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Abstract 

Background The evaluation of treatment response according to METastasis Reporting and Data System for Prostate 
Cancer (MET-RADS-P) criteria is an important but time-consuming task for patients with advanced prostate cancer 
(APC). A deep learning-based algorithm has the potential to assist with this assessment.

Objective To develop and evaluate a deep learning-based algorithm for semiautomated treatment response assess-
ment of pelvic lymph nodes.

Methods A total of 162 patients who had undergone at least two scans for follow-up assessment after APC metasta-
sis treatment were enrolled. A previously reported deep learning model was used to perform automated segmenta-
tion of pelvic lymph nodes. The performance of the deep learning algorithm was evaluated using the Dice similarity 
coefficient (DSC) and volumetric similarity (VS). The consistency of the short diameter measurement with the radiolo-
gist was evaluated using Bland–Altman plotting. Based on the segmentation of lymph nodes, the treatment response 
was assessed automatically with a rule-based program according to the MET-RADS-P criteria. Kappa statistics were 
used to assess the accuracy and consistency of the treatment response assessment by the deep learning model and 
two radiologists [attending radiologist (R1) and fellow radiologist (R2)].

Results The mean DSC and VS of the pelvic lymph node segmentation were 0.82 ± 0.09 and 0.88 ± 0.12, respectively. 
Bland–Altman plotting showed that most of the lymph node measurements were within the upper and lower limits 
of agreement (LOA). The accuracies of automated segmentation-based assessment were 0.92 (95% CI: 0.85–0.96), 
0.91 (95% CI: 0.86–0.95) and 75% (95% CI: 0.46–0.92) for target lesions, nontarget lesions and nonpathological lesions, 
respectively. The consistency of treatment response assessment based on automated segmentation and manual 
segmentation was excellent for target lesions [K value: 0.92 (0.86–0.98)], good for nontarget lesions [0.82 (0.74–0.90)] 
and moderate for nonpathological lesions [0.71 (0.50–0.92)].

Conclusion The deep learning-based semiautomated algorithm showed high accuracy for the treatment response 
assessment of pelvic lymph nodes and demonstrated comparable performance with radiologists.
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Background
Advanced prostate cancer (APC) is characterized by the 
recurrence of prostate cancer after definitive treatment or 
by metastases without prior therapy [1]. Several therapeu-
tic approaches have been approved for patients with APC. 
Aside from the androgen deprivation and docetaxel treat-
ment, new agents with varying mechanisms of action have 
shown survival benefits in this population [2, 3]. While the 
responses of patients with APC to these agents are various 
and treatment may cause side effects, they may result in 
the desired outcomes for patients. Therefore, early treat-
ment response assessment for patients with APC allows 
clinicians to put a timely stop to unbeneficial treatment.

Imagery depicting metastatic state plays a key role in 
patient management [4, 5]. There is a growing body of 
research demonstrating how whole-body magnetic reso-
nance imaging can be used to diagnose and evaluate APC 
tumors and determine the efficacy of treatment [6, 7]. 
The METastasis Reporting and Data System for Prostate 
Cancer (MET-RADS-P) guidelines aim to reduce vari-
ability in the acquisition, interpretation, and reporting of 
metastatic cancer by promoting standardization of prac-
tices [8]. As recommended by the Prostate Cancer Clini-
cal Trials Working Group (PCWG), MET-RADS-P allows 
the subclassification of patients based on their metastatic 
spread pattern (bone, nodal, visceral, or local) [5].

Diffusion-weighted imaging (DWI) has been shown 
to successfully reflect tumor response and discriminate 
between future responders and nonresponders, which 
could be valuable in adapting future management [9]. 
Manual segmentation and measurement of DWI lesions 
based on MET-RADS-P require a high level of exper-
tise, are time-consuming, and are subject to operator 
error [10, 11]. Deep learning technologies have extended 
this quantitative approach with promising preliminary 
results in the assessment of tumor response in the liver 
[12, 13]. In this study, we hypothesized that the deep 
learning model could also be trained to estimate the 
treatment response of APC according to MET-RADS-P 
guidelines. This study aimed to investigate the feasibility 
of deep learning-based treatment response evaluation of 
patients with APC, and for proof-of-concept, we focused 
on the assessment in the pelvic lymph nodes.

