their 
breath. Each participant was scanned while in the head-
first supine position, with arms raised. CT scans were 
acquired at the end of inspiration, with the CT scan-
ning ranging from the tip of the lung to the diaphragm. 
Scanning parameters were as follows: 120 kVp tube volt-
age, automatic tube current modulation, a pitch of 1.2, 
a matrix of 512×512, 7 mm slice thickness, and recon-
structed slice thickness of 1 mm with high-resolution 
reconstruction algorithm.

Imaging analysis
CT images were examined by radiologists A, B and C 
(with 4, 9 and 20 years of chest CT imaging experience, 
respectively), using a commercially available advanced 
workstation (VE40A, Siemens Healthineers) contain-
ing a tumor quantitative analysis software package 
(Siemens Healthineers). All radiologists were blinded 
to all clinical data and pathological results, except for 
age and sex of the patients. The software package has 
a semi-automated lesion segmentation tool. Raw 1 mm 
CT imaging data (DICOM format) were loaded into 
the software package. SSNs were segmented manually 
by tracing the segmentation boundaries of the nodules 
slice by slice, on axial images, excluding areas where 
large vessels and bronchi predominated. Nodule seg-
mentation was conducted by radiologist A using the 
semi-automated tool. Segmentation boundaries were 
checked by radiologist B, and any discrepancies of seg-
mentation boundaries of SSNs between the two radiol-
ogists were resolved by radiologist C. The segmentation 
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tool produced long axis, short axis, mean CT value, and 
volume of the lesion. Lesion size was calculated as the 
average of the long- and short-axis diameters. Nod-
ule mass was calculated as using the formula: mass(g) 
= (mean CT value + 1000) × volume(cm3)/1000 [12]. 
Morphological features of the SSNs were examined by 
radiologists A and B through multiple planar recon-
struction (MPR), maximal intensity projection (MIP), 
volume rending technique (VRT), and minimum inten-
sity projection (MinIP). The morphological features 
of SSNs including the following: (1) vascular change 
was abnormal vascular broadening or distortion [13], 
and was classified as present or absent; (2) bronchiole 
change was bronchus with dilated or tortuous lumen 
[14], and was classified as present or absent; (3) lobula-
tion was defined as the outline of the lesion is not purely 
circular or oval, was classified as present or absent; (4) 
bubble was defined as a gaseous density with maxi-
mum diameter < 5mm [15], was classified as present or 
absent; (5) pleural attachment was defined as the pleura 
that was pulled to the lesion by a linear structure, and 
was classified as present or absent; (6) spiculation was 
defined as linear strands extending beyond the lesion 
[16], and was classified as present or absent; (7) lesion-
lung interface, the border between the lesion and the 
normal lung tissues, and was classified as clear and 
blurry. Any discrepancies in the morphological features 

of SSNs between radiologists A and B were resolved by 
radiologist C.

Interobserver and intraobserver agreements
Agreements between radiologists A, B, and C were evalu-
ated with the Intraclass correlation coefficient (ICC) for 
quantitative parameters and Kappa coefficient for cat-
egorical variables. 30 SSNs (5%) were randomly selected 
for segmentation and morphological feature evaluation. 
At first, radiologists A, B, and C conducted segmenta-
tion and morphological feature evaluation independently. 
After 2 weeks, the segmentation and morphological fea-
ture evaluation of the SSNs were performed by three 
radiologists a second time.

Pathological diagnosis
All enrolled pathological specimens were independently 
reviewed by two senior pathologists, and the final patho-
logical results were obtained through consensus. Patho-
logical diagnosis was classified as AAH, AIS, MIA, and 
IAC based on the 2015 WHO classification of pulmo-
nary adenocarcinomas [4]. Notably, AAH and AIS were 
classified as precursor glandular lesions and MIA and 
IAC as adenocarcinomas based on the 2021 WHO clas-
sification [6].

Fig. 1 A flowchart showing the patient selection process
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Statistical analysis
SPSS 26.0 (IBM) and R 3.5.1 (http:// www.r- proje ct. org) 
were used for statistical analyses. Normality of quantita-
tive parameters was tested using the Shapiro-Wilk test. 
Quantitative parameters satisfying the normal distribution 
were expressed as ‾x ± s. Otherwise, quantitative param-
eters were expressed as median (P25, P75). Student’s t test 
or Mann-Whitney U test were used to compare differences 
between continuous data. Categorical variables were com-
pared using the chi-square test. Univariate and multivari-
ate analyses using logistic regression were performed for 
the derivation cohort to identify independent risk factors 
for adenocarcinoma. The independent risk factors were 
then used to construct a nomogram. The nomogram’s dis-
criminative capacity was first internally validated using 
1,000 bootstrap samples to acquire a Harrell concordance 
index (C-index) in the derivation cohort. The nomogram 
was then tested on the validation cohort for external vali-
dation. Two-sided P <0.05 indicated statistical significance.

