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Abstract 

Background: To develop a radiomics model based on pretreatment whole-liver portal venous phase (PVP) contrast-
enhanced CT (CE-CT) images for predicting metachronous liver metastases (MLM) within 24 months after rectal 
cancer (RC) surgery.

Methods: This study retrospectively analyzed 112 RC patients without preoperative liver metastases who underwent 
rectal surgery between January 2015 and December 2017 at our institution. Volume of interest (VOI) segmentation of 
the whole-liver was performed on the PVP CE-CT images. All 1316 radiomics features were extracted automatically. 
The maximum-relevance and minimum-redundancy and least absolute shrinkage and selection operator methods 
were used for features selection and radiomics signature constructing. Three models based on radiomics features 
(radiomics model), clinical features (clinical model), and radiomics combined with clinical features (combined model) 
were built by multivariable logistic regression analysis. Receiver operating characteristic (ROC) curves were used to 
assess the diagnostic performance of models, and calibration curve and the decision curve analysis were performed 
to evaluate the clinical application value.

Results: In total, 52 patients in the MLM group and 60 patients in the non-MLM group were enrolled in this study. 
The radscore was built using 16 selected features and the corresponding coefficients. Both the radiomics model and 
the combined model showed higher diagnostic performance than clinical model (AUCs of training set: radiomics 
model 0.84 (95% CI, 0.76–0.93), clinical model 0.65 (95% CI, 0.55–0.75), combined model 0.85 (95% CI, 0.77–0.94); AUCs 
of validation set: radiomics model 0.84 (95% CI, 0.70–0.98), clinical model 0.58 (95% CI, 0.40–0.76), combined model 
0.85 (95% CI, 0.71–0.99)). The calibration curves showed great consistency between the predicted value and actual 
event probability. The DCA showed that both the radiomics and combined models could add a net benefit on a large 
scale.
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Introduction
Due to its anatomical condition in relation to its portal 
circulation, colorectal cancer (CRC) cells are most likely 
to metastasize to the liver [1, 2]. The high incidence of 
liver metastases (LM) is the major factor leading poor 
prognoses in patients with CRC [1–3]. In recent years, 
many studies have focused on the effect of metastatic 
target organs on tumor cell colonization [4]. A variety of 
liver-based factors that influence LM of CRC have been 
confirmed. Hepatitis B virus positive has been consid-
ered to be an independent protective factor influencing 
the occurrence of LM in CRC [5–7], which shows higher 
progression-free survival and overall survival rates in the 
infection group [8]. In addition, the effect of fatty liver on 
LM of CRC has been widely concerned in recent years 
[9], but no unified conclusion has been reached. Some 
studies believed that the fatty liver microenvironment 
was conducive to tumor progression [10], while oth-
ers thought that moderate fat changes could inhibit the 
growth of LM [11]. This finding may be attributed to the 
influence of liver microenvironment changes induced by 
diffuse liver injury on the planting of metastatic cells in 
the liver. The liver shows complex hemodynamic changes 
owing to its dual blood supply, and the liver blood per-
fusion index of patients with colorectal LM has been 
reported to be significantly higher than that of patients 
without LM and healthy controls [12]. Therefore, in addi-
tion to macroscopic diffuse liver lesions, changes in the 
liver microenvironment also play important roles in LM 
progression.

Tumor cells colonize the liver through a series of com-
plex processes and are limited by oxygen diffusion [13]. 
Approximately 24–81% of CRC patients were reported 
to have micrometastases in liver surgical resection speci-
mens [14], which were considered invisible to the naked 
eye and imaging examinations before surgery and con-
firmed by postoperative pathological diagnosis. In cases 
showing occult metastasis, these micrometastases or 
occult metastases can cause changes in the liver micro-
environment, making it more heterogeneous [15, 16]. 
Metachronous liver metastases (MLM) occurring shortly 
after the initial diagnosis often develop from these occult 
metastases. Therefore, analysis of the liver microenviron-
ment is valuable for predicting the occurrence of MLM.

