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Abstract 

Background: To evaluate the performance of diffusion-relaxation correlation spectrum imaging (DR-CSI) with sup-
port vector machine (SVM) in detecting prostate cancer (PCa).

Methods: In total, 114 patients (mean age, 66 years, range, 48–87 years) who received a prostate MRI and underwent 
biopsy were enrolled in three stages. Thirty-nine were assigned for the exploration stage to establish the model, 18 for 
the validation stage to choose the appropriate scale for mapping and 57 for the test stage to compare the diagnostic 
performance of the DR-CSI and PI-RADS.

Results: In the exploration stage, the DR-CSI model was established and performed better than the ADC and  T2 
values (both P < 0.001). The validation result shows that at least 2 pixels were required for both the long-axis and 
short-axis in the mapping procedure. In the test stage, DR-CSI had higher accuracy than PI-RADS ≥ 3 as a positive 
finding based on patient (84.2% vs. 63.2%, P = 0.004) and lesion (78.8% vs. 57.6%, P = 0.001) as well as PI-RADS ≥ 4 on 
lesion (76.5% vs. 64.7%, P = 0.029), while there was no significant difference between DR-CSI and PI-RADS ≥ 4 based 
on patient (P = 0.508). For clinically significant PCa, DR-CSI had higher accuracy than PI-RADS ≥ 3 based on patients 
(84.2% vs. 63.2%, P = 0.004) and lesions (62.4% vs. 48.2%, P = 0.036). There was no significant difference between DR-
CSI and PI-RADS ≥ 4 (P = 1.000 and 0.845 for the patient and lesion levels, respectively).

Conclusions: DR-CSI combined with the SVM model may improve the diagnostic accuracy of PCa.

Trial registration: This study was approved by the Ethics Committee of our institute (Approval No. KY2018-213). Writ-
ten informed consent was obtained from all participants.

Background
Prostate cancer (PCa) is the second most frequently 
occurring cancer among males, with the highest inci-
dence rates in over 60% countries worldwide, and 
remains a leading cause of cancer-related death in many 
countries, imposing a heavy burden on families and 
communities [1]. The accurate detection of PCa at an 
earlier stage is of vital importance for clinical decision-
making, the evaluation of long-term survival and better 
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outcomes/prognosis. For clinical prostate examination, 
magnetic resonance imaging (MRI) is a significant imag-
ing modality that provides superb soft tissue contrast 
and functional evaluation. To date, multiparametric MRI 
(MP-MRI), including  T2-weighted imaging (T2WI), dif-
fusion-weighted imaging (DWI), and dynamic contrast-
enhanced MRI (DCE-MRI), has been proven to be a 
promising noninvasive tool for PCa detection [2–4].

Among the metrics derived from MP-MRI,  T2 and 
apparent diffusion coefficient (ADC) are widely accepted 
as the two most valuable biomarkers for tumour char-
acterization [4, 5]. Furthermore, both  T2 and ADC have 
been found to be related to the aggressiveness of PCa, 
which is indicated by the Gleason score [6, 7]. However, 
with the increasing application of MP-MRI using the 
Prostate Imaging-Reporting and Data System Version 
2.1 (PI-RADS v2.1) for PCa diagnosis, it was found that 
approximately 15–30% of clinically significant cancers 
were undetected, which, to some extent, depends on 
the clinical experience of the radiologists [8, 9]. As such, 
accurate PCa diagnosis remains a challenge [10–12].