Results
Demographics of the study cohort
A total of 656 participants (681 SSNs) were enrolled, 
including 241 males and 415 females, with a mean age 
of 52.03 ± 12.26. There were 546 never smokers and 110 
current or former smokers. Moreover, 407 patients (423 
SSNs) operated between April 2019 and April 2020 were 
into the derivation cohort and 249 patients (258 SSNs) 
operated between May 2020 and December 2020 were 
assigned into the validation cohort. The baseline clini-
cal characteristics and CT features of SSNs are shown 
in Tables 1 and 2, respectively. In derivation cohort, 110 
SSNs were diagnosed as precursor glandular lesions 
(AAH =7, AIS =103), and 313 SSNs were diagnosed as 
adenocarcinomas (MIA =144, IAC =169). There were 
significant differences between precursor glandular 
lesions and adenocarcinomas subgroups in the lesion size 
(P <0.001), mean CT value (P <0.001), volume (P <0.001), 
mass (P <0.001), vascular change (P <0.001), bronchiole 

change (P <0.001), lobulation (P <0.001), pleural attach-
ment (P <0.001), spiculation (P =0.032), and lesion-lung 
interface (P <0.001), except for bubble (P =0.081). In 
validation cohort, 72 SSNs were diagnosed as precur-
sor glandular lesions (AAH =4, AIS =68), and 186 SSNs 
were diagnosed as adenocarcinomas (MIA =89, IAC 
=97). There were significant differences between precur-
sor glandular lesions and adenocarcinomas subgroups 
in the lesion size (P <0.001), mean CT value (P <0.001), 
volume (P <0.001), mass (P <0.001), vascular change 
(P <0.001), bronchiole change (P =0.003), lobulation 
(P <0.001), pleural attachment (P =0.006), lesion-lung 
interface (P =0.003), except for bubble (P =0.359), and 
spiculation (P =0.092). The CT features and pathologi-
cal results are shown in Table 3. The CT and pathological 
images from the 2 examples are shown in Fig. 2.

Interobserver and intraobserver agreements
Intraobserver and intraobserver agreements between 
three radiologists were near perfect, the ICC values of 
quantitative parameters and kappa coefficients of cate-
gorical variables were all greater than 0.75 (supplemental 
Tables 1 and 2).

Screening for independent risk factors
Univariate analysis of the derivation cohort indicated 
lesion size (OR =1.373; 95% CI, 1.061-1.777, P =0.016), 
mean CT value (OR =1.005; 95% CI, 1.001-1.010, P 
=0.024), vascular change (OR =5.125; 95%CI, 1.437-
18.281, P =0.012), lobulation (OR =6.196; 95%CI, 2.007-
19.127, P =0.002), and spiculation (OR =2.436; 95%CI, 
1.055-5.625, P =0.037) correlated with adenocarcino-
mas. However, volume, mass, bronchiole change, bubble, 
pleural attachment, and lesion-lung interface did not cor-
relate with adenocarcinomas (P >0.05). Stepwise multi-
variate analysis showed that lesion size (OR =1.335; 95% 
CI, 1.178-1.512, P <0.001), mean CT value (OR =1.005; 
95% CI, 1.002-1.008, P =0.002), vascular change (OR 
=5.771; 95% CI, 1.659-20.074, P =0.006), and lobulation 

Table 1 Baseline clinical characteristics of patients with SSNs

a t value; bχ2 value

Characteristics Total (N=656) Derivation cohort 
(N=407)

Validation cohort 
(N=249)

t/χ2 P value

Age 52.03 ± 12.26 51.94 ± 12.13 52.17 ± 12.49 -0.231a 0.818

Sex 0.171b 0.679

Male 241 (36.7%) 152 (37.3%) 89 (35.7%)

Female 415 (63.3%) 255 (62.7%) 160 (64.3%)

Smoking history 1.277b 0.258

Never smoker 546 (83.2%) 344 (84.5%) 202 (81.1%)

Current or former smoker 110 (16.8%) 63 (15.5%) 47 (18.9 %)

http://www.r-project.org
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(OR =6.528; 95% CI, 2.173-19.608, P =0.001) were inde-
pendent risk factors for adenocarcinomas (Table 4).