Portal venous phase (PVP) contrast-enhanced CT 
(CE-CT) is the most common method used for the 

diagnosis of LM, but because of its soft tissue resolution, 
it generally has low sensitivity for detecting lesions with 
a diameter of < 1 cm [17]. Although some studies have 
highlighted the advantages of MRI, especially DWI and 
application of gadoxetic acid, in the diagnosis of LM, and 
FDG PET/CT may also facilitate LM diagnosis [17, 18], 
these examination methods are not as widely used as 
enhanced CT in clinical application. Therefore, the ideal 
approach is to use standard imaging techniques, such as 
classical PVP CE-CT, to develop reproducible and avail-
able prediction models to determine the heterogeneity 
of the liver microenvironment in the patients with occult 
LM or MLM in the next 24 months. This approach will 
highlight the patients at a high risk of MLM, guiding the 
clinical strategy and yielding a reasonable individualized 
treatment plan. In this regard, radiomics has shown an 
important value in the heterogeneity analysis of tissues 
and lesions [19].

The aim of our study was to build and verify a radiom-
ics model based on pretreatment whole-liver PVP CE-CT 
images to predict MLM within 24 months after rectal 
cancer (RC) surgery.

Materials and methods
Patients
Patients with RC who underwent surgery between Janu-
ary 2015 and December 2017 at our institution were 
screened in this retrospective study through reviewing 
their imaging, clinical, and pathological data and infor-
mation regarding postoperative treatment and follow-
up evaluations. The ethics committee of our institution 
approved this study and waived informed consent.

The inclusion criteria included: (1) patients with rec-
tal adenocarcinoma who underwent RC surgery at our 
institution and did not received antitumor treatment 
before surgery; (2) abdominal PVP CE-CT performed at 
our institution within 1 month before surgery; (3) initial 
stage was M0 with diagnosis of RC, and first metastasis 
appearing in the liver during follow-up; (4) no history of 
malignancy of other organs; (5) no history of liver disease 
treatment (except for hepatitis); (6) availability of com-
plete follow-up imaging data obtained during regular fol-
low-up at our hospital; and (7) no contraindications for 
CE-CT examinations.

The exclusion criteria included: (1) rare pathologi-
cal types of RC (except for rectal adenocarcinoma), (2) 

Conclusions: The radiomics model based on preoperative whole-liver PVP CE-CT could predict MLM within 
24 months after RC surgery. Clinical features could not significantly improve the prediction efficiency of the radiomics 
model.
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distant metastases or undetermined lesions found before 
the operation, (3) metastases to other organs before LM, 
(4) lack of preoperative abdominal PVP CE-CT images, 
(5) obvious motion artifacts or metal artifacts in CT 
images, (6) multiple or diffuse benign lesions (such as 
cysts and hemangiomas) in the liver affecting image seg-
mentation of liver parenchyma; and (7) incomplete clini-
cal indicator or follow-up data.

Two groups were analyzed in this study: (1) the MLM 
group, defined as RC patients whose metastasis stage 
was M0 at initial diagnosis, but LM appeared within 
24 months after surgery (no other organ metastases 
occurred before LM), and (2) the non-MLM group, 
defined as RC patients who showed no metastatic dis-
eases preoperative and within 24 months postoperative 
images.

Acquisition and scanning parameters for CT imaging
The Toshiba Aquilion, GE Optima CT660, GE Discov-
ery 750 HD, and GE Lightspeed VCT 64-slice spiral CT 
scanners were used for examinations. The patients fasted 
for 4–6 hours before the examinations. The examinations 
were conducted with the patient in the supine position 
(examinations involving simultaneous abdominal-pelvic 
CT scans were conducted with the patient in the prone 
position and with intestinal preparation), both arms 
raised. The scanning range included at least the entire 
abdomen. A non-ionic iodine contrast agent (0.3 mg I/
mL, Ultravis, Bayer) was injected into the superficial 
middle elbow vein by using a high-pressure syringe. The 
dose of the contrast agent was approximately 100 mL 
with an injection rate of 3.0 mL/s. All patients underwent 
abdominal scanning with one breath-hold. PVP CE-CT 
images were acquired with a delay of approximately 65 s 
after injection of the contrast agent. The scan protocol 
was as follows: automatic tube current; tube voltage, 
120 kV; rotation speed, 0.5 s/rot; screw pitch, 0.984; and 
slice thickness and layer spacing of conventional scans, 
5 mm.

