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Abstract 

Background: Texture analysis derived from computed tomography (CT) can provide clinically relevant imaging 
biomarkers. Node‑RADS is a recently proposed classification to categorize lymph nodes in radiological images. The 
present study sought to investigate the diagnostic abilities of CT texture analysis and Node‑RADS to discriminate 
benign from malignant mediastinal lymph nodes in patients with lung cancer.

Methods: Ninety‑one patients (n = 32 females, 35%) with a mean age of 64.8 ± 10.8 years were included in this retro‑
spective study. Texture analysis was performed using the free available Mazda software. All lymph nodes were scored 
accordingly to the Node‑RADS classification. All primary tumors and all investigated mediastinal lymph nodes were 
histopathologically confirmed during clinical workup.

Results: In discrimination analysis, Node‑RADS score showed statistically significant differences between N0 and 
N1‑3 (p < 0.001). Multiple texture features were different between benign and malignant lymph nodes: S(1,0)Ang‑
ScMom, S(1,0)SumEntrp, S(1,0)Entropy, S(0,1)SumAverg. Correlation analysis revealed positive associations between 
the texture features with Node‑RADS score: S(4,0)Entropy (r = 0.72, p < 0.001), S(3,0) Entropy (r = 0.72, p < 0.001), S(2,2)
Entropy (r = 0.72, p < 0.001).

Conclusions: Several texture features and Node‑RADS derived from CT were associated with the malignancy of 
mediastinal lymph nodes and might therefore be helpful for discrimination purposes. Both of the two quantitative 
assessments could be translated and used in clinical routine.
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Introduction
Texture analysis is an emergent research field to provide 
novel quantitative biomarkers derived from radiologi-
cal images [1–7]. Various applications of texture analy-
sis have been investigated throughout clinical medicine, 
predominantly in the field of oncology [1–7]. Different 
spatial characteristics were used for better discrimination 
purposes, treatment prediction and prognosis stratifica-
tion in several tumor entities. In short, texture analysis 
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derived from radiological images can provide quantita-
tive information beyond the scope of the radiologist’s 
clinical observation [1–7].

Node-RADS (Node-Reporting and Data System) is a 
recently proposed classification system to standardize the 
clinically reporting for lymph nodes [8]. By means of the 
two categories “size” and “configuration”, a 5-point prob-
ability score for malignancy ranging from 1 (“very low 
likelihood”) to 5 (“very high likelihood”) is assigned [8]. 
However, Node-RADS classification system has not yet 
been validated in the clinical routine. For other stand-
ardized reporting systems in radiology, such as BI-RADS 
(breast imaging RADS), PI-RADS (prostate imaging 
RADS), LI-RADs (liver imaging RADS), TI-RADS (thy-
roid imaging RADS), a plethora of studies have attrib-
uted benefits in the establishment of tumor diagnosis 
and evaluation of malignancy probability [9–12]. For 
PI-RADS, even an association with the important his-
topathologic Gleason score indicates the direct associa-
tion with tumor aggressiveness [13]. Presumably, possible 
associations between radiological classification systems 
with the underlying pathobiology of the tumors can be 
further identified.

For mediastinal lymph nodes a cut-off value of 10 mm 
in short axis diameter is reported to discriminate benign 
from malignant lymph nodes, which could yield a sensi-
tivity of 55% and a specificity of 81% [14]. Fluorodeoxy-
glucose positron emission tomography with combined 
computed tomography (FDG-PET/CT) utilizing the 
metabolic rate in malignant tissue has shown to facilitate 
superior diagnostic accuracy with a sensitivity of 77% and 
a specificity of 86% [14].

For histopathological examination, biopsy of mediasti-
nal lymph nodes can be obtained by conventional endo-
bronchial ultrasound transbronchial needle aspiration 
(EBUS-TBNA) and mediastinoscopy. Both modalities 
have been shown to achieve a sensitivity of 61–65 and 
79%, respectively, with a specificity for both of nearly 
100% [15–17].

However, there is to date no study investigating the 
diagnostic potential of Node-RADS in oncologic imaging 
beyond the initial landmark paper [8]. Few but promising 
results were published regarding the diagnostic benefit of 
texture analysis for mediastinal lymph nodes [18–21].

In the light of novel medical treatment options for and 
more and more complex categorizations of lung cancer 
patients, texture analysis of mediastinal lymph nodes 
seems of particular clinical interest and relevance [22–
24]. Quantitative imaging should aid in the complex clin-
ical decision-making process in patient with lung cancer.

