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Abstract
Background  Triple-negative breast cancer (TNBC) is highly heterogeneous, resulting in different responses 
to neoadjuvant chemotherapy (NAC) and prognoses among patients. This study sought to characterize the 
heterogeneity of TNBC on MRI and develop a radiogenomic model for predicting both pathological complete 
response (pCR) and prognosis.

Materials and methods  In this retrospective study, TNBC patients who underwent neoadjuvant chemotherapy at 
Fudan University Shanghai Cancer Center were enrolled as the radiomic development cohort (n = 315); among these 
patients, those whose genetic data were available were enrolled as the radiogenomic development cohort (n = 98). 
The study population of the two cohorts was randomly divided into a training set and a validation set at a ratio of 7:3. 
The external validation cohort (n = 77) included patients from the DUKE and I-SPY 1 databases. Spatial heterogeneity 
was characterized using features from the intratumoral subregions and peritumoral region. Hemodynamic 
heterogeneity was characterized by kinetic features from the tumor body. Three radiomics models were developed by 
logistic regression after selecting features. Model 1 included subregional and peritumoral features, Model 2 included 
kinetic features, and Model 3 integrated the features of Model 1 and Model 2. Two fusion models were developed 
by further integrating pathological and genomic features (PRM: pathology-radiomics model; GPRM: genomics-
pathology-radiomics model). Model performance was assessed with the AUC and decision curve analysis. Prognostic 
implications were assessed with Kaplan‒Meier curves and multivariate Cox regression.
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Introduction
Triple-negative breast cancer (TNBC) has a poor prog-
nosis, and effective therapeutic targets are lacking [1, 2]. 
Neoadjuvant chemotherapy (NAC) has been widely used 
as a first-line treatment for locally advanced TNBC, and 
pathological complete response (pCR) can be achieved 
in approximately one-third of patients [3–5]. A pCR after 
NAC is associated with improved disease-free and over-
all survival [6–10]. However, the long-term prognosis of 
some patients who have achieved pCR is still unsatisfac-
tory [8–10]. To make appropriate treatment and surgical 
decisions, early and accurate prediction of both pCR and 
patient prognosis is of great clinical significance.

MRI does not have the harm of radiation, which could 
realize the dynamic monitoring during the tumor treat-
ment process. Radiomics is a noninvasive technique 
that can reflect the overall characteristics of a tumor. 
In recent years, the emergence of new methods such as 
habitat imaging and peritumoral radiomics has demon-
strated the potential of image-based characterization of 
tumor heterogeneity. Therefore, researchers are no lon-
ger limited to the analysis of the tumor body but rather 
to broadening the focus to the intratumor, peritumor and 
even entire background parenchyma of the breast. Recent 
studies on the tumor body have shown that radiomic fea-
tures can quantify intratumoral spatial heterogeneity 
[11–16]. For the peritumoral regions, studies have shown 
that radiomic features can characterize the heterogene-
ity of the microenvironment around the tumor [17–22]. 
TNBC is a highly heterogeneous subtype, and simplifying 
the tumor into a single whole ignores spatial heterogene-
ity [23–25]. To comprehensively reflect the heterogeneity 
of the tumor and peritumoral parenchyma, we analyzed 
the radiomic features of the tumor body, subregions and 
peritumoral region.

Radiomics reflects the characteristics of tumors from 
a macroscopic perspective but may not be able to accu-
rately reveal the biological nature of tumors. Genomic 
analysis requires acquiring a sample of tissue, which is 
invasive for the patient, but it reveals the heterogeneity 
of tumors more precisely at the molecular level. The inte-
gration of complementary data generated by radiomics 
and genomics may facilitate precision medicine and 

improve prognosis [26]. Radiogenomics uncovers the 
biological significance of radiomics by linking radiomics 
features to the genetic spectrum [26, 27]. A previous 
study focused on the relationship between MR image 
and the expression of breast cancer genes and revealed 
that MRI features were correlated with the expression 
of genes related to metastasis, drug resistance and prog-
nosis [28]. A previous study by our team integrated MRI 
and genomic features and found that the radiogenomics 
model (AUC = 0.87; P = 0.04) demonstrated superiority 
in predicting pCR of TNBC compared to the radiomics 
model [29]. However, there are still few studies integrat-
ing radiomics and genomic features. We hope that on the 
basis of these previous studies, we can further develop 
a radiogenomic model based on multiregional radiomic 
features to improve the prediction performance.