Construction of the nomogram model
Based on univariate and multivariate logistic regression 
analysis results, an individualized nomogram was gen-
erated by incorporating the 4 independent risk factors, 
namely lesion size, mean CT value, vascular change and 
lobulation (Fig.  3a). The nomogram showed that lesion 
size was the most important contributor to discrimina-
tion, followed by mean CT value, lobulation, and vascular 
change. Each independent risk factor in the nomogram 
was assigned a point based on regression coefficient and a 
straight line drawn based on total points. Finally, the prob-
abilities of individual values were determined using the 
function conversion relationship of total points (Fig. 3b).

Validation and calibration of the nomogram
In the derivation cohort, the C-index of the nomo-
gram in predicting adenocarcinomas was 0.867 (95% 

CI, 0.833-0.901) which exceeded that of the lesion 
size (C-index =0.779; 95% CI, 0.733-0.825), mean CT 
value (C-index =0.740; 95% CI, 0.688-0.793), vascu-
lar change (C-index =0.723; 95% CI, 0.691-0.754), 
and lobulation (C-index =0.734, 95% CI, 0.701-0.767) 
(Fig.  4a, Table  5). Lesion size 8.5mm and mean CT 
value -579.5 HU were the optimal threshold values for 
adenocarcinomas.

Furthermore, the C-index of 0.877 (95% CI, 0.836-
0.917) indicated that the nomogram had good dis-
crimination in the validation cohort (Fig. 4b, Table  5). 
Evaluation of the nomograms’ performance using cali-
bration curves, with the 45-degree line indicating best 
performance, revealed that the predicted results were 
strongly consistent with the actual results in both deri-
vation and validation cohorts (Fig.  5a, d). Decision 
curve analysis of the nomogram’s value and clinical 
impact curve analysis revealed that the nomogram had 
good standardized net benefit and prediction perfor-
mance (Fig. 5b, c, e, f ).

Table 2 CT features of SSNs in the derivation and validation cohorts

a t value; bZ value; cχ2 value

Characteristics Total (N=681) Derivation cohort (N=423) Validation cohort (N=258) t/Z/χ2 P value

Lesion Size (mm) 11.32 ± 5.00 11.33 ± 4.98 11.30 ± 5.03 0.074a 0.941

Mean CT value (HU) -526.16 ± 130.92 -528.38 ± 131.66 -522.52 ± 129.88 -0.566a 0.571

Volume  (cm3) 0.34 (0.20, 0.82) 0.34 (0.22, 0.82) 0.34 (0.19, 0.80) 0.099b 0.921

Mass (g) 0.15 (0.09, 0.34) 0.15 (0.09, 0.35) 0.15 (0.08, 0.33) -0.163b 0.870

Vascular change 0.088c 0.767

 Present 246 (36.1%) 151 (35.7%) 95 (36.8%)

 Absent 435 (63.9%) 272 (64.3%) 163 (63.2%)

Bronchiole change 0.357c 0.550

 Present 132 (19.4%) 79 (18.7%) 53 (20.5%)

 Absent 549 (80.6%) 344 (81.3%) 205 (79.5%)

Lobulation 0.103c 0.748

 Present 264 (38.8%) 162 (38.3%) 102 (39.5%)

 Absent 417 (61.2%) 261 (61.7%) 156 (60.5%)

Bubble 0.718c 0.397

 Present 97 (14.2%) 64 (15.1%) 33 (12.8%)

 Absent 584 (85.8%) 359 (84.9%) 225 (87.2%)

Pleural attachment 0.771c 0.380

 Present 233 (34.2%) 150 (35.5%) 83 (32.2%)

 Absent 448 (65.8%) 273 (64.5%) 175 (67.8%)

Spiculation 0.051c 0.822

 Present 111 (16.3%) 70 (16.5%) 41 (15.9%)

 Absent 570 (83.7%) 353 (83.5%) 217 (84.1%)

Lesion-lung interface 0.568c 0.451

 Clear 450 (66.1%) 275 (65.0%) 175 (67.8%)