Therefore, the purpose of the present study was to 
investigate whether CT-derived texture analysis param-
eters and Node-RADS categorization of mediastinal 

lymph nodes can improve the diagnostic performance for 
dignity in lung cancer patients.

Methods
Study design
This retrospective, observational study involving human 
participants was performed in accordance with the ethi-
cal standards of the institutional and/or national research 
committee and with the 1964 Helsinki declaration and its 
later amendments or comparable ethical standards.

It received ethical approval from the local ethics com-
mittee at the Medical Faculty of Leipzig University 
(IRB00001750, AZ: 259/18-ek).

Standardized clinical, pathological (histology, tumor 
stage) and survival data of patients with lung cancer 
(ICD-10 C34*) who were diagnosed at the University 
Hospital Leipzig were derived from the regional, clinical 
cancer registry (Klinisches Krebsregister Leipzig).

The university hospital’s radiological database was ret-
rospectively screened between January 2012 and Decem-
ber 2015 for patients with sufficient imaging data.

Inclusion criteria consisted of sufficient presurgical 
or prebiopsy CT images, histopathologically confirmed 
primary lung cancer and histopathological mediasti-
nal lymph node analysis. The CT scans were acquired 
within 1 month before the invasive staging. All patients 
were finally pathologically staged according to the then 
valid 7th lung cancer TNM classification and staging sys-
tem jointly published by Union Internationale Contre le 
Cancer (UICC) and the International Association for the 
Study of Lung Cancer (IASLC) [25].

Overall, 91 patients (n = 32 females, 35%) with a mean 
age of 64.8 ± 10.8 years were included in the analysis. 
An overview of the descriptive statistics of the included 
patients is given by Table 1.

Imaging technique
CT was performed with a 128-slice CT scanner (Inge-
nuity 128, Philips, Hamburg, Germany). In n = 38 cases 
(42% of patients), intravenous iodine-based contrast 
medium (60 mL Imeron 400 MCT, Bracco Imaging Ger-
many GmbH, Konstanz, Germany) was injected at a 
rate of 4.0 mL/s via a peripheral venous line. Automatic 
bolus tracking was performed in the aorta descend-
ers with a trigger of 100 Hounsfield units (HU). Typical 
imaging parameters were: 100 kVp; 125 mAs; slice thick-
ness,1 mm; pitch, 0.9.

Texture analysis
CT images were processed with the freely available tex-
ture analysis software MaZda (version 4.7, available at 
http:// www. eletel. p. lodz. pl/ mazda/) [26, 27]. A polygo-
nal region of interest (ROI) was placed on the largest, 

http://www.eletel.p.lodz.pl/mazda/
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representative slide of the suspicious mediastinal lymph 
node. The ROI’s diameter was adjusted to the boundary 
of the lymph node. The measurement was performed 
in a blinded manner to the clinical and histopathologi-
cal results by a resident of radiology (J.L.) with 3 years of 
general experience. For each ROI, gray-level (μ) normali-
zation was performed, using the limitation of dynamics 
to μ ± 3 standard deviations to reduce the contrast and 
brightness variation, as previously performed [28, 29].

The extracted features were as follows: gray-level his-
togram co-occurrence matrix [angular second moment, 
contrast, correlation, entropy, sum entropy, sum of 
squares, sum average, sum variance, inverse difference 
moment, difference entropy, difference variance (for four 
directions), run-length matrix (run-length non-uniform-
ity, gray-level non-uniformity, long run emphasis, short 
run emphasis, fraction of image in runs)], absolute gradi-
ent, autoregressive model (theta 1 to 4, sigma), and wave-
let transform. In total, 279 texture features were retrieved 
for every patient.

Figure  1 displays 2 representative cases of the patient 
sample for illustration purposes.

Lymph node score
Suspicious mediastinal lymph nodes were scored accord-
ing to the previously reported Node-RADS classifica-
tion [8]. Scoring was performed by two radiologists with 
3 years (reader one) and two 2 years (reader two) of expe-
rience in CT imaging analysis. In short, the classification 
categories range between 1 and 5, reflecting the level 
of probability of malignancy: “1—very low”; “2—low”; 