Consequently, the purpose of this study was to char-
acterize the multiscale heterogeneity of TNBC by mul-
tiregional MRI, develop a radiomic model for predicting 
pCR, and further integrate radiomic, clinicopathological 
and genomic features to develop a radiogenomic model 
to more effectively predict both pCR and prognosis.

Materials and methods
Patients
The study was approved by the Ethics Committee of 
the Institutional Review Board (IRB) of our institu-
tion, and the requirement for patient informed consent 
was waived. In this retrospective study, female patients 
treated at Fudan University Shanghai Cancer Center 
from August 2011 to March 2022 were enrolled as the 
radiomics development cohort (n = 315). The inclusion 
criteria were as follows: (1) patients who were negative for 
the estrogen receptor (ER), progesterone receptor (PR) 
and human epidermal growth factor receptor 2 (HER2) 
according to a core-needle biopsy performed before 
treatment (the HER2 score 2 + obtained based on immu-
nohistochemistry and gene amplification was confirmed 
with fluorescence in situ hybridization) and (2) patients 
who received NAC and eventually underwent surgery. 
The exclusion criteria were as follows: (1) patients lacking 
baseline dynamic contrast-enhanced (DCE) MR images; 
(2) patients with poor-quality or incomplete MR images; 

Results  Among the radiomic models, the multiregional model representing multiscale heterogeneity (Model 3) 
exhibited better pCR prediction, with AUCs of 0.87, 0.79, and 0.78 in the training, internal validation, and external 
validation sets, respectively. The GPRM showed the best performance for predicting pCR in the training (AUC = 0.97, 
P = 0.015) and validation sets (AUC = 0.93, P = 0.019). Model 3, PRM and GPRM could stratify patients by disease-free 
survival, and a predicted nonpCR was associated with poor prognosis (P = 0.034, 0.001 and 0.019, respectively).

Conclusion  Multiscale heterogeneity characterized by DCE-MRI could effectively predict the pCR and prognosis of 
TNBC patients. The radiogenomic model could serve as a valuable biomarker to improve the prediction performance.
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(3) patients with no visible lesions; (4) patients without 
final pathological results after treatment; and (5) patients 
lost to follow-up. Patients with available DNA sequenc-
ing data were selected to form the radiogenomic develop-
ment cohort (n = 98). The study population was randomly 
divided into a training set and a validation set at a ratio of 
7:3. In the radiomics development cohort, there were 223 
patients in the training set and 92 patients in the valida-
tion set. In the radiogenomic development cohort, there 
were 69 patients in the training set and 29 patients in 
the validation set. Patients from the DUKE dataset and 
the I-SPY 1 dataset were used as the external validation 
cohort (n = 77) for the radiomic models. The detailed 
inclusion/exclusion criteria are shown in Additional file 
1. The enrollment process is shown in Fig. 1.

Study design
We attempted to develop radiomic and radiogenomic 
models to simultaneously predict the NAC response and 
long-term prognosis of TNBC patients. In phase 1, we 
collected pretreatment DCE-MRI, clinicopathological, 

and DNA sequencing data. Radiomic features were 
extracted from the tumor body, subregions and peri-
tumoral region. In phase 2, we identified the radiomic, 
clinicopathological, and genomic features significantly 
associated with pCR. In phase 3, we continuously inte-
grated the selected features into the machine learn-
ing model to predict pCR. Three radiomics models 
were developed as follows: Model 1 (comprising subre-
gional and peritumoral features), Model 2 (comprising 
kinetic features), and Model 3 (integrating the features 
of Model 1 and Model 2). The three models were tested 
in the internal and external validation sets. Then, path-
ological features were integrated to develop a pathol-
ogy-radiomics model (PRM), and genomic features 
were further integrated to develop a genomics-pathol-
ogy-radiomics model (GPRM). Finally, the prognostic 
implications of the models were assessed by measuring 
disease-free survival (DFS) using Kaplan‒Meier curves 
and multivariate Cox regression. The study procedure is 
shown in Fig. 2.