 Blurry 231 (33.9%) 148 (35.0%) 83 (32.2%)
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Discussion
Subsolid nodules (SSNs), including pure ground-glass 
nodules (GGNs) and part-solid nodules (PSNs), are com-
mon in many malignant and benign diseases such as 
metastatic lesions, focal fibrosis, aspergillosis, Wegener’s 
granulomatosis or bronchiolitis obliterans organizing 
pneumonia, and some SSNs are associated with lung 
adenocarcinoma (LUAD) or its precursors [17, 18]. The 
use of CT screening has increased the detection rate of 
LUAD [19]. However, a major challenge in CT screening 
is the high prevalence of SSNs but the relatively low inci-
dence of adenocarcinomas [20], because precursor glan-
dular lesions presenting as SSNs tends be indolent with 
slow growth and low metastatic potential [21–23].

CT imaging can provide accurate differentiation of 
various stages of LUAD progression. Jin et al. constructed 
a nomogram model to distinguish IAC from AAH/
AIS/MIA [24]. The model can be used to determine the 
choice of surgical approach (IAC: standard lobectomy 

and the scope of lymph node dissection; AAH/AIS/MIA: 
sublobar resection). However, systematic studies have 
shown that patients with AIS may benefit from long-term 
follow-up, and the 2021 WHO included AAH and AIS as 
precursor glandular lesions and classifies MIA and IAC 
as adenocarcinomas. In clinical work, to reduce patient 
anxiety and avoid unnecessary surgery as well as reduce 
waste of medical resources, it is important to inform the 
patient whether surgical intervention is required and 
which lesions require priority surgery when the patient 
has multiple nodules. More recently, application of 
deep learning methods has improved lung nodule clas-
sification [25]. Jiang et al. classified SSNs on CT images 
based on convolutional neural networks (CNN) model 
[26], the model showed high accuracy. Despite that, cli-
nicians find it difficult to determine whether surgical 
intervention is required based on simple and intuitive 
CT features. Therefore, there is a need to develop objec-
tive, unified, and standardized assessment of lesions to 

Table 3 CT features and pathological results of SSNs in derivation and validation cohorts

a t value; bZ value; cχ2 value

Characteristics Derivation cohort (N=423) Validation cohort (N=258)

Precursor 
glandular lesions 
(N=110)

Adenocarcinomas 
(N=313)

t/Z/χ2 P value precursor 
glandular lesions 
(N=72)

Adenocarcinomas 
(N=186)

t/Z/χ2 P value

Lesion Size (mm) 8.25 ± 1.96 12.41 ± 5.27 -11.824a <0.001 8.09 ± 1.90 12.54 ± 5.31 -9.899a <0.001

Mean CT value (HU) -603.38 ± 93.89 -502.02 ± 132.98 -8.671a <0.001 -592.19 ± 89.64 -495.54 ± 133.15 -6.719a <0.001

Volume  (cm3) 0.24 (0.14, 0.38) 0.43 (0.25, 1.05) -7.325b <0.001 0.20 (0.13, 0.31) 0.45 (0.24, 1.02) -6.566b <0.001

Mass (g) 0.09 (0.05, 0.15) 0.21 (0.11, 0.48) -8.919b <0.001 0.08 (0.05, 0.13) 0.21 (0.11, 0.48) -7.688b <0.001

Vascular change 70.399c <0.001 49.756c <0.001

 Present 3 (2.7%) 148 (47.3%) 2 (2.8%) 93 (50.0%)

 Absent 107 (97.3%) 165 (52.7%) 70 (97.2%) 93 (50.0%)

Bronchiole change 14.838c <0.001 9.121c 0.003

 Present 7 (6.4%) 72 (23.0%) 6 (8.3%) 47 (25.3%)

 Absent 103 (93.6%) 241 (77.0%) 66 (91.7%) 139 (74.7%)

Lobulation 75.580c <0.001 48.237c <0.001

 Present 4 (3.6%) 158 (50.5%) 4 (5.6%) 98 (52.7%)

 Absent 106 (96.4%) 155 (49.5%) 68 (94.4%) 88 (47.3%)

Bubble 3.047c 0.081 0.843c 0.359

 present 11 (10.0%) 53 (16.9%) 7 (9.7%) 26 (14.0%)

 Absent 99 (90.0%) 260 (83.1%) 65 (90.3%) 160 (86.0%)

Pleural attachment 13.755c <0.001 7.412c 0.006

 Present 23 (20.9%) 127 (40.6%) 14 (19.4%) 69 (37.1%)