Materials and methods
Patient enrollment
This study was approved by the local institutional 
review board, and the requirement for informed 

consent was waived due to its retrospective design. 
Two hundred and fifty-nine patients with histologi-
cally confirmed prostate cancer who underwent ini-
tial/curative treatment of metastases at our institution 
were included in this study between Jan 2017 and Jan 
2022. Pelvic MRI scans were performed before and 
after at least one course of treatment (baseline and 
posttreatment).

According to the MET-RADS-P criteria, lymph 
nodes with a short diameter < 10  mm were considered 
nonpathological; therefore, only patients with lymph 
nodes ≥ 10  mm at baseline MRI should be included in 
the protocols. Hence, 23 of the 259 patients with APC 
were excluded because of the short diameter of all the 
lesions < 10  mm. In addition, the time interval between 
baseline pelvic MRI and treatment initiation was sug-
gested to be within 4 weeks; therefore, 45 patients were 
excluded due to an interval of more than 4 weeks. Twelve 
patients were excluded because of the unqualified scan-
ning range on baseline and follow-up MRI. Fifteen 
patients were excluded for inadequate image quality. 
Finally, 162 patients who had undergone at least two 
scans for follow-up assessment after APC metastasis 
treatment were analyzed (Fig. 1). Clinical and radiologi-
cal features of the enrolled patients were acquired from 
the electronic information system, including age, pros-
tate-specific antigen (PSA) level, PI-RADS v2.1 scores 
and TNM staging.

MRI acquisition
Three 3.0 T scanners were used (Achieva, Philips Health-
care; Discovery MR750, GE Healthcare; Intera, Philips 
Healthcare) to perform pelvic MRI scans. The pelvic 
MRI protocol performed in our institution included 
T2-weighted imaging (T2WI), T1WI, DWI with appar-
ent diffusion coefficient (ADC) maps and dynamic gad-
olinium-DTPA (Gd-DTPA)-enhanced (DCE) sequences. 
The detailed scanning parameters of DWI are listed in 
Table 1.

Pelvic lymph nodes segmentation
A previously trained 3D U-Net segmentation model 
developed by the same authors in this study based on 
deep learning was used to automatically segment the visi-
ble pelvic lymph nodes on DWI images [14]. The training 
data used for the model development were different from 
the data included here. All visible lymph nodes included 
target lesions (short diameter ≥ 15  mm), nontarget 
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lesions (10  mm ≤ short diameter < 15  mm) and non-
pathological lesions (short diameter < 10  mm). Manual 
corrections of the automatically segmented lymph nodes 

made by a radiologist expert (with more than 20 years of 
reading experience) were considered the reference stand-
ard for segmentation evaluation.

Treatment response assessment
Based on the MET-RADS-P criteria, treatment response 
assessments of lymph nodes were conducted [15], includ-
ing complete response (CR), partial response (PR), stable 
disease (SD), and progressive disease (PD).

The radiologists who corrected the lymph nodes 
manually provided the reference standard for treat-
ment response assessment. An algorithm for semiau-
tomatic response assessment was developed using the 
MET-RADS-P criteria by automatically calculating the 
diameters of the lymph nodes first and then assessing 
the treatment response by a rule-based program. More 

Fig. 1 The workflow of patient enrollment

Table 1 The detailed imaging parameters for diffusion-weighted 
imaging

Parameters 3.0 T Discovery 3.0 T Intera 3.0 T Achieva

B value (s/mm2) 0, 800 0, 800 0, 800

Imaging matrix 256 × 256 224 × 224 156 × 180

Echo time (ms) 60 56 54

Repetition time (ms) 4000 6628 3300

Field of view  (mm2) 450 × 366 662 × 400 512 × 356

Section thickness (mm) 4 4 4

Number of slices 25 20 24



Page 4 of 9Liu et al. Cancer Imaging            (2023) 23:7 

details about the algorithm development of pelvic 
lymph nodes were shown in our previous study [14].

In addition, an attending radiology radiologist (R1) 
and a fellow radiology radiologist (R2), with 8 and 
4  years of pelvic imaging experience, performed the 
treatment response assessments on all patients by pri-
mary review of the MRI images. The two radiologists 
compared baseline scans before treatment and subse-
quent scans after treatment for every patient. The defi-
nition and evaluation rules are shown in Fig. 2.