Collection of clinical information
Clinical information of enrolled RC patients regard-
ing sex, age, pathological primary tumor (pT) stage, 
pathological regional lymph node (pN) stage, hepati-
tis infection, carbohydrate antigen 19–9 (CA19–9), and 
carcinoembryonic antigen (CEA) levels were collected 
through retrospectively reviewing medical records. We 
also recorded whether postoperative adjuvant treatment, 
including chemotherapy and chemoradiotherapy.

Therapeutic methods and clinical follow‑up
Three antitumor protocols in this study: (1) total meso-
rectal excision (TME) only, (2) TME followed by adjuvant 

chemotherapy, and (3) TME followed by adjuvant chem-
oradiotherapy. None of the patients received antitumor 
treatment before TME.

All patients were followed up once in every 3 months 
during the first year, every 6 months in second year, and 
annually thereafter. Patients without metastases were 
followed up for at least 2 years after RC surgery. Clini-
cal follow-up after surgery was carried out by reviewing 
medical records, including serology, colonoscopy, and 
imaging examinations. Follow-up assessments of LM 
were mainly based on CE-CT scans. Preoperative images 
of all patients showed no LM. Among cases showing new 
suspicious liver lesions during follow-up assessments, 
some lesions were diagnosed by CE-CT scanning, some 
uncertain lesions required further diagnoses by liver 
MRI or positron emission tomography/CT, some were 
confirmed during follow-up, and some were diagnosed 
by puncture or surgical pathology. The follow-up time 
was defined as from the first day after RC surgery to the 
occurrence of LM or the endpoint of follow-up. The final 
follow-up was conducted on September 30, 2020.

Image segmentation and radiomics feature extraction
Volume of interest (VOI) segmentation of the whole-
liver was performed on PVP CE-CT images by using 
the open-source imaging platform ITK-SNAP version 
3.8 (www. itksn ap. org). Image segmentation was manu-
ally performed on all and randomly selected cases by two 
experienced radiologists with 8 and 6 years of experience 
in abdominal radiology, respectively. They were both 
blinded to the clinicopathological information. The liver 
window was adjusted appropriately to optimize the liver 
parenchyma display (window width, 200–300 HU; win-
dow level, 30–70 HU). The VOIs included the whole-liver 
parenchyma without lesions on the CT images and were 
manually delineated layer-by-layer, avoiding the edge of 
the liver (in order to avoid partial volume effects), vis-
ible benign lesions in the liver (including cysts, heman-
giomas, and calcifications), the main veins and branches 
in the liver, and hepatic caudate lobe (due to the unclear 
boundary between the caudate lobe and inferior vena 
cava in some patients). A schematic diagram of manual 
segmentation of whole-liver VOI was shown in Fig. 1.

The segmented images were then imported into Arti-
ficial Intelligence kit software (A.K. software; version 
3.2.5; GE Healthcare, China). A total of 1316 radiom-
ics features were automatically extracted from the PVP 
CE-CT images, including 18 first-order histogram fea-
tures, 14 shape features, 24 Gray-level co-occurrence 
matrix features, 16 Gray-level size-zone matrix features, 
16 Gray-level run-length matrix features, 14 Gray-level 
dependence matrix features, 5 neighboring gray-tone 
difference matrix features, 186 Laplacian of Gaussian 

http://www.itksnap.org
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(LoGsigma = 2.0/3.0) features, 744 wavelet features, and 
279 local binary pattern features.

Radiomics signature construction and validation
All enrolled patients were randomly divided into train-
ing and validation sets in a 7:3 ratio. The training set 
contained 78 patients (36 patients with MLM and 42 
patients without MLM), while the validation set con-
tained 34 patients (16 patients with MLM and 18 
patients without MLM).