Concerning PCa, multiple intravoxel components with 
different or similar MR properties, such as  T2 or ADC, 
add difficulty for MP-MRI in differentiation. In addi-
tion, various tissue structural features at a microscopic 
scale produce another obstacle for visualization owing 
to limited MRI spatial resolution. To resolve this issue, 
some attempts have been made in multidimensional 
MRI, a method that tries to disentangle intravoxel sig-
nals in terms of parametric spectra, such as  T1,  T2 and 
ADC, and hence to infer the intravoxel tissue compo-
sition [13, 14]. For example, hybrid multidimensional 
MRI (HM-MRI) was used to probe the stroma, epithe-
lium, and lumen changes in PCa [14, 15]. Moreover, the 
novel diffusion-relaxation correlation spectrum imaging 
(DR-CSI) method was proposed [16] and successfully 
identified and quantified multiple distinct components 
(epithelium, stroma, and lumen) in the ex vivo prostate 
through a  T2–ADC spectrum with prior knowledge [17]. 
Owing to the heterogeneous tissue structure and biolog-
ical environment in vivo, it is difficult to know the prior 
knowledge to make a tissue structural assumption about 
PCa based on which DR-CSI could apply. Nevertheless, 
to our knowledge, no research on DR-CSI for in  vivo 
PCa detection has been initiated yet.

In this study, the machine learning technique, the 
support vector machine (SVM) model, was introduced 
in combination with DR-CSI. SVM, as a supervised 
ML technique that tries to find the optimal hyperplane 
that maximizes the margin between two classes, has 
been widely used for the detection and classification of 
PCa due to its mature mathematical formulation, flex-
ibility, high accuracy, robust theoretical support, direct 

geometric interpretation, and wide availability of soft-
ware implementations [18–23]. For example, integrating 
with the parameters of MP-MRI, such as diffusion and 
perfusion, SVM enabled accurate and automatic classi-
fication of low-grade and high-grade PCa in the central 
gland [23]. Combined with DR-CSI, the SVM model was 
used to analyse spectral results according to the PCa 
diagnosis results instead of direct biologic interpretation 
based on a tissue structural assumption. The purpose 
of this study was to evaluate the feasibility of DR-CSI 
combined with an SVM model for the detection of PCa 
in vivo and to compare its diagnostic performance with 
PI-RADS v2.1 scores.

Methods
Patients
This retrospective study was approved by the Ethics 
Committee of our institute (Approval No. KY2018-213). 
Written informed consent was obtained from all partici-
pants. Three hundred and twenty consecutive patients 
who were scheduled for prostate MRI were recruited for 
this study between August 2020 and December 2021. The 
inclusion criteria were as follows: (a) prostate-specific 
antigen (PSA) elevated to ≥ 4  ng/mL or digital rectal 
examination (DRE) positive; (b) complete MRI exami-
nation and clinical data; and (c) no surgery before MRI 
examination. The exclusion criteria were as follows: (a) 
images with poor quality or artefacts; (b) patients with a 
previous history of prostate biopsy, prostate surgery, or 
other treatment; and (c) time interval between MRI and 
biopsy ≥ 3 months. In this study, 12 patients with previ-
ous chemotherapy, 5 patients with previous operation or 
treatment for PCa, and 2 patients with poor quality or 
artefacts were excluded. Three hundred and one patients 
were included (100 for the exploration stage, 56 for the 
validation stage and 145 for the test stage). In total, 114 
patients who underwent biopsy were enrolled in three 
stages. Detailed participant characteristics are summa-
rized in Table 1.

Study design
After prostate MRI, patients were enrolled in three 
stages – the exploration, validation, and test stages. In 
the exploration stage, patients with PI-RADS ≥ 3 lesions 
or DRE positivity underwent biopsy, and a PCa detection 
model utilizing an SVM model was established based 
on the DR-CSI and biopsy results. Then, in the valida-
tion stage, an optimal filter scale for the SVM model was 
chosen with the images used to detect PCa from biopsy, 
in which the biopsies were carried out on patients with 
PI-RADS ≥ 3 lesions or positive results according to the 
PCa detection model or DRE positivity. Finally, in the test 
stage, the PCa detection model was used to predict PCa, 



Page 3 of 11Wei et al. Cancer Imaging           (2022) 22:77  

and the results were compared with PI-RADS scores as 
well as the gold standard. The biopsy results of patients 
had the same criteria as in the validation stage. The com-
parison was performed based on patient level as well as 
lesion level. At the lesion level, a single lesion was defined 
as a positive targeted lesion in DR-CSI or PI-RADS. PCa 
proven in 12 systemic biopsies with negative imaging 
results was also defined as a single lesion. For patients 
biopsied due to positive DRE results with negative imag-
ing and pathology results, the whole prostate was defined 
as a single case. The flowchart of the study design is pre-
sented in Fig. 1.