Fig. 1  Flowchart of patient selection. TNBC patients receiving NAC = patients with triple-negative breast cancer receiving neoadjuvant therapy at our 
center; DUKE-TNBC = patients with triple-negative breast cancer from the DUKE dataset; I-SPY 1-TNBC = patients with triple-negative breast cancer from 
the I-SPY 1 dataset
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Fig. 2  Overview of the study design Phase 1: DCE-MRI, clinicopathological and genetic data were collected, and radiomic, clinicopathological, and ge-
nomic features were extracted before treatment. Phase 2: Baseline individual radiomic, clinicopathological, and genomic features significantly associated 
with pCR were identified. Phase 3: The selected features were gradually integrated into the machine learning model, and the performance of the models 
for predicting pCR and prognosis in the internal and external validation sets was assessed. DCE-MRI = dynamic contrast material-enhanced magnetic 
resonance imaging; NAC = neoadjuvant chemotherapy; pCR = pathological complete response
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Clinical, pathological, and prognostic data
The clinicopathological and prognostic data of all 
patients were collected. The clinical information included 
age, menopausal status, pre-NAC T stage and N stage, 
surgery type and NAC regimen. Pathological information 
included the pathological type, Ki-67 index and lympho-
vascular invasion before NAC and the pCR status after 
NAC. pCR was defined as the absence of invasive cancer 
burden in either the breast or associated axillary lymph 
nodes (ypT0/is ypN0). For prognostic information, we 
collected the date of progression (local recurrence and 
distant metastasis) to determine the duration (months) of 
DFS. DFS was calculated from the date of surgery to the 
date of progression, the last confirmation of no evidence 
of disease, or the most recent follow-up examination.

DCE-MRI data
MRI technique and image preprocessing
At our center, scanning was performed on three types 
of scanners: a Siemens 3.0-T MRI scanner (Siemens 
Healthineers, Erlangen, Germany), an Aurora 1.5-T MRI 
scanner (Aurora Imaging Technology, Aurora Systems, 
Inc., Canada) and a GE 1.5-T MRI scanner (GE, Signa 
HDx) with a 16-channel body coil. In the DUKE data-
set, scanning was performed using a 1.5-T or 3-T breast 
DCE-MRI scanner. In the I-SPY 1 dataset, scanning was 
performed using a 1.5-T breast DCE-MRI scanner. All 
patients were scanned in the prone position. The detailed 
scanning parameters and image preprocessing procedure 
are presented in Additional file 2.

Region of interest (ROI) segmentation
Segmentation of the tumor body and peritumoral region
Tumor body segmentation was performed manually by 
two radiologists with more than ten years of experience 
using ITK-SNAP (version 3.8.0). The 3D segmentation 
ROIs of the tumor body were first delineated in the early 
postcontrast phase of DCE-MRI and then propagated to 
the precontrast and late postcontrast phases. The peri-
tumoral region was obtained by expanding the tumor 
outward to a width of 5 mm and subtracting the tumor 
region [30, 31]. Intraclass correlation coefficients (ICCs) 
were utilized to evaluate the intra- and interobserver 
agreement in terms of feature extraction. The radiologists 
were blinded to the clinicopathological information.

Segmentation of the intratumoral subregions
We referred to Wu et al.‘s article to segment each tumor 
into multiple phenotypically consistent subregions based 
on four kinetic parameters of DCE-MRI [32]. First, the 
pixel values of the same pixel in different periods of 
enhancement were extracted and transformed into fea-
ture vectors, through which the four kinetic parameters 
of each pixel were calculated, including the wash-in 

slope (WIS), wash-out slope (WOS), signal enhancement 
ratio (SER) and percentage enhancement (PE). The algo-
rithm is shown in Fig. 3a, b. Then, these feature vectors 
were clustered by the unsupervised k-means algorithm, 
and the best results were achieved when the number of 
clusters was 3 (Fig.  3c). In three different clusters (sub-
regions), each of the four kinetic parameters increased 
from subregion 1 to subregion 3. We thus considered 
subregions 1, 2, and 3 to represent the poorly, moderately, 
and highly perfused subregions of the tumor, respectively 
(Fig. 3d, e).

Radiomics feature extraction
Radiomics and MSI-based features from subregions and 
peritumoral regions
Based on the multiregional maps, we analyzed the char-
acteristics of each region separately and the correla-
tions among them. We extracted 1414 radiomic features, 
including morphological features, first-order features, 
texture features and features processed by filters from 
each intratumoral subregion and the peritumoral region. 
We used the multiregional spatial interaction (MSI) 
matrix to characterize and quantify spatial heterogeneity 
[32]. Then, we extracted 22 features from the MSI matrix, 
including 18 first-order and 4 s-order features.