Interclass correlation coefficient (ICC) values of 30 ran-
domly selected samples were used to compare the consist-
ency of manual segmentation between two radiologists. 
Features with ICC > 0.75 were selected for subsequent 
analysis to ensure the high value of the radiomics model. 
The dimensionality reduction process consisted of two 
steps. Firstly, the max-relevance and min-redundancy 
(mRMR) method was used to remove redundant features 
and retain 20 features most related to MLM. Subsequently, 
the least absolute shrinkage and selection operator 
(LASSO) with 5-fold cross validation was carried out to 
obtain the best feature sets for constructing the radiom-
ics signature. The radscore was calculated by summing the 
selected features and corresponding coefficients. We then 

compared the radscores between the two groups in the 
training and validation sets, respectively.

Construction and validation of prediction models
The clinical model was constructed using the clinical 
indicators obtained from multivariate analysis. Then, 
the radscore and significant clinical indicators where 
p < 0.05 in univariate analysis were included in multivari-
ate logistic regression analysis to construct a combined 
model. A nomogram was created to make the model vis-
ible. Receiver operating characteristic (ROC) curves were 
used to evaluate the effectiveness of three models in pre-
dicting MLM, the area under the curve (AUC), specific-
ity, sensitivity, accuracy, negative predictive value, and 
positive predictive value were calculated. The DeLong test 
was used to compare the differences in predicting MLM 
among the three models. The reliability of the nomogram 
was determined according to its calibration curve, and the 
goodness-of-fit was evaluated by the Hosmer–Lemeshow 
test. Finally, decision curve analysis (DCA) was used to 
calculate the clinical application value of the three models 
by quantifying the net benefit at different threshold prob-
abilities. All the procedures for building and validating the 
radiomics models were shown in Fig. 2.

Fig. 1 Schematic diagram of manual segmentation of whole-liver VOI. This was a 70-year-old male patient with RC in the MLM group who 
developed LM on follow-up images in the 13th month after RC surgery. The red outline in the figure shows the scanning-level area of the liver 
parenchyma without lesions. Whole-liver VOI without lesions was obtained by sketching the liver layer-by-layer, avoiding the edge of the liver, portal 
vein, inferior vena cava, and hepatic caudate lobe. A Original PVP CE-CT image of the liver; B manual sketching of one layer; C sketching of one layer 
was completed; and D schematic diagram after image segmentation
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Statistical analysis
Statistical analyses were performed using R version 
3.5.1 software and SPSS version 22.0. The Kolmogorov-
Smirnov and Levene tests were used to verify the nor-
mal distribution and homoscedasticity of continuous 
variables. The variables with normal distribution and 
homogeneous variance were compared by two independ-
ent-sample t-tests. Otherwise, the Mann-Whitney U 
test was used. The chi-square test and Fisher’s exact test 
were used to compare the categorical variables between 
groups. Variables showing statistically significant dif-
ferences in univariate analysis were included for further 
multivariate logistic regression analysis. A two-tailed 
p < 0.05 was considered statistically significant.

Results
Clinical indicators
On the basis of the above inclusion and exclusion crite-
ria, 112 patients were enrolled, including 52 patients in 
the MLM group and 60 patients in the non-MLM group 
(flowchart of patient enrollment was shown in Fig.  3). 
The median follow-up time was 9 months (1–24 months) 
in the MLM group, and that in the non-MLM group 
was 42.5 months (36–64 months). In the MLM group, 
17 patients underwent TME without adjuvant therapy 
before LM, 19 patients underwent postoperative adjuvant 
chemotherapy, and 16 patients underwent postoperative 
adjuvant chemoradiotherapy. In the non-MLM group, 

only four patients underwent TME without adjuvant 
therapy, 20 patients underwent postoperative adjuvant 
chemotherapy, and 36 patients underwent postoperative 
adjuvant chemoradiotherapy.

In univariate analysis, risk predictors including sex, pT 
stage, and CEA level were preliminarily selected (p = 0.042, 
0.026 and 0.031). After multivariable analysis, pT stage 
was regarded as an independent risk predictor of MLM 
(p = 0.009, Odds Ratio (OR) = 2.464, 95% confidence inter-
val (CI) 1.252–4.851). The clinical indicators and results of 
the univariate and multivariable analysis to identify signifi-
cant clinical factors for MLM were present in Table 1.