MR Imaging acquisition
All MRI examinations were performed on a 3.0 T scanner 
(uMR 780, United Imaging Healthcare, Shanghai, China) 
with a commercial body phased array coil. MR examina-
tion included T2WI, DWI, DCE-MRI,  T1-weighted imag-
ing (T1WI) and DR-CSI. T1WI and T2WI were acquired. 
The detailed MR protocols are presented in Table 2. DR-
CSI was also performed based on the SS SE-EPI includ-
ing a matrix of 6*6 data points of echo times (57, 75, 100, 
120, 150, 180  ms) and b-values (0, 150, 400, 800, 1200, 
1500  s/mm2). The SS SE-EPI sequence was performed 
6 times for each patient. For each time, TE was set as a 

Table 1 Patient characteristics

a PSA Prostate-Specific Antigen, PCa prostate cancer

Variable Total Exploration stage Validation stage Test stage

No. of patients 301 100 56 145

Mean age (y) 67 67 66 67

Mean PSA (ng/mL)a 6.98 6.29 9.52 6.47

No. of patients with biopsy 114 39 18 57

No. of patients with benign results 48 17 6 25

No. of patients with PCa 66 22 12 32

Table 2 Scanner parameters of MR sequences

a DR-CSI diffusion-relaxation correlation spectrum imaging, FSE fast spin echo, TR repetition time, TE echo time, FA flip angle, FOV field of view

Sequences DR-CSI Axial FSE T1W Coronal FSE T1W Axial FSE T2W Coronal FSE T2W
Parameters

TR (ms) 3000 600 630 4792 4000

TE (ms) 57 (min-value) 9.22 8.86 149.04 141.84

FA (deg) 90 90 90 90 90

FOV  (cm2) 20 × 20 20 × 20 22 × 22 18 × 18 22 × 22

Matrix 112 × 112 256 × 192 288 × 216 240 × 240 304 × 304

Intersection Gap (mm) 0.35 0.30 0.30 0 0

Slice thickness (mm) 3.5 3 3 3 3

Slices 5–15 20 20 28 24

Acquisition time 7 min 30 s/per 5 slices 2 min 16 s 2 min 26 s 3 min 02 s 2 min 16 s

Fig. 1 Flowchart of the study design. DR-CSI, diffusion-relaxation correlation spectrum imaging; SVM, support vector machine; DRE, digital rectal 
examination; PI-RADS, Prostate Imaging—Reporting and Data System
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specific value in its range with a full set of b-values (0, 
150, 400, 800, 1200, 1500 s/mm2), i.e., diffusion sequence 
with different  T2 weights. As TE was increased, diffusion 
time was increased in parallel.

DR-CSI Postprocessing
According to DR-CSI theory [16], the MR signal is 
expressed as an integral of exponential decay functions 
characterized by  T2 and D:

where  T2 and D represent the transverse relaxation 
time and the diffusivity, respectively. w(x, y, T2, D) stands 
for a 4D distribution function that connects the  T2-D 
spectrum with each spatial location.

In practice, the signal needs to be expressed in a discre-
tized form:

where I and J are the numbers of  T2 and D, respectively. 
 T2i and  Dj represent the transverse relaxivity and diffu-
sivity, respectively. wi,j(x, y, T2i, Dj) is a discrete 4D distri-
bution function described above.

The distribution function was obtained through spec-
trum estimation, i.e., finding the solution to the above 
equation with consistency, a nonnegativity and a spa-
tial smoothness constraint following steps in a previous 
study [16].