Kinetic features from the tumor body
To reflect the hemodynamic heterogeneity of TNBC 
patients, we investigated the potential value of the varia-
tion in image texture over time. We extracted kinetic fea-
tures of the tumor body, including the mean, variance, 
kurtosis and skewness of the phase-varying curve con-
structed based on feature values in all phases, for each 
first-order and textural feature. The process of feature 
extraction is shown in Fig. 2, and more details are shown 
in Additional file 3.

Radiomics feature selection
Before further analysis, all the extracted radiomic fea-
tures were standardized with z scores to eliminate the 
differences in the value scales of the data. To balance the 
dataset, a synthetic minority oversampling technique 
(SMOTE) was employed to resample the training set.

The ICCs between the features extracted from the 
ROIs delineated by the two radiologists were calculated, 
and the features with ICCs < 0.75 were eliminated. The 
remaining features were tested by univariate analysis, 
and the features with significant differences between pCR 
patients and nonpCR patients were selected. The Pearson 
correlation coefficients (PCCs) were calculated between 
features. When the coefficient was > 0.9, one of the fea-
tures was randomly eliminated. Finally, we used the least 
absolute shrinkage and selection operator (LASSO) algo-
rithm combined with 10-fold cross-validation to screen 
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the top radiomic features derived from the intratumoral 
subregions and peritumoral regions. Using the same 
method, the top radiomic features from the kinetic fea-
tures were screened out. These two selected sets of 
radiomic features constituted the feature subsets of the 
radiomic models.

Logistic regression was used for multivariate analysis of 
the selected top radiomic features, and the independent 
risk factors were used to develop radiomic models to pre-
dict pCR. Multicollinearity was evaluated by the variance 
inflation factors (VIFs) for variables in the model. Vari-
ables with VIFs > 10 indicated severe multicollinearity 
[33].

Genomics data
Fresh tumor tissues obtained using baseline core-needle 
biopsy and matched white blood cell samples were col-
lected, and genomic DNA was sequenced using the 511-
gene panel. The 511-gene panel comprises 511 genes 
closely related to the development and targeted therapy 
of breast cancer in The Cancer Genome Atlas (TCGA) 
database and other databases. Based on second-genera-
tion sequencing technology, the exons and partial introns 
of the 511 genes were enriched by hybridization with a 
biotin probe. DNA sequencing provides targeted and in-
depth detection of high-risk genes to accurately detect 
gene mutations, copy number variations and other events 

Fig. 3  Illustration of subregion segmentation. (a/b) Calculation method for four kinetic parameters. (c) K-means clustering was used to obtain the opti-
mal clustering centers. (d) Original image of a breast tumor. (e) Outcome of subregion segmentation of the breast tumor. The breast tumor was divided 
into three subregions. Subregions 1, 2, and 3 represent the poorly, moderately, and highly perfused subregions, respectively
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that have definite clinical relevance to breast cancer. 
Genomic DNA from both tissue samples and matched 
white blood cell samples was sequenced to distinguish 
somatic mutations from germline mutations. This study 
focused exclusively on somatic genomic alterations. The 
specific details of sample preparation and sequencing 
data generation can be found in Additional file 4 and our 
previous work [29, 34].

We saved the DNA sequencing results as ‘fastq’ files. 
We analyzed the sequencing results using the algorithm 
for gene mutation acquisition published by Broad and 
obtained the gene mutation results and annotated them. 
The main steps include quality control of the ‘fastq’ file, 
genomic mating, analysis of somatic and germline muta-
tions, and annotation. We saved somatic mutations in 
mutation annotation format (MAF). The mutation data 
were summarized, analyzed, annotated, and visualized 
using Maftools in R version 4.2.2.

The mutation information analyzed included mutation 
status, mutation frequency and variant allele frequency 
(VAF). Mutation status refers to whether the CDS region 
of a gene has a nucleotide mutation that can cause a 
change in the encoding amino acid (nonsynonymous 
mutations). Mutation frequency refers to the total num-
ber of nonsynonymous mutations occurring in the CDS 
region of a gene. VAF refers to the percentage of mutant 
alleles at a specific locus. We summed the VAF values 
of the nonsynonymous mutation sites in each gene. We 
used the z score to standardize these three types of fea-
tures to reduce interference during model development. 
Pearson’s chi-square test was employed to compare unor-
dered categorical variables. A t test was used to identify 
VAF features that were significantly different between 
pCR patients and nonpCR patients.