Table 1 Demographic characteristics of the investigated patient 
sample

Abbreviation: NOS not other specified

Parameter N0 N1-3 p-value

Age (y) 64.2 ± 11 65.8 ± 11 0.66

Gender (male, n, %) 37 (65.5) 22 (62.8) 0.28

Primary tumor
 Adenocarcinoma 30 18 0.84

 Squamous cell carcinoma 11 13 0.07

 Large cell neuroendocrine carcinoma 6 3 0.95

 Small cell carcinoma 1 1

 Typical carcinoid 4 0

 Atypical carcinoid 2 0

 Solid carcinoma, NOS 2 0

Grading
 0 4 0 0.11

 1 16 2 0.008

 2 18 12 0.83

 3 15 22 0.007

 4 1 1 0.98

pT
 0 1 0 0.43

 1 36 12 0.006

 2 12 10 0.44

 3 6 10 0.03

 4 1 3 0.13

pM
 0 53 28 0.03

 1a 1 2 0.31

 1b 2 5 0.06

Stage (UICC)
 IA 37 0 < 0.001

 IB 7 0 0.03

 IIA 3 10 0.002

 IIB 3 5 0.954

 IIIA 1 13 < 0.001

 IIIB 0 2 0.072

 IVA 1 2 0.31

 IVB 2 5 0.063

Size of investigated lymph node 
(short axis diameter in mm)

7.6 ± 1.9 13.2 ± 5.0 < 0.001

Fig. 1 Representative cases of the patient sample. The mediastinal 
lymph node is highlighted in red, which was also the region of the 
interest for the texture analysis. a UICC IA, N0, Node‑RADS category of 
0, short‑axis‑diameter of 6 mm. b UICC IIA, N1, Node‑RADS category 
of 3, short‑axis‑diameter of 11 mm
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“3—equivocal”; “4—high”; “5—very high. Two main 
imaging findings were assessed: size and configuration. 
The lymph node’s size was classified as enlarged, when 
the short axis was above 10 mm. For configuration pur-
poses, the texture was designated as either homogenous, 
heterogenous, focal or gross necrosis. The border was 
defined as smooth or irregular. The shape was defined as 
kidney bean with fat hilus or spherical without fat hilus. 
Both features resulted in the final lymph node category.

Statistical analysis
The statistical analysis and graphics creation were per-
formed with SPSS STATISTICS (IBM, Version 25.0; 
Armonk, NY, USA). Collected data were evaluated by 
means of descriptive statistics (absolute and relative fre-
quencies). Spearman’s correlation coefficient (r) was 
used to analyze associations between investigated scores. 
Group differences were calculated with Mann-Whitney 
test for continuous data and Fisher exact test for categor-
ical data. Receiver-operating characteristics (ROC) curve 
analysis was used to test for diagnostic accuracy. Inter-
reader agreement was assessed with Cohen’s kappa. In all 
instances, two-sided p-values < 0.05 indicated statistical 
significance.

Results
Table  1 displays the demographics of the investigated 
patients.

Discrimination analysis of node-RADS score for N stage
Node-RADS scoring resulted for reader 1 in a total of 
n = 40 for Node-RADS 1 (44.0%), n = 21 for Node-RADS 
2 (23.1%), n = 17 for Node-RADS 3 (18.6%), n = 5 for 
Node-RADS 4 (5.5%) and n = 8 (8.8%) for Node-RADS 5.

For reader 2, the results were n = 45 for Node-RADS 
1 (49.5%), n = 21 for Node-RADS 2 (23.1%), n = 11 for 
Node-RADS 3 (12.1%), n = 5 for Node-RADS 4 (6.6%) 
and n = 8 (8.8%) for Node-RADS 5.

Inter-reader agreement was only moderate for the 
Node-RADS scoring (k = 0.48).

Distribution of malignancy according to each Node-
RADS score for both readers are shown in Table 2.

For reader 1, Node-RADS 1 had a malignancy rate of 
0% and for reader 2 8.8%, Node-RADS 2 a malignancy 
rate of 42.8% for both readers, Node-RADS 3 a malig-
nancy rate of 76.5% for reader 1 and 72.7% for reader 2. 
Node-RADS 4 and 5 both had a malignancy rate of 100% 
for both readers.

In discrimination analysis, the total Node-RADS score 
showed statistically significant differences between N0 
and N1-3 stage (for reader 1: mean 1.4 ± 0.6 score for 
N0 versus 3.3 ± 1.1 score for N1-3, for reader 2: 1.3 ± 0.6 

score for N0 versus 3.1 ± 1.4 score for N1-3, p < 0.001, 
respectively).

ROC curve analysis for lymph node discrimination (N0 
versus N1-3) showed an area under the curve (AUC) of 
0.94. A threshold value of 2 resulted in a sensitivity of 
0.74 and a specificity of 0.93 (Fig. 2).

