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Abstract
Background To compare the performance between one-slice two-dimensional (2D) and whole-volume three-
dimensional (3D) computed tomography (CT)-based radiomics models in the prediction of lymphovascular invasion 
(LVI) status in esophageal squamous cell carcinoma (ESCC).

Methods Two hundred twenty-four patients with ESCC (158 LVI-absent and 66 LVI-present) were enrolled in this 
retrospective study. The enrolled patients were randomly split into the training and testing sets with a 7:3 ratio. The 2D 
and 3D radiomics features were derived from the primary tumors’ 2D and 3D regions of interest (ROIs) using 1.0 mm 
thickness contrast-enhanced CT (CECT) images. The 2D and 3D radiomics features were screened using inter-/intra-
class correlation coefficient (ICC) analysis, Wilcoxon rank-sum test, Spearman correlation test, and the least absolute 
shrinkage and selection operator, and the radiomics models were built by multivariate logistic stepwise regression. 
The performance of 2D and 3D radiomics models was assessed by the area under the receiver operating characteristic 
(ROC) curve. The actual clinical utility of the 2D and 3D radiomics models was evaluated by decision curve analysis 
(DCA).

Results There were 753 radiomics features from 2D ROIs and 1130 radiomics features from 3D ROIs, and finally, 7 
features were retained to construct 2D and 3D radiomics models, respectively. ROC analysis revealed that in both the 
training and testing sets, the 3D radiomics model exhibited higher AUC values than the 2D radiomics model (0.930 
versus 0.852 and 0.897 versus 0.851, respectively). The 3D radiomics model showed higher accuracy than the 2D 
radiomics model in the training and testing sets (0.899 versus 0.728 and 0.788 versus 0.758, respectively). In addition, 
the 3D radiomics model has higher specificity and positive predictive value, while the 2D radiomics model has higher 
sensitivity and negative predictive value. The DCA indicated that the 3D radiomics model provided higher actual 
clinical utility regarding overall net benefit than the 2D radiomics model.
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Background
Esophageal carcinoma (EC) is the 7th leading cause of 
cancer morbidity and the 6th leading cause of cancer 
mortality globally [1]. Most reported cases are in East-
ern Asia and Africa, with China alone accounting for an 
estimated 307,000 cases [1, 2]. Esophageal squamous cell 
carcinoma (ESCC) is East Asia’s most prevalent malig-
nancy type. Since early ESCC has no specific symptoms, 
most tumors are discovered late in their progression, 
when treatment choices are limited and a cure is impos-
sible. Endoscopic screening for ESCC in high-prevalence 
areas in China has significantly reduced deaths, and sur-
vival rates in China have been improved for decades [3, 
4].

Lymphovascular invasion (LVI) is a histological char-
acteristic linked to physiologically aggressive tumors, 
increasing the risk of local cancer micrometastasis. Even 
if lymph node metastases are absent, LVI remains a sig-
nificant prognostic factor for patients with EC [5]. EC 
patients in the same period can be further classified into 
high-risk patients by LVI, which may allow for improved 
multimodality treatment [6]. It is preferable to use 
endoscopic resection (ER), such as endoscopic mucosal 
resection (EMR) and endoscopic submucosal dissection 
(ESD), for treating T1a-muscularis mucosae or T1b-sub-
mucosa (MM/SM1) stage ESCC [7]. Histopathological 
assessment of endoscopically resected specimens plays 
a crucial role in the decision-making process regarding 
the need for supplementary therapeutic interventions [8]. 
However, additional prophylactic treatment is necessary 
if LVI is found in the ER specimen [9]. If the pathologi-
cal diagnosis after ER shows epithelium/lamina propria 
mucosa invasion or pathological T1a-muscularis muco-
sae invasion without LVI or droplet infiltration, these 
patients are proposed to be observed without further 
intervention. If the pathological diagnosis following ER 
shows pT1b-submucosal infiltration (with LVI or drop-
let infiltration), it indicates a significant probability of 
metastases, and additional treatment, including esopha-
gectomy and chemoradiation therapy, is recommended 
[7]. It follows that preoperative identification of the LVI 
status can optimize the choice of treatment modality. As 
a noninvasive imaging technique, contrast-enhance CT 
(CECT) is the best imaging tool for showing the local 
invasion of surrounding structures, which helps decide 
surgical resection suitability [10]. However, LVI is only 
identified in pathologic specimens following surgical 

resection. Therefore, preoperative LVI prediction using 
conventional imaging techniques is a great challenge.