To analyse component distributions in regions of 
interest (ROIs), the  T2-D spectra space was empirically 
segmented into six subregions (i.e., components). A 
previous study demonstrated that the epithelial struc-
ture was more likely to be present within the scale 
of  T2 < 50  ms and D < 0.5  mm2/μs based on ex  vivo 
imaging [18]. Considering the enrichment of epithe-
lial structure in PCa [14, 15], these two values were 
selected as the cut-offs for further classification. More-
over, D = 3  mm2/μs was also adopted as the cut-off 
value because the diffusion velocity of water molecules 
beyond 3  mm2/μs may likely characterize particu-
lar physiological information (e.g., perfusion, secre-
tion). Thus, the ranges of the subregions were finally 
classified as follows: 1)  T2 < 50  ms, D < 0.5  mm2/μs; 2) 
 T2 > 50  ms, D < 0.5  mm2/μs; 3)  T2 < 50  ms, 0.5  mm2/
μs < D < 3  mm2/μs; 4)  T2 > 50  ms, 0.5  mm2/μs < D < 3 
 mm2/μs; 5)  T2 < 50 ms, D > 3  mm2/μs; and 6)  T2 > 50 ms, 
D > 3  mm2/μs. The corresponding fraction of each sub-
region, ( fi, i = 1, 2, . . . 6 ), for each voxel was estimated 
by the normalization of distribution functions:

(1)S(x, y,TE, b) = w(x, y,T2,D)e−TE/T2e
−b•D

(2)S
(

x, y,TE, b
)

=

J
∑

j=1

I
∑

i=1

wi,j(x, y,T2i ,Dj)e
−TE∕T2i e−b∙Dj

where i denotes the order of the segmented subregion 
of the  T2-D spectral space.

Image analysis
Figure  2 presents the whole process of image analy-
sis. All image analyses were processed using MATLAB 
R2021a software (MathWorks, Natick, MA, USA). In 
the exploration and validation stage, the saturation pros-
tate biopsy scheme was performed with US-MRI fusion 
biopsy (Esaote, Genoa, Italy). The median number of 
biopsy cores was 23. The location of the biopsy was fur-
ther remarked on MRI [24]. Then, an experienced radi-
ologist (G. W with 14  years of experience in prostate 
MR imaging) drew the ROI presented with PI-RADs ≥ 3 
within 3 mm from the positive core of biopsies based on 
DW image with b-value = 1500  s/mm2 with the lowest 
TE (57 ms) [25–27]. For the cases with a negative biopsy 
result, circular ROIs with a radius from 3 to 8 mm were 
delineated on the bilateral central and peripheral areas 
in the largest area of the prostate (Fig. 3). Patients in the 
test stage underwent 12 core systemic biopsies, com-
bined with targeted biopsies from MP-MRI and DR-CSI, 
which we designed to assess, with each core identified 
and processed separately. The ROIs of the whole prostate 
were delineated in the test stages. ROI drawn by another 
radiologist (with 11  years of experience in prostate MR 
imaging) was used to assess the interobserver agreement 
of the technique.

Accordingly, the fraction maps corresponding to six 
subregions of each ROI were acquired through DR-CSI 
analysis. Meanwhile, conventional voxelwise  T2 and ADC 
maps of all ROIs were estimated following a monoex-
ponential signal decay model using part of the DR-CSI 
data points (b = 0, TE = 57/75/100/120/150/180  ms; 
TE = 57 ms, b = 0/800 s/mm2), respectively [7].

The SVM-related procedures were as follows. First, the 
quantitative imaging features  (T2, ADC and six compo-
nent fractions) of all voxels from all patients in the explo-
ration stage were used for the construction of the PCa 
detection model. Then, an SVM classifier with a linear 
kernel for PCa prediction was trained and established 
through tenfold cross validation, which evenly split the 
dataset into 10 subsets with 9 subsets for training and 
the last subset for evaluation. This process was repeated 
10 times, leaving one different subset for evaluation 
each time. Second, different filter scales with different 
numbers of pixels (i.e., 1*1, 1*2, 1*3, …, 5*5) were used 
in the validation stage to choose an optimal scale, which 
could reduce the false-positive results resulting from the 

(3)fi
�

x, y
�

=

∑

T2,D∈subregioni
w(x, y,T2,D)

∑

T2,D∈wholespectra
w(x, y,T2,D)

, i ∈ [1,6] ∩ ℤ
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SVM-based PCa detection model. Then, the optimal fil-
ter scale with the highest Dice ratio between the model-
ling results and biopsy results was determined. Third, the 
SVM-based PCa detection model with the optimal filter 
scale was used in the test stage, and the voxelwise model-
predicted mapping results were generated.