The underlying Node-RADS subcategory size, as rep-
resented by short axis diameter, reached statistically sig-
nificant difference between N0 and N1-3 stage (mean 
7.6 ± 1.9 mm for N0 versus 13.2 ± 5.0 mm for N1-3, 
p < 0.001). Also, for both readers, the Node-RADS sub-
categories texture (p < 0.001), border (p < 0.001) and 

Table 2 Malignancy rates according to Node‑RADS score

Node-RADS 
score

Reader Number of 
cases scored

Histopathologically 
confirmed 
malignancy

1 1 40 0 (0%)

2 45 4 (8.8%)

2 1 21 9 (42.8%)

2 21 9 (42.8%)

3 1 17 13 (76.5%)

2 11 8 (72.7%)

4 1 5 5 (100%)

2 6 6 (100%)

5 1 8 8 (100%)

2 8 8 (100%)

Fig. 2 Result of the ROC curve analysis for discrimination of N0 
versus N1‑3 with total Node‑RADS‑Score with an AUC of 0.94. A 
threshold value of 2 resulted in a sensitivity of 0.74 and a specificity 
of 0.93
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shape (p < 0.001) reached statistical significance with 
higher subcategory scores correlating with higher likeli-
hood of positive N-stages.

When performing ROC curve analysis for lymph node 
discrimination (N0 versus N1-3) using the short axis 
diameter; a threshold value of 10 mm was selected and 
resulted in an AUC of 0.91 with a sensitivity of 0.74 and a 
specificity of 0.88 (Fig. 3).

No significant differences were found between the 
AUC for lymph node discrimination and the AUC for 
discrimination employing total Node-RADS score or 
short axis diameter, respectively (p = 0.178).

Discrimination analysis of texture parameters for N stage
A total of 133 parameters showed statistically significant 
differences between the two groups, especially of the sec-
ond order-group. In all, 86 features reached statistically 
significant p-values (< 0.001, Table 3).

For instance, S(1,0)SumEntrp (1.73 ± 0.08 vs. 
1.82 ± 0.07), as shown in Fig. 4, S(1,0)Entropy (2.23 ± 0.18 
vs. 2.53 ± 0.20), as shown in Fig.  5, S(0,1)SumAverg 
(65.74 ± 1.17 vs. 64.69 ± 0.91) and S(3,-3)DifEntrp 
(1.34 ± 0.11 vs. 1.42 ± 0.06).

S(1,0)SumEntrp, S(1,0)Entropy and S(3,-3)DifEntrp 
were further investigated with ROC analysis.

For S(1,0)SumEntrp, an AUC of 0.79 was identified. A 
threshold value of 1.74 resulted in a sensitivity of 0.83 and 
a specificity of 0.64. For S(1,0)Entropy, an AUC of 0.80 
was identified with a sensitivity of 0.80 and a specificity 

Fig. 3 Results of the ROC curve analysis for discrimination of N0 
vs N1‑3 with texture features and short axis diameter. A threshold 
value of 10 mm was selected and resulted in an AUC of 0.91 with a 
sensitivity of 0.74 and a specificity of 0.88

Table 3 Texture features showing statistically significant 
differences between lymph nodes N0 versus lymph nodes N1‑3 
with p‑values < 0.001

Texture feature N0 (Mean ± SD) N1-3 (Mean ± SD)