Development of radiomic and radiogenomic models
We used the radiomic features from two feature subsets 
to develop three radiomic models by logistic regres-
sion. Subregional and peritumoral features were used 
to develop Model 1, and kinetic features were used to 
develop Model 2. Finally, Model 3 was developed by inte-
grating the features of Model 1 and Model 2. These mod-
els were validated with internal and external validation 
sets.

For clinicopathological and genomics features, uni-
variate analysis was used to select features that were sig-
nificantly different between pCR patients and nonpCR 
patients. The selected features were combined with the 
radiomics score (Radscore) of the optimal radiomics 
model to develop a pathology-radiomics model (PRM) 
and a genomics-pathology-radiomics model (GPRM) 
using logistic regression.

Performance of the models for predicting NAC response 
and prognosis
The performance of these models for predicting pCR was 
evaluated by the area under the curve (AUC), accuracy, 
sensitivity and specificity. The DeLong test was applied to 
compare the AUC values between different models [35].

The prognostic implications of the optimal radiomic 
model, PRM and GPRM were assessed in the training 
and validation sets. The cutoff value was calculated with 
pCR as the endpoint, and the patients were divided into 
predicted pCR and predicted nonpCR groups. Kaplan‒
Meier curves were used to assess whether the model 
could stratify patients by DFS. For PRM and GPRM, mul-
tivariate Cox proportional hazards regression was used 
to investigate whether the pCR predicted by the radiomic 
model added independent information in the presence of 
the covariates of pathological and genomic features.

Statistical analysis
The data analyses and processes were implemented with 
Python (version 3.6) and R software (version 4.2.2). Con-
tinuous variables were summarized as the mean ± SD, and 
categorical variables were described as the number of 
patients and percentage. Continuous variables were com-
pared by two-sample t tests, while qualitative variables 
were analyzed by the chi-square test or Fisher’s exact test. 
For all tests, P < 0.05 was considered to indicate statistical 
significance.

For the radiomic features, the ICCs were used to evalu-
ate the consistency of the radiomic features extracted 
from the ROIs delineated by two different radiologists, 
and an ICC ≥ 0.75 was considered to indicate high con-
sistency. Univariate analysis, correlation analysis, LASSO 
regression, and logistic regression were used to select key 
features to predict pCR. Receiver operating characteristic 
(ROC) curves were used to evaluate the different mod-
els, and the AUC with 95% confidence intervals (CIs), 
accuracy, sensitivity, and specificity were calculated. The 
DeLong test was performed to compare the AUCs of the 
different models, and P < 0.05 was considered to indicate 
statistical significance. Kaplan-Meier curves and multi-
variate Cox proportional hazards regression were used to 
assess the prognostic implications of the models.

Results
Patient characteristics
A total of 315 patients were initially treated at our hos-
pital. All patients received 4 or 8 cycles of NAC treat-
ment. The regimens were based on either taxane or 
taxane combined with anthracycline. The pCR rate of 
these patients was 39.7% (125/315), and the nonpCR rate 
was 60.3% (190/315). Fifty-three patients (16.8%) under-
went breast-conserving surgery, and 262 patients (83.2%) 
underwent mastectomy. The median follow-up time was 
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34 months (range, 1–93 months). In the DUKE cohort 
(n = 50), the pCR rate was 38.0% (19/50), and the nonpCR 
rate was 62.0% (31/50). The mean age of the patients was 
50.24 years (25.01–73.32). There were 8 (16%) patients 
with stage T greater than 2, and 11 (22%) patients with 
stage N greater than 1. In the I-SPY 1 cohort (n = 27), the 
pCR rate was 44.4% (12/27), and the nonpCR rate was 
55.6% (15/27). The mean age of the patients was 47.34 
years (33.47–68.31).

In the radiomics development cohort, there were 223 
patients in the training set and 92 patients in the valida-
tion set. The baseline clinicopathological characteristics 
of the patients in the pCR and nonpCR groups in the 
training set are shown in Table 1. Ki-67 and lymphovas-
cular invasion were significantly different between the 
pCR and nonpCR patients (P = 0.041 and 0.001, respec-
tively). In the radiogenomic development cohort, there 
were 69 patients in the training set and 29 patients in the 
validation set. The VAFs of REL and MED23 were signif-
icantly different in the training set (P = 0.018 and 0.025, 
respectively). Mutations in MED23 and REL were more 
common in the nonpCR patients. More information is 
summarized in Additional file 5.