Radiomics refers to extracting and analyzing sophisti-
cated quantitative features from medical images, allow-
ing for high-throughput analysis [11]. In recent years, 
radiomics analysis has gained popularity as a noninvasive 
quantitative evaluation approach for esophageal tumors 
[12]. Previous studies have highlighted the potential of 
radiomics as a biomarker for predicting LVI in gastro-
intestinal cancers [13–18]. Tumors are represented with 
multiple layers on CT images, providing the option to 
outline the three-dimensional (3D) whole-volume tumor 
as the regions of interest (ROIs) or select a typical two-
dimensional (2D) layer as the ROIs. Intuitively, the 3D 
mode provides the advantage of encompassing the entire 
tumor, while the 2D mode is more accessible to obtain, 
less labor-intensive, less complex, and faster to com-
pute. When extracting radiomics features, a fundamental 
trade-off between the two outlining modes is necessary. 
In a previous study, we discovered a similar performance 
of 2D versus 3D radiomics models in identifying T1-2 
versus T3-4 stage ESCC [20]. Meng et al. [16] showed 
that the 2D radiomics model performed slightly better 
than the 3D radiomics model in predicting the LVI of 
GC. In our previous study, we demonstrated the predic-
tive capability of the 3D radiomics features derived from 
CECT images in determining the LVI status of ESCC 
[19]. However, the performance differences between 2D 
and 3D radiomics models in predicting LVI in ESCC have 
yet to be investigated.

Therefore, the primary objective of this study was to 
evaluate the potential value of the 2D radiomics model 
for predicting LVI in ESCC and to compare the perfor-
mance differences between 2D and 3D radiomics models.

Materials and methods
Patients
From January 2017 to February 2019, a total of 224 
consecutive ESCC patients (157 males and 67 females, 
mean age 62.8 years) were enrolled based on the follow-
ing inclusion criteria: ❶ histopathologically confirmed 
ESCC after radical resection with definite LVI status; ❷ 
with complete clinical and pathological data; ❸ radical 
resection within 2 weeks of CECT scans with a second-
generation dual-source CT scanner; ❹ with thin-section 
images reconstructed using a soft tissue algorithm. The 
following criteria were exclusions: ❶ patients received 
any antitumor treatment before surgery (n = 49); ❷ 

Conclusions Both 2D and 3D radiomics features can be employed as potential biomarkers to predict the LVI in ESCC. 
The performance of the 3D radiomics model is better than that of the 2D radiomics model for the prediction of the LVI 
in ESCC.
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multiple tumors or ESCC combined with other patho-
logical types(n = 41); ❸ the lesion could not be identified 
on the CT images (n = 16); ❹ significant beam hardening 
artefacts or motion artefacts (n = 13). The enrolled ESCC 
patients were randomly allocated into a training set (158 
patients) and a testing set (66 patients) in a 7:3 ratio. Fig-
ure  1 illustrates the flowchart for the patient selection 
process.

Clinical and pathological features analysis
All ESCC patients underwent radical esophagectomy 
with lymphadenectomy within 2 weeks after the CT 
scan. The clinical and pathological features included 
patients’ gender, age, tumor location, pathological maxi-
mum tumor thickness (pThick), pathological tumor 
length (pLength), tumor-differentiation degree, periph-
eral nerve invasion (PNI), and LVI status, pathological T 
stage (pT), pathological N stage (pN), pathological TNM 
stage (pTNM). All pathological features were analyzed by 
2 pathologists (with 9 and 11 years of experience in EC 
diagnosis). The pTNM stage was reclassified according to 
the 8th Ed. of the AJCC/UICC ESCC staging system.

CT image acquisition
All patients in the study underwent chest CECT scans 
using a second-generation dual-source CT scanner 
(Somatom Definition Flash, Siemens, Forchheim, Ger-
many). The scan protocol comprised the following 

parameters: tube voltage of 120 kVp, automatic mA, a 
matrix size of 512 × 512, a collimation of 128 × 0.6  mm 
a pitch of 1.2, a gantry rotation time of 0.5  s, a slice 
thickness of 5.0  mm, and a reconstructed slice thick-
ness of 1.0 mm using a soft-tissue algorithm (b30f). The 
scan range extended from the thoracic inlet level to the 
abdominal trunk artery. Following a 30-second delay, 
an injection of contrast medium (1.5  ml/kg, 300  mg I/
ml, Iohexol) at a rate of 3.0–4.0 ml/sec was administered 
via a high-pressure syringe pump into the elbow vein to 
acquire arterial phase CT images.

Tumor segmentation
All tumors were segmented using the open-source soft-
ware 3D-slicer (V. 5.2.2) on the 1.0 mm thickness arterial 
phase CECT images. The 3D regions of interest (ROIs) 
were segmented based on the whole-volume tumor, 
while the 2D ROIs were delineated using the largest 
tumor cross-section. The criteria for lesions were defined 
as esophageal wall thickness > 5 mm or esophageal diam-
eter > 10  mm (without gas) with local irregular luminal 
narrowing [21–23]. The ROIs of the tumor included the 
intratumoral necrotic area. The air, fluid, surrounding 
fatty tissue, lymph nodes, heart and lung tissue, blood 
vessels, and bone tissue in the esophageal lumen were 
excluded.

The inter-/intra-class correlation coefficient (ICC) 
analysis was estimated to assess inter- /intra-reader 

Fig. 1 The flow chart of enrolled patients in our study
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reproducibility and reliability of radiomics feature extrac-
tion. Thirty patients were randomly selected from the 
entire cohort, and Radiologist 1 and Radiologist 2, each 
with 12 years of experience in diagnosing esophageal can-
cer, independently performed 2D and 3D ROI segmenta-
tion for the 30 patients. Segmentation of 2D and 3D ROIs 
for the remaining 194 cases was done independently by 
Radiologists 1. Radiologist 1 segmented the tumors of the 
same 30 patients once more after two weeks. The ICCs 
between Radiologist 1 and Radiologist 2, and within 
Radiologist 1 was evaluated. For radiomics features, 
ICCs > 0.75 imply good agreement and reproduction.