S(1,0)AngScMom 0.006 ± 0.002 0.004 ± 0.002

S(1,0)SumEntrp 1.73 ± 0.08 1.82 ± 0.07

S(1,0)Entropy 2.23 ± 0.178 2.53 ± 0.20

S(0,1)AngScMom 0.006 ± 0.002 0.003 ± 0.002

S(0,1)SumAverg 65.74 ± 1.17 64.69 ± 0.91

S(0,1)SumEntrp 1.72 ± 0.09 1.82 ± 0.07

S(0,1)Entropy 2.29 ± 0.18 2.53 ± 0.21

S(1,1)AngScMom 0.006 ± 0.002 0.004 ± 0.002

S(1,1)SumAverg 66.03 ± 1.60 64.90 vs. 1.23

S(1,1)SumEntrp 1.70 ± 0.09 1.80 ± 0.07

S(1,1)Entropy 2.32 ± 0.19 2.58 ± 0.23

S(1,‑1)AngScMom 0.006 ± 0.003 0.004 ± 0.002

S(1,‑1)SumAverg 65.88 ± 1.56 64.78 ± 1.33

S(1,‑1)SumEntrp 1.70 ± 0.09 1.80 ± 0.08

S(1,‑1)Entropy 2.31 ± 0.20 2.58 ± 0.24

S(2,0)AngScMom 0.006 ± 0.003 0.003 ± 0.002

S(2,0)SumEntrp 1.67 ± 0.10 1.78 ± 0.08

S(2,0)Entropy 2.31 ± 0.21 2.60 ± 0.25

S(0,2)AngScMom 0.006 ± 0.003 0.003 ± 0.002

S(0,2)SumAverg 66.15 ± 1.70 64.76 ± 1.35

S(0,2)SumEntrp 1.67 ± 0.10 1.77 ± 0.09

S(0,2)Entropy 2.31 ± 0.21 2.60 ± 0.26

S(2,2)AngScMom 0.007 ± 0.003 0.003 ± 0.002

S(2,2)SumEntrp 1.61 ± 0.12 1.74 ± 0.09

S(2,2)Entropy 2.27 ± 0.23 2.61 ± 0.27

S(2,‑2)AngScMom 0.007 ± 0.004 0.004 ± 0.002

S(2,‑2)SumEntrp 1.62 ± 0.11 1.72 ± 0.10

S(2,‑2)Entropy 2.27 ± 0.23 2.59 ± 0.29

S(3,0)AngScMom 0.007 ± 0.003 0.003 ± 0.002

S(3,0)SumEntrp 1.61 ± 0.11 1.73 ± 0.90

S(3,0)Entropy 2.26 ± 0.23 2.60 ± 0.28

S(0,3)AngScMom 0.007 ± 0.003 0.004 ± 0.002

S(0,3)SumEntrp 1.61 ± 0.11 1.72 ± 0.10

S(0,3)Entropy 2.27 ± 0.23 2.59 ± 0.29

(3,3)AngScMom 0.008 ± 0.004 0.004 ± 0.002

S(3,3)SumEntrp 1.55 ± 0.14 1.69 ± 0.10

S(3,3)Entropy 2.21 ± 0.27 2.58 ± 0.30

S(3,‑3)AngScMom 0.008 ± 0.005 0.004 ± 0.003

S(3,‑3)SumEntrp 1.55 ± 0.14 1.67 ± 0.12

S(3,‑3)Entropy 2.19 ± 0.27 2.55 ± 0.33

S(3,‑3)DifEntrp 1.34 ± 0.11 1.42 ± 0.06

S(4,0)AngScMom 0.007 ± 0.004 0.004 ± 0.002

S(4,0)SumEntrp 1.57 ± 0.12 1.69 ± 0.10

S(4,0)Entropy 2.22 ± 0.25 2.58 ± 0.29

S(4,0)DifEntrp 1.34 ± 0.08 1.42 ± 0.05

S(0,4)AngScMom 0.008 ± 0.005 0.004 ± 0.003

S(0,4)SumEntrp 1.56 ± 0.14 1.68 ± 0.11

S(0,4)Entropy 2.22 ± 0.26 2.56 ± 0.32
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of 0.67 when using a threshold value of 2.35. For S(3,-3)
DifEntrp, it achieved an AUC of 0.72 with a sensitivity of 
0.66 and a specificity of 0.64 when utilizing a threshold 
value of 1.40. Figure 6 displays the corresponding graphs.

Correlation analysis between texture features and total 
node-RADS score
In correlation analysis, the following correlating tex-
ture parameters were associated with Node-RADS 

score: S(4,0)Entropy (r = 0.72, p < 0.001), S(3,0) Entropy 
(r = 0.72, p < 0.001), S(2,2)Entropy (r = 0.72, p < 0.001), 
S(5,0)Entropy (r = 0.71, p < 0.001), S(0,2)Entropy 
(r = 0.70, p < 0.001), S(3,3)Entropy (r = 0.71, p < 0.001), 
S(2,0)Entropy (r = 0.70, p < 0.001), S(0,3)Entropy 
(r = 0.70, p < 0.001), S(4,4)Entropy (r = 0.70, p < 0.001), 
S(2,-2)Entropy (r = 0.69, p < 0.001), S(1,1)Entropy 
(r = 0.69, p < 0.001), S(0,4)Entropy (r = 0.69, p < 0.001) 
and WavEnLL_s-2 (r = 0.68, p < 0.001).