Performance of the radiomic models for predicting pCR
In total, 11,258 radiomic features were extracted. After 
feature selection, 5 radiomic features from subregions 
and 2 radiomic features from the peritumoral region 
were included in Model 1. Eighteen kinetic features from 
the tumor body were included in Model 2. Model 3 inte-
grated 25 features of Model 1 and Model 2. The detailed 
process is summarized in Additional file 6.

In the validation set, both Model 1 (AUC = 0.74) and 
Model 2 (AUC = 0.73) could effectively predict pCR. The 
predictive accuracy of Model 3 improved (AUC = 0.79). 
In the external validation set, Model 3 (AUC = 0.78) also 
performed better than Model 1 (AUC = 0.73) and Model 
2 (AUC = 0.66). The VIFs in these models were all less 
than 10, indicating that there was no multicollinearity 
among these variables.

Improved performance of radiogenomic models for 
predicting pCR
In the training set of the radiomics development cohort, 
a fusion model (PRM) was developed by integrating 
Ki-67 expression and lymphovascular invasion with the 
Radscore of Model 3 to predict pCR. In the validation set, 

Table 1  Clinicopathological characteristics of patients in the pCR and nonpCR groups in the training set
Characteristic pCR (n = 90) NonpCR (n = 133) P Value
Age (y) N % N % 0.447
Mean ± SD 47.31 ± 11.51 48.50 ± 11.45
Menopausal status 0.554
Menopausal 45 50.0 72 54.1
Premenopausal 45 50.0 61 45.9
Ki-67 status 0.041*
< 20% 0 0 6 4.5
≥20% 90 100.0 127 95.5
Surgery type 0.569
Breast conservation 19 21.1 24 18.0
Mastectomy 71 78.9 109 82.0
T stage 0.223
1 14 15.6 14 10.5
2 57 63.3 80 60.2
3 9 10.0 26 19.5
4 10 11.1 13 9.8
N stage 0.917
0 18 20.0 30 22.6
1 45 50.0 64 48.1
2 15 16.7 19 14.3
3 12 13.3 20 15.0
Lymphovascular invasion < 0.001*
Present 1 1.1 61 45.9
Absent 89 98.9 72 54.1
Pathological type 0.063
IDC 90 100.0 128 96.2
ILC, IMPC 0 0 5 3.8
IDC = invasive ductal carcinoma; ILC = invasive lobular carcinoma; IMPC = invasive micropapillary carcinoma. *, P < 0.05
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the AUC (0.88 vs. 0.79, P = 0.003) and specificity (0.74 vs. 
0.53) of the PRM were greater than those of Model 3.

In the training set of the radiogenomic development 
cohort, the VAFs of the REL and MED23 were further 
integrated into the PRM to develop a radiogenomic 
model (GPRM). In the validation set, with the integra-
tion of features, the AUCs of Model 3, the PRM and 
the GPRM improved continuously and were 0.75, 0.86 
and 0.93, respectively. The DeLong test showed that the 
GPRM further improved the performance for predict-
ing pCR compared with Model 3 (AUC: 0.75 vs. 0.93; 
P = 0.019). The specificities of Model 3, the PRM and the 
GPRM were 0.65, 0.83 and 0.91, respectively. In the vali-
dation sets of the radiomics and radiogenomics develop-
ment cohorts, as the features of the model continued to 
be integrated, the net clinical benefit for patients contin-
ued to improve.

In summary, we constructed three radiomic models 
and two fusion models. Tables 2 and 3 show the perfor-
mance of these models and the P values from the ROC 
analysis. Figures  4 and 5 show the receiver operating 
characteristic (ROC) curves and the decision curves gen-
erated by different models. The specific formulas of these 
models are shown in Additional file 7.

Assessment of the prognostic implications of the models
The optimal cutoff values generated by the ROC curves 
of Model 3, the PRM and the GPRM were 0.31, 0.37 and 
0.16, respectively. Using these threshold values, patients 
were classified into a predicted pCR group and a pre-
dicted nonpCR group. As shown in Fig. 6, Kaplan‒Meier 
curves showed that the predicted pCR group had bet-
ter DFS in the training set (P = 0.002, 0.011 and 0.016, 
respectively) and validation set (P = 0.034, 0.001 and 
0.019, respectively).

As shown in Table 4, in the multivariate Cox analysis, 
for the variables in the PRM and GPRM, pCR predicted 
by Model 3 remained independently associated with DFS 
after we adjusted for pathological and genomic risk fac-
tors (PRM: DFS odds ratio, 0.168, 95% CI: 0.045–0.626, 
P = 0.008; GPRM: DFS odds ratio, 0.171; 95% CI: 0.029–
1.019; P = 0.052).