Statistical analysis
The “median (interquartile range)” values are used for 
the description of continuous variables, and descrip-
tive statistics of the categorical data are presented with 
“n (%)”. The segmentation results are quantitatively 
evaluated by the overlap-based metric [Dice similar-
ity coefficient (DSC)] and the volume-based metric 
[volumetric similarity (VS)] [16]. The independent 
t-test was applied to determine the difference in the 
evaluation metrics between the subgroups. We used 
the Kappa statistic to evaluate the consistency of treat-
ment response. A P value less than 0.05 was treated 
as significant. Statistical analysis was performed with 
MedCalc (version 14.8; MedCalc Software, Ostend, 
Belgium).

Results
Study population
In this study, 162 eligible APC patients with metasta-
ses were included. The baseline characteristics of the 
enrolled patients are shown in Table  2. The median 
T-PSA level in this population was 35.39  ng/ml. The 

PI-RADS scores and T/N/M staging were recorded 
from the baseline MRI reports, and PI-RADS 5 
(74.07%), T4 (30.86%), N1 (56.79%) and M0 (38.89%) 
accounted for the largest proportion. The Gleason 
scores were obtained from the pathological report, 
and Gleason 4 + 5 (37.65%) accounted for the largest 
percentage.

All patients had received at least one course of post-
treatment MRI examination, 63 patients had two 
posttreatment examinations, 23 patients had three 
posttreatment examinations, 8 patients had four post-
treatment examinations, 3 patients had five post-
treatment examinations, and 1 patient had seven 
posttreatment examinations. In the baseline pelvic 
MRI, 112 patients had target lesions, 129 patients had 
nontarget lesions, and all patients had nonpathological 
lymph nodes.

Assessment of automated lymph node segmentation
One hundred and sixty-two APC patients with 162 base-
line pelvic MRI scans and 260 posttreatment MRI scans 
were used to perform automated lymph node segmen-
tation. As shown in Table 3, the mean DSC and VS are 
0.82 ± 0.09 and 0.88 ± 0.12, respectively. In the subgroup 
analyses, the DSC and VS values of the target lesions and 
nontarget lesions showed no significant difference (DSC: 
0.85 vs. 0.82, P > 0.05; VS: 0.88 vs. 0.86, P > 0.05) but were 
significantly higher than those of nonpathological lesions 
(all P values > 0.05). The subgroups of baseline and post-
treatment MRI scans showed no significant difference 
(all P values > 0.05). The explementary segmentation of 
lymph nodes is shown in Fig. 3.

Fig. 2 The flowchart of treatment response assessment of lymph nodes
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Quantitative measurement of the lymph node 
segmentation
The mean short diameters of the automatically segmented 
and manually segmented target lesions were 23.53  mm 
(interquartile range, 17.61- 26.55  mm) and 27.94  mm 

(interquartile range, 15.93—26.77  mm), respectively 
(P = 0.231). The mean short diameters of automatically 
segmented and manually segmented nontarget lesions 
were 11.91  mm (interquartile range, 10.85—13.14  mm) 
and 12.33  mm (interquartile range, 11.07—13.59  mm), 
respectively (P = 0.082). The agreement between the 
automatically segmented and manually segmented target 
lesions and nontarget lesions in terms of short diameter is 
shown in Fig. 4. The Bland–Altman analysis showed good 
consistency between the automated segmentation and 
manual segmentation, and most values were within the 
upper and lower limits of agreement (LOA).

Accuracy of the treatment response assessment
In this population, 75 APC patients with 112 pairs of 
pelvic MRI performed the target lesion evaluation; 129 
APC patients with 209 pairs of pelvic MRI performed the 
nontarget lesion evaluation, and 162 APC patients with 
260 pairs of pelvic MRI performed the nonpathological 
lesion evaluation. As shown in Fig.  5, the accuracies of 
the automated segmentation-based response assessment 
were 0.92 (95% CI: 0.85–0.96), 0.91 (95% CI: 0.86–0.95) 
and 75% (95% CI: 0.46–0.92) for target lesions, nontarget 
lesions and nonpathological lesions, respectively.

Consistency of the treatment response assessment
As shown in Table  4, the agreement of treatment 
response assessment based on automated segmentation 
and manual correction was excellent for target lesions [K 
value: 0.92 (0.86–0.98)], good for nontarget lesions [0.82 
(0.74–0.90)] and moderate for nonpathological lesions 
[0.71 (0.50–0.92)], which were approximately equal to the 
agreement between R1 and manual correction [0.89, 0.81 
and 0.68 for target lesions, nontarget lesions and non-
pathological lesions, respectively] but slightly higher than 
the agreement between R2 and the reference standard 
[0.86, 0.82 and 0.60 for target lesions, nontarget lesions 
and nonpathological lesions, respectively].