Table 3 (continued)

Texture feature N0 (Mean ± SD) N1-3 (Mean ± SD)

S(4,4)AngScMom 0.01 ± 0.009 0.004 ± 0.003

S(4,4)Correlat − 0.16 ± 0.24 0.026 ± 0.26

S(4,4)SumVarnc 171.20 ± 48.20 218.71 ± 61.00

S(4,4)SumEntrp 1.49 ± 0.17 1.67 ± 0.12

S(4,4)Entropy 2.10 ± 0.33 2.54 ± 0.32

S(4,‑4)AngScMom 0.012 ± 0.013 0.005 ± 0.005

S(4,‑4)SumEntrp 1.48 ± 0.21 1.64 ± 0.15

S(4,‑4)Entropy 2.10 ± 0.34 2.49 ± 0.38

S(5,0)AngScMom 0.009 ± 0.006 0.004 ± 0.002

S(5,0)SumEntrp 1.53 ± 0.15 1.68 ± 0.10

S(5,0)Entropy 2.15 ± 0.29 2.56 ± 0.31

S(5,0)DifEntrp 1.34 ± 0.08 1.42 ± 0.05

S(0,5)AngScMom 0.010 ± 0.008 0.004 ± 0.004

S(0,5)SumVarnc 182.02 ± 63.31 225.87 ± 52.96

S(0,5)SumEntrp 1.51 ± 0.18 1.67 ± 0.12

S(0,5)Entropy 2.14 ± 0.30 2.53 ± 0.34

S(0,5)DifEntrp 1.35 ± 0.11 1.42 ± 0.06

S(5,5)AngScMom 0.026 ± 0.07 0.005 ± 0.004

S(5,5)Correlat −0.24 ± 0.29 0.009 ± 0.24

S(5,5)SumVarnc 155.79 ± 62.01 214.60 ± 59.73

S(5,5)SumEntrp 1.38 ± 0.32 1.65 ± 0.14

S(5,5)Entropy 1.96 ± 0.46 2.48 ± 0.36

S(5,5)DifEntrp 1.26 ± 0.26 1.40 ± 0.08

S(5,‑5)AngScMom 0.027 ± 0.070 0.007 ± 0.010

S(5,‑5)SumEntrp 1.38 ± 0.34 1.60 ± 0.21

S(5,‑5)Entropy 1.93 ± 0.47 2.42 ± 0.45

S(5,‑5)DifEntrp 1.24 ± 0.26 1.39 ± 0.11

Horzl_RLNonUni 154.46 ± 85.77 519.4 ± 597.12

Horzl_GLevNonU 6.05 ± 2.79 18.84 ± 20.68

Vertl_RLNonUni 156.10 ± 87.25 526.97 ± 604.95

Vertl_GLevNonU 6.04 ± 2.81 18.94 ± 20.95

45dgr_RLNonUni 164.00 ± 88.86 562.36 ± 643.97

45dgr_GLevNonU 6.22 ± 2.83 19.41 ± 21.27

135dr_RLNonUni 165.72 ± 93.51 563.97 ± 643.96

135dr_GLevNonU 6.27 ± 2.92 19.47 ± 21.41

WavEnLL_s‑1 15,263.48 ± 1237.94 16,505.73 ± 1013.61

WavEnLL_s‑2 10,886.78 ± 2198.15 13,957.54 ± 2666.67

Underlined data are the statistically significant findings

Fig. 4 Discrimination analysis between N0 versus N1‑3. The 
parameter “S(1,0)SumEntrp” reached statistical significance 
(Mann‑Whitney test): 1.73 (IQR 0.12) versus 1.83 (IQR 0.11), p < 0.001

Fig. 5 Discrimination analysis between N0 versus N1‑3. The 
parameter “S(1,0)Entropy” reached statistical significance 
(Mann‑Whitney test): mean 2.30 (IQR 0.26) versus 2.56 (0.30), p < 0.001
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Correlation analysis between texture features 
and node-RADS subcategories
Size
Short axis diameter showed statistically significant cor-
relations with 28 texture features: r > 0.7 (p < 0.001): 
45dgr_RLNonUni (r = 0.87), Vertl_RLNonUni (r = 0.86), 
45dgr_GLevNonU (r = 0.86), Horzl_GLevNonU (r = 0.86), 
S(4,0)Entropy (r = 0.80), WavEnLL_s-2 (r = 0.72), S(1,0)
SumEntrp (r = 0.70). A complete overview is given by 
Table 4.