The PI-RADS score was determined by an experienced 
radiologist (with more than 10  years of experience in 
prostate MR imaging) unaware of the biopsy results in 
the exploration and validation stage. In the test stage, 
the GS of the lesions was assigned according to the most 
common GS in the biopsy result.

Statistical analysis
Statistical analysis was performed by SPSS 24.0 (IBM 
Corp, NY, USA). Kappa values < 0.20 indicated slight 
agreement, values of 0.21–0.40 indicated fair agreement, 
values of 0.41–0.60 indicated moderate agreement, val-
ues of 0.61–0.80 indicated substantial agreement, and 
values > 0.81 indicated almost perfect agreement [28]. In 
the exploration stage, the performance of DR-CSI was 

compared with traditional ADC and  T2 maps in differen-
tiating cancer from non-PCa tissue at the largest Youden 
index point in receiver operating characteristic (ROC) 
analysis based on each voxel. In the test stage, the com-
parison of accuracy between DR-CSI and PI-RADS in 
terms of the diagnosis of PCa or cs-PCa was assessed by 
the McNemar test. Differences were considered signifi-
cant when the P value was < 0.05.

Results
In the exploration stage, a total of 39 patients under-
went biopsy, among which 3 were PI-RADS 2 but DRE 
positive, 21 were PI-RADS 3, 10 were PI-RADS 4, and 
5 were PI-RADS 5. There were 72 lesions (4 lesions 
with PI-RADS 2, 31 lesions with PI-RADS 3, 27 with 
PI-RADS 4, and 10 with PI-RADS 5). The maximal 
diameter of the index lesion ranged from 0.4–3.9  cm 
(median = 1.3  cm). Of these, 17 patients were con-
firmed to have benign disease (3 with PI-RADS 2, 10 
with PI-RADS 3, 4 with PI-RADS 4), and 22 patients 
had PCa (11 with PI-RADS 3, 6 with PI-RADS 4, 

Fig. 2 Illustration of the processes. Illustration of the processes for diffusion-relaxation correlation spectrum imaging (DR-CSI), support vector 
machine (SVM) model construction, and cancer detection performance
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5 with PI-RADS 5). There were 29 PCa lesions (12 
lesions with PI-RADS 3, 9 with PI-RADS 4, and 8 with 
PI-RADS 5). A total of 10,434 tumour voxels (3453 
with Gleason grade = 6, 3875 with Gleason grade ≥ 7, 
and 3106 non-PCa tissue voxels) were included in the 
analysis to establish an SVM model. Figure  4 shows 
the weights of  T2 and ADC values and six subregions 
contributing to the SVM model. Figure  5 shows the 
diagnostic performance of the DR-CSI model, tra-
ditional ADC and  T2 value. The DR-CSI model was 
more accurate than the traditional ADC (0.87 vs. 
0.81, P < 0.001) and  T2 value (0.87 vs. 0.70, P < 0.001) 
at the highest Youden index point. Interreader agree-
ment analysis showed that almost perfect agreement 
was achieved in each subregion (kappa value = 0.99, 

Fig. 3 The process of labelling the ROI. The first row shows a biopsy-positive patient with PI-RADS 5. The second row shows a biopsy-negative 
patient with PI-RADS 2 but positive in DRE

Fig. 4 Weight map. The weight map demonstrated the weight of the apparent diffusion coefficient (ADC),  T2 value, and six signal component 
fractions’ contribution to the SVM model

Fig. 5 Diagnostic performance. Diagnostic performance of the 
support vector machine (SVM) model, apparent diffusion coefficient 
(ADC), and  T2 value
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1.00, 0.98, 0.99, 0.99 and 0.98 for components 1–6, 
respectively).