Radiomics features selection
A total of 1062 features with ICC > 0.75 were obtained for 
dimensionality reduction. After applying the mRMR and 
LASSO methods, 16 features were retained. The detailed 
process of radiomics feature selection using the LASSO 
method was shown in Supplementary Fig.  1. The 16 fea-
tures and the corresponding coefficients were shown in 
Supplementary Fig. 2.

Radiomics signature construction
To quantify the radiomics signature constructed by 
liver PVP CE-CT, we obtained the radscores by a linear 
weighting of the 16 selected features most relevant to 

Fig. 2 Flow chart describing the workflow for construction and validation of the radiomics model
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MLM and corresponding coefficients, as shown in the 
Supplementary formula. In addition, there were signifi-
cant differences in the radscores between the MLM and 

non-MLM groups in the training and validation sets 
(p  < 0.05). The radscores distribution in two sets was 
shown in Fig. 4.

Fig. 3 Flowchart of patient enrollment

Table 1 Univariate and Multivariate analysis to identify significant clinical factors for MLM

MLM metachronous liver metastases; non-MLM non-metachronous liver metastases; SD standard deviation; CA19–9 carbohydrate antigen 19–9; CEA carcinoembryonic 
antigen; OR Odds Ratio; CI confidence interval; * p < 0.05

Clinical
Characteristics

Non‑MLM Group
(n = 60)

MLM Group
(n = 52)

univariate analysis multivariate analysis

Statistics p‑value OR (95% CI) p‑value

Age (mean ± SD, years) 56.12 ± 9.84 57.96 ± 10.10 −0.978 0.330

Sex 4.125 0.042*

 Male 34 (30.4%) 39 (34.8%)

 Female 26 (23.2%) 13 (11.6%)

pT stage 7.328 0.026* 2.464 (1.252–4.851) 0.009*

 pT2 14 (12.5%) 5 (4.4%)

 pT3 39 (34.8%) 32 (28.6%)

 pT4 7 (6.3%) 15 (13.4%)

pN stage 2.441 0.295

 pN0 8 (7.1%) 5 (4.5%)

 pN1 35 (31.3%) 25 (22.3%)

 pN2 17 (15.2%) 22 (19.6%)

Hepatitis 1.876 0.171

 Negative 41 (36.6%) 29 (25.9%)

 Positive 19 (17.0%) 23 (20.5%)

CEA 4.633 0.031*

 Normal (< 5 ng/ml) 43 (38.4%) 27 (24.1%)

 Elevated (≥5 ng/ml) 17 (15.2%) 25 (22.3%)

CA19–9 1.450 0.229

 Normal (< 37 U/ml) 51 (45.5%) 48 (42.9%)

 Elevated (≥37 U/ml) 9 (8.0%) 4 (3.6%)
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Radiomics nomogram construction and performance 
evaluation
In the radiomics model, the AUC in the training set for 
predicting MLM was 0.84 (95% CI, 0.76–0.93), and the 
AUC in the validation group was 0.84 (95% CI, 0.70–
0.98), indicating a good predictive model. The clini-
cal model was established using the pT stage obtained 

by multivariate analysis, and the combined model was 
obtained by combining the radscore and indicator pT 
stage. Based on the Youden index, the performance 
parameters were calculated in Table  2, and the ROCs 
were shown in Fig. 5. To ensure easy use of the model, we 
presented the results as a nomogram (Fig. 6). The DeLong 
test confirmed that the radiomics and the combined 

Fig. 4 Radscore distribution in the training and validation sets. Boxplot showed that there were significant differences in the radscores between the 
non-MLM (label 0) and MLM (label 1) groups in the training and validation sets (both p < 0.05)

Table 2 The predictive performance of the clinical model, the radiomics model, and the combined model

CI confidence interval

Model Accuracy Sensitivity Specificity positive predictive 
value

negative 
predictive value

AUC (95% CI)

Radiomics training 0.782 0.944 0.643 0.694 0.931 0.84 (0.76–0.93)

Radiomics validation 0.824 0.938 0.722 0.750 0.929 0.84 (0.70–0.98)

Clinical training 0.603 0.568 0.634 0.583 0.619 0.65 (0.55–0.75)

Clinical validation 0.500 0.474 0.533 0.563 0.444 0.58 (0.40–0.76)

Combined training 0.782 0.702 0.903 0.917 0.667 0.85 (0.77–0.94)

Combined validation 0.853 0.789 0.933 0.938 0.778 0.85 (0.71–0.99)
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models were both superior to the clinical model in pre-
dicting MLM in the training set (p = 0.002 and < 0.001) 
and the validation set (p = 0.012 and 0.003), while the 

radiomics model and the combined model had similar 
predictive performance in two sets (p = 0.592 and 0.737).