Texture
Texture subcategory showed statistically significant cor-
relations with the following texture features (p < 0.001): 
WavEnLL_s-2 (r = 0.62), 45dgr_GLevNonU (r = 0.62), 
135dr_GLevNonU (r = 0.62), Horzl_GLevNonU (r = 0.62), 
Vertl_GLevNonU (r = 0.61), 45dgr_RLNonUni (r = 0.60), 
135dr_RLNonUni (r = 0.60), Vertl_RLNonUni (r = 0.60), 
Horzl_RLNonUni (r = 0.60), S(4,0)Entropy (r = 0.56), 
S(2,2)Entropy (r = 0.56), S(3,0)Entropy (r = 0.56) and 
S(5,0)Entropy (r = 0.55).

Border
Border subcategory showed statistically significant 
(p < 0.001) correlations with the following texture features: 
S(4,4)SumVarnc (r = 0.49), S(3,3)SumEntrp (r = 0.46), 
S(4,0)Entropy (r = 0.46), S(3,3)SumVarnc (r = 0.45) and 
S(3,3)Entropy (r = 0.45).

Shape
Shape subcategory showed statistically significant cor-
relations with the following texture features (p < 0.001): 
Vertl_RLNonUni (r = 0.46), 45dgr_RLNonUni (r = 0.46), 
135dr_RLNonUni (r = 0.46), Horzl_RLNonUni (r = 0.46), 
45dgr_GLevNonU (r = 0.46), S(2,-2)Entropy (r = 0.46), 
Vertl_GLevNonU (r = 0.45), S(0,3)Entropy (r = 0.45), 
35dr_GLevNonU(r = 0.45) and Horzl_GLevNonU 
(r = 0.45).

Discussion
The present study sought to employ texture analysis as 
a quantitative assessment and Node-RADS as a semi-
quantitative assessment of mediastinal lymph nodes 
in patients with lung cancer. Key findings were that 
the two imaging assessment modalities were indepen-
dently associated with both the presence of lymph node 
metastasis and with each other.

Texture analysis is an emergent field of research 
with extensive studies in several disease entities, pre-
dominantly in the field of oncologic imaging [1–7]. 
Clearly, several texture features derived from CT as 
well as MRI images are able to reflect distinctive his-
topathological tumor characteristics on a microstruc-
ture level, including lung cancer [1–7, 30, 31]. As such, 
in a recent study, the CT texture feature “CT texture 
joint entropy” and “CT entropy” were associated with 
hypoxia-related immunohistochemical features in 
head and neck cancer [31].

Fig. 6 Results of the ROC‑Analysis for discrimination of N0 vs N1‑3 employing texture features S(1,0)SumEntrp, S(1,0)Entropy and S(3,‑3)DifEntrp
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In a very promising multicentric study, CT texture 
analysis of the primary tumor was even able to pre-
dict the complex immune environment in lung cancer 
patients to guide treatment [32].

Therefore, the principal hypothesis of the present work 
was that texture analysis can also reflect relevant struc-
tural differences in mediastinal lymph nodes.

Several CT texture features were able to discriminate 
benign from malignant lymph nodes. Presumably, malig-
nant lymph nodes show a higher heterogeneity due to 
tumor deposits resulting in a higher CT heterogeneity 
quantified particularly by entropy related second order 
statistics.

These findings are in line with the published literature. 
Koda et al. reported that the diagnostic possibility of CT 
texture analysis discriminated sarcoidosis lymph nodes 
from small-cell lung cancer with a very high sensitivity 
(100%), and specificity (92%), resulting with an AUC of 

0.99 [18]. However, the results were based upon a small 
patient sample of 16 patients with sarcoidosis and 14 
patients with small-cell lung cancer.

Another interesting study employed texture analysis 
on FDG-PET/CT images as a novel prognostic factor in 
patients with cancer of unknown primary [33].

In a study by Shin el al., CT texture analysis was uti-
lized together with FDG-PET/CT images to predict the 
dignity of mediastinal lymph nodes in 80 patients with 
non-small cell lung cancer [19]. However, combinations 
of each item of chest CT and CT texture analysis did not 
achieve better diagnostic accuracy compared to the short 
axis diameter of 1 cm. Notably, only first-order texture 
features were utilized in this study, which might explain 
the differences to the present results.

In another study using „TexRad “package, only a sensi-
tivity of 53% and a specificity of 97% were identified in 
the test sample for the investigated texture features [21].

In another study by Pham et  al., a promising AUC of 
0.89 were found based on regression analysis, and an 
accuracy of 70% based on the tenfold cross-validation. 
These results, which were retrieved from 133 malignant 
and 138 benign lymph nodes [20], were in line with the 
results presented herein.

Our results suggest that texture analysis might be 
employed in clinical routine to provide prognostic fac-
tors for clinical care in the work-up of mediastinal lymph 
nodes in patients with lung cancer.