Discussion
To achieve individualized precision treatment, we devel-
oped a more accurate model to predict both pCR and 
prognosis in TNBC patients. The AUCs of the multire-
gional radiomic model (Model 3) were 0.79 and 0.78 in 
the internal and external validation sets, respectively. 
The radiogenomic model comprising pathological fea-
tures (GPRM) could predict pCR more accurately, with 
an AUC of 0.93 in the validation set. Moreover, both 
radiomic and radiogenomic models could predict recur-
rence and metastasis. Ta
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Spatial heterogeneity has a significant impact on treat-
ment response and patient prognosis [36, 37]. Wu et al. 
used subregional analysis to characterize intratumoral 
spatial heterogeneity [32], and Shi et al. used quadratic 
clustering to further promote the development of subre-
gional correlation precision imaging [38]. Shi et al. and 
Wu et al. reported that intratumoral spatial heterogeneity 

was associated with pCR and prognosis, respectively [32, 
38]. We partitioned the tumors into multiple spatially 
segregated, phenotypically consistent subregions. We 
analyzed the radiomic features of each subregion sepa-
rately and their interrelationships to clearly show spatial 
heterogeneity. Compared with the studies of Wu et al. 
[32], in addition to the 22 MSI-based features, our study 

Table 3  The P value of the Delong test on the training set, validation set and external validation set of the predictive models
Cohort Model Training set Validation set External validation 

set
Model 1 Model 2 Model 3 PRM Model 1 Model 2 Model 3 PRM Model 1 Model 2

Radiomics development cohort Model 2 0.047* - - - 0.873 - - - 0.436 -
Model 3 0.009* 0.302 - - 0.196 0.076 - - 0.464 0.101
PRM < 0.001* 0.009* 0.006* - 0.003* < 0.001* 0.003* - - -

Radiogenomics development cohort PRM - - 0.218 - - - 0.066 - -
GPRM - - 0.015* 0.030 - - 0.019* 0.163 - -

Model 1 was a radiomics model constructed by features from the subregions and peritumoral region; Model 2 was a radiomics model constructed by kinetic 
features from the tumor body; Model 3 was a radiomics model integrating features of Model 1 and Model 2; PRM = pathology-radiomics model; GPRM = genomics-
pathology-radiomics model; *, P < 0.05

Fig. 4  Predictive performances of the different models (a-e). Plots show the receiver operating characteristic (ROC) curves of the different models in the 
training set (a) and validation set (b) of the radiomics development cohort. The plot shows the ROC curves of the different models in the external valida-
tion set (c). The plot shows the ROC curves of different models in the training set (d) and validation set (e) of the radiogenomic development cohort. 
Model 1, radiomics model constructed by features from the subregions and peritumoral region; Model 2, radiomics model constructed by kinetic features 
from the tumor body; Model 3, radiomics model integrating features of Model 1 and Model 2; PRM = pathology-radiomics model; GPRM = genomics-
pathology-radiomics model
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Fig. 6  Kaplan‒Meier survival analyses according to the predicted pCR status generated by the three models for disease-free survival. Model 3, radiomics 
model integrating features of Model 1 and Model 2; PRM = pathology-radiomics model; GPRM = genomics-pathology-radiomics model

 

Fig. 5  Decision curves of different models in the validation sets of the radiomic development cohort (a) and the radiogenomic development cohort (b). 
Model 1, radiomics model constructed by features from the subregions and peritumoral region; Model 2, radiomics model constructed by kinetic features 
from the tumor body; Model 3, radiomics model integrating features of Model 1 and Model 2; PRM = pathology-radiomics model; GPRM = genomics-
pathology-radiomics model
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extracted radiomics features from each subregion and 
discovered that radiomics features had greater predictive 
value during the feature screening process. We combined 
intratumoral and peritumoral features to avoid missing 
the added value of the tumor microenvironment. In addi-
tion, we accounted for the image texture changes over 
enhancement time to characterize hemodynamic hetero-
geneity. We found that multiscale heterogeneity charac-
terized by baseline multiregional quantitative radiomic 
features could robustly predict the NAC response.