Discussion
MET-RADS-P is a guideline for the treatment response 
evaluation of systemic metastases of patients with APC, 
which involves the evaluation of primary focus, bone 

Table 2 Main baseline demographics and clinical characteristics 
of patients

Characteristics Value

Age(y) 69 (64, 75)

PSA (ng/ml)

 T-PSA 35.39 (14.2, 70)

 F-PSA 4.32 (1.53, 9.00)

 F/T-PSA 0.11 (0.07, 0.17)

PI-RADS scores (n%)

 3 7 (4.32%)

 4 35 (21.60%)

 5 120 (74.07%)

T staging (n%)

 T2 42 (25.93%)

 T3a 21 (12.96%)

 T3b 49 (30.25%)

 T4 50 (30.86%)

N staging (n%)

 X 52 (32.10%)

 0 18 (11.11%)

 1 92 (56.79%)

M staging (n%)

 X 56 (34.57%)

 0 63 (38.89%)

 1a 3 (1.85%)

 1b 40 (24.69%)

Gleason score (n%)

 3 + 3 10 (6.17%)

 3 + 4 10 (6.17%)

 3 + 5 6 (3.70%)

 4 + 3 24 (14.81%)

 4 + 4 25 (15.43%)

 4 + 5 61 (37.65%)

 5 + 4 23 (14.20%)

 5 + 5 3 (1.85%)

Table 3 Segmentation results of pelvic lymph nodes

DSC Dice similarity coefficient, VS volumetric similarity. The DSC and VS values were used to evaluate the performance of the automated lymph node segmentation by 
comparison with the manual annotation

Metrics All Subgroup analysis

Target lesions Nontarget lesions Nonpathological 
lesions

Baseline lesions Post-
treatment 
lesions

DSC 0.82 ± 0.09 0.85 ± 0.09 0.82 ± 0.09 0.78 ± 0.09 0.81 ± 0.10 0.82 ± 0.09

VS 0.88 ± 0.12 0.88 ± 0.09 0.86 ± 0.08 0.80 ± 0.08 0.87 ± 0.09 0.88 ± 0.08
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Fig. 3 Explementary results of lymph node segmentation and correction. Light green: target lesion; light blue: nontarget lesion; light yellow: 
nonpathological lesion

Fig. 4 Agreement between the automatically segmented and manually segmented lymph nodes. a target lesions; b nontarget lesions

Fig. 5 Confusion matrix of treatment response assessment



Page 7 of 9Liu et al. Cancer Imaging            (2023) 23:7  

metastases, lymph node metastases and organ metasta-
ses. In this study, we established a semiautomatic pelvic 
lymph node treatment response evaluation process for 
patients with APC through lymph node segmentation 
based on deep learning. Our results showed that the 
accuracies of automated segmentation-based response 
assessment were high for all the target lesions, nontarget 
lesions and nonpathological lesions according to MET-
RADS-P criteria and achieved good consistency with the 
attending radiologist and fellow radiologist.

Based on the morphology and signal characteristics of 
all acquired images, the MET-RADS-P system mapped 
unequivocal diseases to 14 predefined body regions [8, 
15]. Analysis of lymph node metastases in the pelvis is 
crucial for clinical practice and drug studies in patients 
with APC, which is the most common metastatic site 
[17]. A lymph node’s size is highly correlated with sur-
vival time, a measurement that radiologists and clini-
cians perform to monitor disease progression or assess 
therapeutic options, due to the fact that many malig-
nancies can enlarge lymph nodes [18]. According to 
the Response Evaluation Criteria in Solid Tumors 1.1 
(RECIST 1.1) Guidelines, lymph nodes with a short-axis 
diameter of at least 10 mm are considered to be enlarged 
lymph nodes and are clinically significant [19]. The size 
standard of pathological lymph nodes defined by MET-
RADS-P based on MRI was similar to RECIST 1.1, while 
MET-RADS-P provides a more complete assessment of 
nodal metastases response including the nontarget nodes 
and nonpathologic nodes, which was usually qualitatively 
assessed by RECIST 1.1 criteria.