Another aim of the present study was to validate 
the novel Node-RADS classification for the first time. 
Node-RADS is a novel proposed scoring system to cat-
egorize several imaging findings of lymph nodes on 
cross sectional images and to standardize their radio-
logical reporting [8]. There is no restriction of this clas-
sification regarding the localization of the lymph node. In 
Node-RADS, a short axis diameter of 1 cm is proposed 
as general threshold. The present analysis revealed that 
Node-RADS is able to discriminate negative from posi-
tive lymph nodes. However, our results show a relatively 
high rate of malignancy even in the groups 1 and 2.

Another finding of the present study is that the pro-
posed classification has only a moderate inter-reader 
agreement, which could limit the possibility for transla-
tion into clinical routine. This blends in the other pro-
posed radiological classifications [34–38].

For BI-RADS, also only a moderate agreement for 
mammographic criteria was shown, even between expe-
rienced radiologists [34]. The inter-reader agreement 
for PI-RADS 2.0 scores was found to be only fair (kappa: 
0.57, 95% confidence interval 0.49–0.66) [36]. The inter-
reader agreement among all readers for the overall 
TI-RADS level was 50.4%, which is comparable to the 
present analysis [37].

Table 4 Significant correlations between texture features and 
short axis diameter of mediastinal lymph nodes with p‑values 
< 0.001

Texture parameter Spearman’s r

45dgr_RLNonUni 0.87

135dr_RLNonUni 0.87

Vertl_RLNonUni 0.86

Horzl_RLNonUni 0.86

45dgr_GLevNonU 0.86

135dr_GLevNonU 0.86

Horzl_GLevNonU 0.86

Vertl_GLevNonU 0.86

S(4,0)Entropy 0.80

S(2,2)Entropy 0.80

S(0,2)Entropy 0.80

S(3,0)Entropy 0.79

S(0,3)Entropy 0.79

S(5,0)Entropy 0.79

S(2,0)Entropy 0.79

S(2,2)Entropy 0.79

S(1,1)Entropy 0.78

S(0,1)Entropy 0.78

S(0,4)Entropy 0.78

S(1,‑1)Entropy 0.78

S(3,‑3)Entropy 0.77

S(0,5)Entropy 0.77

S(1,0)Entropy 0.76

S(4,‑4)Entropy 0.74

S(5,5)Entropy 0.73

WavEnLL_s‑2 0.72

S(1,0)SumEntrp 0.70

S(5,‑5)Entropy 0.70
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This analysis provided a high malignancy rate, even 
in score group 2 (42.8%). However, the malignancy rate 
for BI-RADS 2 and PI-RADS should be 0%. In detail, the 
malignancy rate should strongly increase with the over-
all score. Thus, it is reported for BI-RADS 2 below 2%, 
for BI-RADS 3, 2-95% for BI-RADS 4, and 100% for BI-
RADS 5 [39]. The malignancy rate for the Node-RADS 
groups 4 and 5 in the present analysis was 100% for both 
groups, which indicates that there might be no significant 
difference between the two categories in clinical routine.

Clearly, Node-RADS needs to be further validated in a 
larger sample size in terms of malignancy frequency.

There is a definite need that quantitative imaging aid in 
clinical decision-making process to enhance clinical care 
of cancer patients. Of date, the treatment of lung cancer 
patients has become more and more complex with an 
increasing number of molecular and prognostic markers. 
Imaging needs to address this fact with new biomarkers. 
The present study provides new insight into quantitative 
imaging of mediastinal lymph node analysis.

There are several limitations of the present study to 
address. First, it is a retrospective study with possibly 
known inherent bias. To reduce possible bias, texture 
analysis and Node-RADS scoring were performed in a 
blinded manner to the clinical and pathological results. 
Second, the patient sample size is relatively small due to 
the single center design and the time period considered. 
Moreover, the underlying primary tumors were hetero-
geneous, which could have influenced the results, since 
different primary tumors might have caused different 
texture results of the lymph nodes involved. Third, tex-
ture analysis still lacks standardization. There is a clear 
need to employ the texture features investigated in other 
patient cohorts scanned with different CT scanners to 
test for external validation of the present results. This is 
needed before the presented results can safely be trans-
lated into clinical care.

Conclusions
Both CT-derived texture analysis and Node-RADS cat-
egorization can help discriminate mediastinal lymph 
nodes in patients with resected lung cancer who under-
went lymphadenectomy. Both of the two imaging assess-
ments can possibly be translated into clinical routine.
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