In the validation stage, a total of 18 patients (17 patients 
with PI-RADS ≥ 3 or DR-CSI positivity and 1 patient 
with PI-RADS < 3 and DR-CSI negativity but DRE posi-
tivity) underwent biopsy. Of these, 6 patients were con-
firmed to have benign disease, and 12 had PCa. We chose 
those 12 images and compared the performance of differ-
ent mapping methods to choose an appropriate scale for 
further testing. Among each scale, the largest Dice ratio 
was found in the scale, with the long axis and the short 
axis having at least 2 and 2 pixels, respectively (Fig.  6). 
The scale was further applied in the test stage.

In the test stage, a total of 57 patients underwent 
biopsy, among which 7 patients were PI-RADS < 3 and 
DR-CSI negative but DRE positive, 1 was PI-RADS 2 
but DR-CSI positive, 28 were PI-RADS 3, 13 were PI-
RADS 4, and 8 were PI-RADS 5. The maximal diame-
ter of the index lesion ranged from 0.3–3.2  cm with a 
median of 1.1 cm. Of these, 25 patients were confirmed 
to have benign disease (7 with PI-RADS 2, 11 with PI-
RADS 3, 7 with PI-RADS 4), and 32 had PCa (1 with 
PI-RADS 2, 17 with PI-RADS 3, 6 with PI-RADS 4, 8 
with PI-RADS 5). Eighty-five lesions were subsequently 
verified. Thirty-one were confirmed to be benign, 
and 54 were PCa. Two typical cases are represented 
in Fig.  7. We analysed separately based on patient and 
lesion (Table  3). Considering PI-RADS ≥ 3 as a posi-
tive finding, DR-CSI had higher accuracy than PI-
RADS ≥ 3 based on patients (84.2% vs. 63.2%, P = 0.004) 
and lesions (78.8% vs. 57.6%, P = 0.001). Considering 

PI-RADS ≥ 4 as a positive finding, DR-CSI had higher 
accuracy than PI-RADS ≥ 4 based on lesions (76.5% vs. 
64.7%, P = 0.029), while no significant difference was 
found based on patients (84.2% vs. 78.9%, P = 0.508). 
For the analysis of clinically significant PCa, considering 
PI-RADS ≥ 3 as a positive finding, DR-CSI had higher 
accuracy than PI-RADS ≥ 3 based on patients (84.2% 
vs. 63.2%, P = 0.004) and lesions (62.4% vs. 48.2%, 
P = 0.036). Considering PI-RADS ≥ 4 as a positive find-
ing, there was no significant difference between DR-CSI 
and PI-RADS ≥ 4 based on patients (84.2% vs. 82.5%, 
P = 1.000) and lesions (62.5% vs. 64.7%, P = 0.845).

Discussion
In this study, the feasibility of DR-CSI combined with 
an SVM model for detecting PCa in  vivo was initially 
explored, and its diagnostic performance was evaluated 
and compared with the PI-RADS score based on MP-
MRI. The optimal performance of the former method 
suggested additional clinical value and potential to 
improve the detection of PCa, especially based on lesion 
level. The results demonstrated that DR-CSI could pro-
vide additional information for PCa characterization in 
some clinical scenarios (e.g., targeted biopsy).

Conventionally,  T2 and ADC derived from MP-MRI 
independently have been widely used for cancer detection 
and have proven to be of clinical significance [29, 30]. Some 
studies have reported that a strong interdependence exists 
between the measured ADC and  T2 and varies depend-
ing on the tissue composition in PCa [31, 32]. Conven-
tional MRI methods, which only provide voxel-averaged 

Fig. 6 Dice ratio with different mapping voxel scales. Dice ratio calculated in diffusion-relaxation correlation spectrum imaging (DR-CSI) with 
different mapping voxel scales
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information on a macroscopic level, cannot disentangle 
intravoxel heterogeneity reflected by water diffusivity and 
relaxivity. In this sense, the ability of conventional MRI 
methods to investigate the tissue structure and composition 

in tumours is limited. In our study, compared with  T2 and 
ADC maps alone, the diagnostic accuracy was improved by 
the DR-CSI with the SVM model. This could be attributed 
to the fact that DR-CSI could resolve the distribution of 