 Absent 87 (79.1%) 186 (59.4%) 58 (80.6%) 117 (62.9%)

Spiculation 4.616c 0.032 2.844c 0.092

 Present 11 (10.0%) 59 (18.8%) 7 (9.7%) 34 (18.3%)

 Absent 99 (90.0%) 254 (81.2%) 65 (90.3%) 152 (81.7%)

Lesion-lung interface 16.517c <0.001 9.119c 0.003

 Clear 89 (80.9%) 186 (59.4%) 59 (81.9%) 116 (62.4%)

 Blurry 21 (19.1%) 127 (40.6%) 13 (18.1%) 70 (37.6%)
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improve patient diagnosis and treatment. In our study, 
we examined simple and intuitive CT features and gen-
erated a nomogram for distinguishing adenocarcinomas 
from precursor glandular lesions appearing as SSNs. In 
the constructed nomogram, lesion size carried the high-
est risk of adenocarcinoma, followed by mean CT value, 
lobulation, and vascular change. The nomogram showed 

optimal discrimination and excellent calibration in the 
derivation and validation cohorts. The nomogram also 
exhibited greater net clinical benefit as revealed by deci-
sion and clinical impact curve analyses.

Lesion size has been incorporated into the Fleisch-
ner society guidelines for the management of SSNs [27]. 
In this study, we found that the optimal cutoff value for 

Fig. 2 a-d CT and pathological images of one adenocarcinoma in situ (AIS) appearing as subsolid nodule (SSN). a CT multiplanar reconstruction 
(MPR) and b volume rending technique (VRT) showing the absence of vascular change, and lobulation (axial and coronal). c The long axis, short 
axis, and mean CT value were calculated using the semi-automated segmentation tool. d Pathology: the tumor cells were attached to the alveolar 
wall; the basement membrane was intact. (HE staining ×100). e-h CT and pathological images of one invasive adenocarcinoma (IAC) appearing as 
SSN. e CT MPR and f maximal intensity projection (MIP) showing the presence of vascular change, and lobulation (axial and sagittal). g The long axis, 
short axis, and mean CT value were calculated using the semi-automated segmentation tool. h Pathology: the tumor cells damaged alveolar cells, a 
large number of tumor cells infiltrating the interstitium. (HE staining ×100)

Table 4 Univariate and multivariate logistic analysis of CT features for adenocarcinomas

Characteristics Univariate analysis Multivariate analysis

OR (95%CI) P value OR (95%CI) P value

Lesion Size (mm) 1.373 (1.061-1.777) 0.016 1.335 (1.178-1.512) <0.001

Mean CT value (HU) 1.005 (1.001-1.010) 0.024 1.005 (1.002-1.008) 0.002

Volume  (cm3) 1.487 (0.014-153.876) 0.867

Mass (g) 0.230 (0.000-16693.733) 0.230

Vascular change 5.125 (1.437-18.281) 0.012 5.771 (1.659-20.074) 0.006

Bronchiole change 2.153 (0.780-5.942) 0.139

Lobulation 6.196 (2.007-19.127) 0.002 6.528 (2.173-19.608) 0.001

Bubble 2.134 (0.931-4.891) 0.073

Pleural attachment 0.259 (0.034-1.960) 0.259

Spiculation 2.436 (1.055-5.625) 0.037 1.923 (0.856-4.320) 0.113

Lesion-lung interface 6.322 (0.817-48.942) 0.077
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Fig. 3 a A nomogram for predicting the probability of adenocarcinomas in patients with subsolid nodules (SSNs). b A SSN with a lesion size of 
12.5mm, mean CT value -627 HU, vascular change (-), lobulation (+). The total points of SSN was 131, and the probability of adenocarcinomas was 
0.945

Fig. 4 Roc curves of the nomogram and independent risk factors in the derivation cohort and validation cohort of adenocarcinomas. a Derivation 
cohort. b Validation cohort

Table 5 The C-indexes of the nomogram and variables from the logistic regression algorithm in the derivation and validation cohorts

Characteristics Derivation cohort Validation cohort

C-index (95% CI) Sensitivity Specificity C-index (95% CI) Sensitivity Specificity