The addition of genomic data to the model facilitates 
the discovery of new biomarkers to enhance predic-
tive value [29, 39]. However, few studies have integrated 
multiomics to develop models, possibly due to the risk 
of invasive biopsies and the complexity of multidimen-
sional data analysis. Meanwhile, it is meaningful to syn-
thesize multidimensional information such as radiomic, 
pathological, and genomic features to describe tumor 
characteristics more comprehensively and develop more 
robust models. Stephen-John et al. collected clinical, 
digital pathological, genomic and transcriptomic features 
of breast cancer and found that the fusion model showed 
the highest performance for predicting pCR (AUC = 0.87) 
[39]. We found that mutations in MED23 and REL were 
more common in nonpCR patients. Our team’s previous 
finding that the MED23 p.P394h mutation could induce 
epirubicin resistance by affecting homologous recombi-
nation repair may provide an explanation [29]. Compared 
to the radiomics model, the fusion model exhibited a 
significant improvement in the AUC and specificity. In 
both the training set and the validation set, the AUC of 
the GPRM was significantly greater than that of Model 3, 
with P values of 0.015 and 0.019, respectively. This facili-
tates the identification of patients in whom pCR may not 
be achieved and the need for early adjustment of treat-
ment, such as in combination with immunotherapy [40, 
41] or bevacizumab [42], to increase the likelihood of 
achieving pCR and ultimately improve prognosis.

A multitask model that can predict both response and 
prognosis could better guide clinical decision making. 
Fan et al. reported that a predictive model for the Onco-
type DX recurrence score was useful for both predicting 
pCR and prognosis in patients with breast cancer [43]. 
This approach is similar to transfer learning in principle, 

where trained markers are transferred to enhance the 
prediction accuracy for different clinical tasks. We found 
that specific features for predicting pCR were also effec-
tive for stratifying patients according to DFS. Moreover, 
the pCR predicted by the radiomic model had indepen-
dent prognostic value and was positively correlated with 
good DFS in PRM. Possibly due to the small sample size, 
pCR predicted by Model 3 was positively associated with 
a good prognosis in GPRM but was not statistically sig-
nificant. Increasing the sample size may improve the sta-
tistical power of radiomic features. Our multitask model 
predicts the pCR and prognosis of TNBC patients simul-
taneously, helping to identify patients for whom pCR may 
not be achieved to facilitate the realization of individual-
ized treatment.

Our study had several limitations. First, our radioge-
nomic model should be further tested in independent, 
larger cohorts. Second, it would be of interest to com-
bine DCE-MRI with other imaging modalities, such as 
diffusion-weighted MR imaging, to further improve the 
prediction accuracy. Third, it would also be worthwhile 
to increase the interpretability of our models and identify 
new meaningful gene therapeutic targets to improve the 
prognosis of TNBC patients in future studies.

Our study focused on clinically used diagnostic DCE 
MR imaging and revealed that combining the radiomic 
features of multiple tumor regions facilitates the pre-
diction of pCR and DFS. In addition, the integration of 
radiomic features with clinicopathological and genomic 
features could improve the prediction efficiency. We 
envision that the proposed methodology for defining and 
characterizing intratumoral spatial heterogeneity will be 
applicable to other cancers with similar poor prognoses. 
In future studies, it may be of interest to combine imag-
ing with pathologic or molecular data to understand the 
underlying biological basis of the tumor heterogeneity 
captured by multiregional imaging features.

Conclusion
Imaging multiscale heterogeneity could be used to pre-
dict the pCR of TNBC patients and advance tailored 
treatment in wider regions and populations. The radioge-
nomic model based on quantitative heterogeneity could 

Table 4  Cox multivariate analysis of the associations of variables in the PRM and GPRM with disease-free survival
Variable name Multivariate analysis of PRM Multivariate analysis of GPRM

OR 95% CI P value OR 95% CI P value
Radscore of Model 3 0.168 0.045–0.626 0.008* 0.171 0.029–1.019 0.052
Ki-67 status 0.943 0.126–7.031 0.954 0.885 0.112-7.000 0.908
Lymphovascular invasion 0.719 0.353–1.464 0.363 0.598 0.236–1.513 0.278
VAF of REL - - - 0 0 0.446
VAF of MED23 - - - 0 0 0.301
PRM, pathology-radiomics model; GPRM, genomics-pathology-radiomics model; VAF, variant allele frequency; OR, odds ratio; CI, confidence interval. *, P < 0.05
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serve as a valuable clinical marker to predict the pCR and 
prognosis of TNBC patients.
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