In the training and validation sets, the model 
showed goodness-of-fit in the Hosmer–Lemeshow test 

Fig. 5 The ROC curves of the clinical model, radiomics model, and combined model to predict the MLM and non-MLM groups in the training set 
(A) and validation set (B)

Fig. 6 The nomogram for predicting MLM after RC surgery. The nomogram was composed of the radscore and pT stage
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(p  = 0.294 and 0.107). The calibration curve showed 
that the predicted values of the model in the training set 
and the validation set were in good agreement with the 
actual MLM (Supplementary Fig. 3). Finally, DCA dem-
onstrated that either the radiomics or combined model 
had good clinical application value to predict MLM and 
added more benefit than using the clinical model only 
(Fig. 7).

Discussion
CT and MR radiomics characteristics of CRC have been 
confirmed in previous studies that have some predictive 
value for MLM [20–22]. On the basis of a study of pri-
mary tumors, we analyzed the effect of the liver micro-
environment on MLM. In this study, the radiomics and 
combined models based on whole-liver PVP CE-CT 
images showed good efficacy in predicting postopera-
tive MLM in RC patients. The AUC value of the radiom-
ics model and combined model in the validation set were 
0.84 (95% CI, 0.70–0.98) and 0.85 (95% CI, 0.71–0.99); 
the clinical model failed to show better diagnostic abil-
ity than the radiomics model. Evaluation of high-risk 
patients with MLM using preoperative CE-CT images 
could facilitate early detection of MLM, which plays an 

important role in individualized treatment strategy and 
improvement of prognosis of the patients with RC.

In 2007, Ganeshan et  al. [23, 24] pointed out that on 
the PVP CE-CT images of patients with CRC, the fil-
tered texture parameters of liver parenchymal were cor-
related with liver perfusion index and survival time; these 
findings provided a theoretical basis for the application 
of radiomics to analyze the heterogeneity of whole-liver 
parenchyma and further predict the prognosis of patients 
with CRC. Subsequently, an increasing number of stud-
ies found that when the liver parenchyma was affected by 
metastatic diseases, its heterogeneity can be reflected in 
changes in the CT texture characteristics of the liver. Rao 
et al. [25] reported that there were differences in texture 
parameters between different metastatic groups, and the 
AUCs for entropy and uniformity of liver parenchyma for 
diagnosing synchronous LM ranged from 0.73 to 0.78. 
Beckers et al. [26] verified that the uniformity difference 
between non-LM and simultaneous LM groups was sta-
tistically significant. Devoto et  al. [27] also pointed out 
that there were differences in liver parenchyma between 
CRC patients with and without LM, and the liver paren-
chyma of patients with LM had higher levels of hetero-
geneous. In addition, other studies based on MR and 

Fig. 7 DCA curves of predictive models. The slash curve (All) represents that all MLM status is positive. The horizontal line (None) represents that 
all MLM status is negative. The three curves (combined model, clinical model, and radiomics model) represent the clinical value for the prediction 
of MLM. When the threshold probability was 0.12–0.20, the net benefits of radiomics model was greater than that of combined model. When the 
threshold probability was 0.20–0.90, the net benefit of the combined model was similar or slightly larger than that of the radiomics model, and both 
were much larger than that of clinical model
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unenhanced CT revealed the value of imaging features in 
predicting LM [28, 29]. This change in the texture charac-
teristics of the liver may be due to the presence of micro-
metastases or occult metastases, resulting in abnormal 
blood perfusion. Although most of the existing studies on 
liver parenchyma analyzed a few common intensity fea-
tures using simple statistical methods, their results have 
limited value. Some studies [30, 31] did not even find any 
significant feature that could predict LM. However, our 
study extracted 16 radiomics features most related to 
MLM from 1316 radiomics features and established pre-
diction models showing higher clinical value than previ-
ous studies.