According to the MET-RADS-P criteria, the core whole 
body MRI protocol designed for bone and lymph node 
metastasis detection included T1WI (GRE Dixon tech-
nique) and axial DWI [8]. DWI is a well-recognized and 
used sequence for pelvic lymph node imaging, that is able 
to offer qualitative and quantitative assessments for dis-
ease characterizations [14, 20]. Therefore, in this study, 
we performed the treatment response assessment only 
on DWI images.

In this study, the established semiautomatic pelvic 
lymph node treatment response evaluation process 

according to MET-RADS-P criteria included two parts. 
First, a previously established pelvic lymph node seg-
mentation model was used to perform the automatic 
segmentation of lymph nodes. The model achieved 
good segmentation performance here, which is similar 
to the segmentation results reported in previous litera-
ture (the DSC and VS values for all visible lymph nodes 
were 0.76 ± 0.15 and 0.82 ± 0.14, respectively) [14], espe-
cially the target lesions, further highlighting its potential 
usefulness.

Second, based on the quantitative measurements 
obtained from the automated segmentation, we can 
directly evaluate the treatment response according to 
MET-RADS-P criteria, which can be more practical in 
clinical settings. A clinical radiology report provides a 
qualitative narrative, but does not provide standardized, 
quantitative information about the patient’s progress or 
response to treatment [21]. Natural language processing 
and deep learning models have been employed in previous 
studies to estimate responses from clinical text [22, 23]. 
These approaches can be feasible for quantitative assess-
ment related to MET-RADS-P criteria but can be indirect.

Our proposed semiautomated algorithm achieved high 
Kappa values in terms of treatment response assessment 
with attending and fellow radiologists when measuring 
the same set of target and nontarget lesions. The con-
sistency of nonpathological lesions was lower, which 
may be due to the relatively poor segmentation perfor-
mance. Tang et  al. [24] proposed a deep learning-based 
method for semiautomated RECISTS measurement and 
assessed using a mean difference between the deep learn-
ing algorithm and manual measurement in the unit of 
pixels. Scores using pixel difference, however, may not 
be reliable, as scores are largely determined by data com-
position. In this study, we used Bland–Altman plotting 
based on percent measurement difference to address the 
issue as suggested by Woo et al. [25]. As demonstrated, 
the Bland–Altman analysis indicated good consistency 
between the automated segmentation and manual seg-
mentation, and most values were within the upper and 
lower LOA.

Table 4 The consistency of treatment response assessment

R1 an attending radiologist with 8 years of reading experience, R2 a fellow radiologist with 4 years of reading experience

Comparison Target lesions Nontarget lesions Nonpathological lesions

Automated segmentation vs. Manual correction 0.92 (0.86–0.98) 0.82 (0.74–0.90) 0.71 (0.50–0.92)

R1 vs. Automated segmentation 0.89 (0.81–0.96) 0.81 (0.73–0.89) 0.68 (0.47–0.88)

R2 vs. Automated segmentation 0.86 (0.79–0.94) 0.78 (0.69–0.87) 0.60 (0.37–0.82)

R1 vs. R2 0.90 (0.85–0.97) 0.95 (0.90–0.99) 0.84 (0.68–0.99)

R1 vs. Manual correction 0.96 (0.93–1.00) 0.99 (0.97–1.00) 0.96 (0.88–1.00)

R2 vs. Manual correction 0.94 (0.89–0.99) 0.96 (0.92–0.99) 0.88 (0.73–1.00)
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There are some limitations that need to be addressed. 
First, in this study, the deep learning-based treatment 
response assessment was only focused on the pelvic 
lymph node, and other regions of the body according to 
the MET-RADS-P guideline need to be investigated in 
the future. Second, we acknowledge that there remain 
opportunities for further model refinement, including 
the achievement of lymph node registration between 
baseline and posttreatment images, thus realizing fully 
automated lymph node treatment response evaluation. 
Finally, our results demonstrated that the semiautomated 
treatment response assessment can be achieved on the 
DWI sequence, but the values of other sequences (e.g. 
T1WI, DCE or T2WI) on response assessment also need 
to be investigated in further studies.

Conclusion
In conclusion, we have developed a semiautomated deep 
learning-based model to estimate response assessments 
of pelvic lymph nodes in patients with APC. The accu-
racy of response assessments based on the automati-
cally segmented lymph nodes showed close similarity to 
the manually segmented lymph nodes and yielded out-
put comparable to the radiologists. These initial results 
provide a promising way to achieve a fully automated 
treatment response assessment algorithm according to 
MET-RADS-P criteria.
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