Nomogram model 0.867 (0.833-0.901) 0.681 0.927 0.877 (0.836-0.917) 0.683 0.944

Lesion size 0.779 (0.733-0.825) 0.696 0.727 N/A N/A N/A

Mean CT value 0.740 (0.688-0.793) 0.700 0.718 N/A N/A N/A

Vascular change 0.723 (0.691-0.754) 0.473 0.973 N/A N/A N/A

Lobulation 0.734 (0.701-0.767) 0.501 0.964 N/A N/A N/A
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adenocarcinomas was 8.5 mm, which is slightly lower 
than that reported in previous studies [28, 29]. This dis-
crepancy may be explained by the inclusion of SSNs com-
pared with the inclusion of only pure GGNs in previous 
studies. In the clinical settings, PSNs account for a large 
proportion of sub-centimeter adenocarcinomas [30, 31]. 
It is worth mentioning that size criteria are not uniform, 
with several studies using the maximum diameter [32, 
33]. However, the International Early Lung Cancer Action 
Program (iELCAP) recommends the average diameter 
based on long- and short-axis diameters [23, 27]. High 
CT value has been associated with increased lesion heter-
ogeneity. As the lesions grow, SSNs may show increased 
internal density without significant lesion change [34]. 
Ikeda et al. reported that the mean CT value is optimal 
for discriminating AIS from adenocarcinomas [35]. Zhao 
et  al. reported that average CT value is an independent 
risk factor for discriminating pre-invasiveness from inva-
siveness [30]. However, the study by Han et al. found that 
average CT attenuation has little significance in IAC [12]. 
These discrepancies may be due to the inaccuracy of the 
manual measurement of mean CT value. Here, we used a 
semi-automated tool to analyze average CT value, which 

may minimize potential measurement bias. Tumor biol-
ogy studies indicate that neoangiogenesis or vascular 
remodeling is a major tumor-initiating event [13, 36]. 
During LUAD progression, cancer cells release various 
pro-angiogenic factors, including vascular endothelial 
growth factor (VEGF), which compensates for hypoxia 
by promoting neoangiogenesis or vasculature remod-
eling [37]. Our findings support the hypothesis that vas-
cular change is more common in adenocarcinomas than 
in precursor glandular lesions [13, 38]. Lobulation results 
from irregular rates of cell growth in diverse direc-
tions and the different contraction forces of the internal 
fibrous tissues. Consistent with past studies [15, 33], we 
found that lobulation was significantly different between 
precursor glandular lesions and adenocarcinomas.

Subsequently, we compared performance of the con-
structed nomogram in distinguishing adenocarcinomas 
from precursor glandular lesions with several inde-
pendent risk factors. Relative to single independent 
risk factors, the nomogram had a high C-index both 
in the derivation and validation cohorts, indicating 
it had good discrimination capacity. Moreover, when 
lesion size or mean CT value were applied alone in the 

Fig. 5 Analysis of the prediction performance of the nomogram in the a-c Derivation cohort and d-f Validation cohort. a, d Calibration curve, b, e 
Decision curve, c, f Clinical impact curve



Page 10 of 11Song et al. Cancer Imaging           (2022) 22:46 

derivation cohort, the sensitivity and specificity were 
69.6% and 72.7% or 70.0% and 71.8%, respectively, while 
the nomogram showed a sensitivity of 68.1% and spec-
ificity of 92.7%. Based on these results, we concluded 
that morphological features, such as, vascular change 
and lobulation, can increase specificity of the model. 
Taken together, our findings highlight the potential 
value of CT morphology in managing patients with 
SSNs.

This work has some limitations. First, only patients 
who underwent surgery were recruited, while those 
who underwent conservative management were not 
excluded. The failure to include all patients with SSNs 
may have introduced selection bias. Secondly, this was 
a single-institution retrospective study, thus, multi-
center studies are needed to independently validate 
our model. Additionally, although the quantitative CT 
features were processed using a semi-automated seg-
mentation tool, which could better overcome manual 
measurement bias, large vessels and bronchi may have 
introduced segmentation bias. Therefore, the seg-
mentation made in the current study may not achieve 
optimal accuracy suggesting that the segmentation 
algorithm should be further improved.

Conclusion
Based on CT features, we have developed and validated 
a nomogram for predicting the risk of adenocarcino-
mas in patients with SSNs in light of the 2021 classi-
fication recommended by the WHO. The nomogram 
showed excellent discrimination and calibration results 
in the derivation and validation cohorts. It is expected 
to be a valuable pre-operation tool for identifying SSN 
patients who require surgical intervention.
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