Taghavi et al. [32] retrospectively analyzed PVP CE-CT 
data in 91 cases of CRC. In their study, the clinical, radi-
omics, and combined models yielded AUCs of 71%, 86%, 
and 86% in the validation cohort. Our study achieved 
similar results. However, in our study, all patients with 
RC were treated surgically to eliminate the influence of 
the treatment scheme on the MLM as much as possible. 
In addition, Lee et al. [33] analyzed a part of segment 7 of 
the liver, and their results suggested that liver CT features 
had the potential to predict LM and could be used as an 
index to predict MLM. In our study, the VOI included 
the entire liver, which ensured more comprehensive fea-
ture coverage and yielded higher accuracy and repeat-
ability. However, the accuracy and repeatability of liver 
segmentation were still associated with challenges that 
need to be further studied and unified. We applied only 
a manual segmentation method in our research. In the 
future, semi-automatic and automatic methods could be 
further compared and improved.

The models constructed in this study were helpful in 
predicting MLM within 24 months after RC surgery. 
Early prediction and detection of MLM can help patients 
at high risk of LM benefit from simultaneous resection 
or other adjuvant treatment. Other clinical interventions, 
including adjustment of the follow-up interval and the 
use of additional liver MR examinations, can also be per-
formed to improve prognosis and survival [34].

Many risk factors, including clinical characteristics, 
postoperative pathological features, and genetic muta-
tions, have been reported to relate to colorectal metas-
tasis in previous studies [35–37]. However, there is no 
consensus regarding this issue. Our study analyzed the 
clinical and postoperative pathological features of these 
patients. Multivariate analysis showed that only the pT 
stage was an independent factor influencing MLM. How-
ever, the clinical model was less effective in predicting 
MLM (AUC of the validation set, 0.58) than the other 
two models. Moreover, the diagnostic efficiency of the 
combined model (AUC = 0.85) that combined pT stage 
and radiomics features was not significantly better than 

that of the radiomics model alone (AUC = 0.84). The pT 
stage could not play a role in preoperative prediction 
because it was evaluated on the basis of postoperative 
pathological findings. In this study, only the preopera-
tive radiomics model achieved a good predictive effect. 
Moreover, clinical features showed limited value in this 
study. In the future, we will further explore the predic-
tive value of clinical features and genetic information for 
MLM by expanding the sample size.

The postoperative treatment plans used in this retro-
spective study included some confounding factors. Some 
patients in the MLM group had indications for postop-
erative adjuvant treatment. However, for various reasons 
(for example, LM appeared soon after surgery or because 
patients did not receive adjuvant treatment in time due 
to a weak physique), some patients showed LM without 
timely adjuvant treatment, which changed the established 
treatment plans. In particular, patients who showed MLM 
soon after surgery often had liver micrometastases that 
could not be seen by the naked eye or shown by CT before 
the rectal operation. Thus, for patients misdiagnosed as 
having no LM before treatment, preoperative diagnosis 
was more important and may have changed their treat-
ment plans. Therefore, the influence of postoperative adju-
vant therapy on the occurrence of MLM in this study was 
unknown. Prospective research with a more standardized 
treatment plan in the future may provide more accurate 
information on the factors interfering with MLM.

This study had the following limitations. Firstly, this 
was a retrospective, single-center study that used dif-
ferent CT scanners. Prospective studies with external 
validation will be conducted in the future. Secondly, only 
PVP CE-CT was included in this study, it is the most 
widely used standardized follow-up protocol for RC 
patients. Third, although our study included relatively 
long-term follow-up, the false-positive predictions for 
patients whose MLM fell outside the scope of the fol-
low-up period may have been overestimated. Finally, the 
accuracy and stability of liver segmentation need to be 
further studied and improved.

Conclusion
In conclusion, a radiomics model based on preoperative 
whole-liver PVP CE-CT showed high value in predicting 
MLM within 24 months after RC surgery. The addition 
of clinical features failed to improve the prediction effi-
ciency of the radiomics model.
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