Fig. 7 Examples of lesion detection. The first row shows a 74-year-old patient, tPSA 5.97 ng/mL, diagnosed with PI-RADS 3 at the right 
middle-anterior peripheral zone but negative in DR-CSI, who was finally confirmed to be benign by biopsy. The second row shows a 65-year-old 
patient, tPSA 7.79 ng/mL, diagnosed with PI-RADS 2 but positive in DR-CSI in the left middle peripheral zone, who was finally confirmed to have 
PCa and a Gleason score of 3 + 3 by biopsy. (a and f) T2WI; (b and g) diffusion weighted imaging; (c and h) apparent diffusion coefficient; (d and i) 
diffusion-relaxation correlation spectrum imaging (DR-CSI) result; (e and j) Decreasing of signal intensity in lesions with PI-RADs 3 delineated in the 
DR-CSI images (a & f)

Table 3 Performance in the diagnosis of PCa using PI-RADS and DR-CSI

a PCa prostate cancer, PI-RADS Prostate Imaging-Reporting and Data System Version, DR-CSI Diffusion-Relaxation Correlation Spectrum Imaging

Patient Lesion

PI-RADS DR-CSI p value PI-RADS DR-CSI p value

Gleason Score = 6 and ≥ 7
PI-RADS ≥ 3

 sensitivity 31/32 31/32 42/54 48/54

 specificity 5/25 17/25 7/31 19/31

 accuracy 36/57(63.2%) 48/57(84.2%) 0.004 49/85(57.6%) 67/85(78.8%) 0.001

PI-RADS ≥ 4

 sensitivity 28/32 31/32 34/54 48/54

 specificity 17/25 17/25 21/31 19/31

 accuracy 45/57(78.9%) 48/57(84.2%) 0.508 55/85(64.7%) 67/85(76.5%) 0.029

Gleason Score ≥ 7
PI-RADS ≥ 3

 sensitivity 30/30 30/30 27/32 30/32

 specificity 6/27 18/27 14/53 23/53

 accuracy 36/57(63.2%) 48/57(84.2%) 0.004 41/85(48.2%) 53/85(62.4%) 0.036

PI-RADS ≥ 4

 sensitivity 28/30 30/30 23/32 30/32

 specificity 19/27 18/27 32/53 23/53

 accuracy 47/57(82.5%) 48/57(84.2%) 1.000 55/85(64.7%) 53/85(62.4%) 0.845
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tissue components according to different spectral regions, 
providing additional information on tissue composition or 
structural features at a subvoxel level and hence improving 
the clinical diagnosis of PCa.

With decades of efforts, multidimensional MRI has 
been used to infer intravoxel heterogeneity in tissue due 
to its outstanding power to resolve signals from distinct 
tissue components. In pioneering work, DR-CSI has 
shown the potential to discriminate spatially overlapping 
phantoms and separate white and grey matter in both 
normal and injured animal spinal cords [16]. Specifically, 
with a priori knowledge, a hybrid multidimensional MRI 
model was set up based on an assumption of three dif-
ferent components in PCa [14, 15]. Owing to the intra-
voxel heterogeneity of tissue structure and the presence 
of multiple components in PCa (such as stroma, epithe-
lium, and lumen, but not limited to these components) 
[33], the simplified DR-CSI model may limit the evalua-
tion of microstructure complexity. Recently, some studies 
explored and validated the relations between the histo-
logical examination results and signal component frac-
tions derived from DR-CSI in ex  vivo PCa and in  vivo 
PCa [15, 17].

However, the clinical diagnosis of PCa by DR-CSI still 
needs further study. Particularly, it is worth noting that 
there still exist other challenges to DR-CSI application for 
the clinical diagnosis of PCa [16]. First, the interpretation 
of the spectral results, i.e., associating the spectral peaks 
with specific tissue components or microstructure fea-
tures, is not straightforward. Second, it is challenging to 
identify and determine the boundaries of spectral peaks, 
as the peaks would overlap and merge with one another, 
especially in malignant tumours with high intravoxel het-
erogeneity, making it difficult to robustly measure and 
map compartmental signal fractions.

Instead of assigning an individual spectral peak in the 
 T2-D spectrum to a specific component, dividing the 
entire  T2-D spectral space into six areas with different 
ranges of  T2 and D could be a feasible way to reflect the 
diffusion-relaxation correlation information and avoid 
the need to identify specific components in the high 
intravoxel heterogeneous tissue structure. Thus, our DR-
CSI was established based on segmented spectral areas 
to evaluate tissue composition in the diagnosis of PCa 
rather than to define a specific peak.

As the SVM model is an efficient way to deal with 
classification problems [22], it was adopted to build 
a voxel-based classification model for PCa diagnosis 
based on the resulting  T2-D spectrum without defin-
ing and explaining the associations between seg-
mented spectral areas with multiple components in 
PCa on the premise of no adequate prior knowledge 
about the microstructure compositions in  vivo PCa. 

The results of the training model easily converged and 
could be quickly translated into practical applications. 
Moreover, the SVM model can explore the importance 
of a specific factor with the weight of each component 
in the model. ADC was still an important factor in 
PCa diagnosis, while different compartments derived 
from DR-CSI can simultaneously contribute to the 
classification model. Interestingly, components 5 and 
6, which were considered to be associated with tissue 
perfusion in  vivo with D > 3  mm2/μs, also accounted 
for significant proportions in the model. This finding 
verified the importance of perfusion emphasized by 
PI-RADS [10, 12]. Moreover, this result demonstrated 
that it is of great value to include the information 
available only in in vivo DR-CSI to improve the practi-
cal performance.

In the validation stage, we used 2*2 voxels as the filters 
to establish the mapping model. It is important to choose 
an appropriate filter scale for image mapping in SVM. 
Since the EPI sequence on the imaging level in  vivo is 
easily disturbed by various artefacts, the direct mapping 
method without adding filters may not reach satisfactory 
results, such as increased false-positive results. Lesions 
with 2*2 voxels will obviously provide more reliable infor-
mation than lesions with a single voxel. The scale with 
2*2 voxels is smaller than most prostate tumours that can 
be found by MRI and will not lead to missed diagnosis 
due to the choice of boundary.

In this study, we also evaluated the performance of the 
DR-CSI model in detecting cs-PCa. Although the per-
formance of the DR-CSI model did not exceed that of 
PI-RADS, it still has some practical significance. As the 
result of the DR-CSI model can be automatically derived 
with SVM, the method also provides a potential idea 
to solve the problem of lacking reproducibility with PI-
RADS in diagnosis [6]. Meanwhile, as the model was 
established to differentiate cancer lesions from benign 
lesions, the model certainly lacks high precision to dis-
tinguish between cc-PCa and cs-PCa. The performance 
in detecting cs-PCa may further improve if only lesions 
with GS ≥ 7 are used in modelling.

Our study had some limitations to be acknowledged. 
First, considering that the diagnostic performance of sat-
uration biopsy was consistent with that of radical prosta-
tectomy pathology in general [25, 34], saturation biopsy 
was adopted instead of whole-mount results in our study. 
However, the method can still omit some information 
on heterogeneity, the performance of the model might 
be improved with reference to the whole-mount result, 
and further study is needed to probe the issue. Second, 
although improved spectral sensitivity and resolution are 
expected from more data points, an increase in acquisi-
tion time cost is inevitable. Further research is needed 
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to find the optimal choice of TE and b-values. Third, the 
impact of the DR-CSI protocol, for instance, the spatial 
resolution and SNR, on the spectral sensitivity and reso-
lution of DR-CSI was not evaluated. Fourth, in this study, 
we adopt a method to divide the spectrum based on a 
priori knowledge, which is just one of many possible pat-
terns. Further studies are needed to explore the optimal 
method of dividing the subareas of the spectrum. Investi-
gation of the optimized DR-CSI protocol is warranted in 
future studies.

Conclusions
In conclusion, the DR-CSI combined with the SVM 
model has the potential to improve the diagnostic accu-
racy of prostate cancer.
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