Radiomics feature extraction and model construction
We extracted the 2D radiomics features and 3D 
radiomics features from 2D and 3D ROIs, respectively. 
The features were extracted using the Pyradiomics toolkit 
[24]. The CT images were first standardized using image 
isotropic resampling (1 × 1 × 1mm3) and grayscale discret-
ization with binwith 25 [25].

Radiomics features include four types: shape-based 
features, first-order features, texture features, and high-
level features. The texture features consisted of 24  Gy 
level co-occurrence matrix (GLCM) features, 14  Gy 
level dependence matrix (GLDM) features, 16  Gy level 
run length matrix (GLRLM) features, 16  Gy level size 
zone matrix (GLSZM) features, and 5 neighboring gray 
tone difference matrix (NGTDM) features. Eight distinct 
combinations of frequency bands were utilized to gener-
ate Wavelet-based features (LLL, LLH, LHL, LHH, HHH, 
HHL, HLH, HLL). The were 18 classes of first-order 

histogram features. The first-order histogram and tex-
ture may shift due to the transformations introduced 
by the Laplacian of Gaussian (LoG) and Wavelet filters 
applied to the features. Therefore, features transformed 
by LoG and Wavelet filters may be more comprehensive 
and effective in diagnosis. Additionally, the 2D radiomics 
features include 9 shape features, and the 3D features 
include 14 shape features. 1130 radiomics features were 
generated from the 3D ROIs and 753 radiomics features 
from the 2D ROIs to estimate tumor heterogeneity. To 
assess the relationship between 2D and 3D feature clus-
ters, we utilized unsupervised clustering and a radiomics 
heatmap.

To select the optimal radiomics features, we employed 
a four-step approach as outlined below: ❶ The reliabil-
ity of feature extraction was assessed using ICC analysis. 
Features with ICCs > 0.75 were retained. ❷ The Wilcoxon 
rank sum test identified features with significant dif-
ferences between LVI-present and LVI-absent cases. ❸ 
Spearman correlation analysis eliminated features with 
ICCs > 0.9, reducing redundancy. ❹ The least absolute 
shrinkage and selection operator (LASSO) algorithm 
with minimum criteria and 10-fold cross-validation were 
used to determine the tuning parameter selection (λ) and 
optimal features. Finally, the remaining features were 
submitted to multivariable stepwise logistic regression 
analysis, and the feature set with the smallest Akaike’s 
Information Criterion (AIC) was retained as the best 
model. Figure 2 shows a flowchart of the proposed analy-
sis radiomics analysis workflow mentioned previously.

Fig. 2 2D and 3D radiomics prediction pipeline for LVI. a The 3D ROIs were segmented based on the whole-volume tumor, while the 2D ROIs were delin-
eated using the largest tumor cross-section. b Radiomics features include four types: shape-based features, first-order features, texture features, and high-
level features. 1130 radiomics features were generated from the 3D ROIs and 753 radiomics features from the 2D ROIs. c To select the optimal radiomics 
features, we used ICC, Wilcoxon rank sum test, Spearman correlation analysis, LASSO, and multivariate stepwise logistic regression analysis to determine 
the feature set with minimum Akaike’s Information Criterion. d The Radscores for both 2D and 3D radiomics models were developed to represent the 
predictive status of each patient. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to quantify the prediction 
performance. e Calibration curves were generated to assess the goodness-of-fit of the two radiomics models. Decision curve analysis (DCA) was then 
conducted to evaluate the clinical utility of the two models
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Statistics analysis
Patients were classified into LVI-present and LVI-absent 
groups. Mean ± SD was used to represent continuously 
distributed data, median (range) was used to describe 
non-normally distributed continuous variables, and fre-
quencies (%) were used to express categorically dispersed 
variables for clinical and pathological characteristics. 
The Mann–Whitney U test was employed for nonnormal 
continuous variables and the independent sample t-test 
for normal ones. The categorical data were analyzed 
using the Chi-squared test.

The diagnostic performance was evaluated using 
receiver operating characteristic (ROC) curves and the 
area under the curve (AUC). The accuracy, sensitivity, 

specificity, positive predictive value (PPV), and the nega-
tive predictive value (NPV) were calculated. The AUC 
of the two radiomics models was compared using the 
Delong test. Calibration curves were generated to evalu-
ate the goodness-of-fit of the two radiomics models. The 
reliability of the calibration curves was assessed using the 
Hosmer-Lemeshow (HL) test. The actual clinical util-
ity of the two radiomics models was evaluated by deci-
sion curve analysis (DCA). All statistical analyses were 
conducted using R statistical software (Version 4.2.1). A 
two-tailed test with a significant level of P < 0.05 was con-
sidered statistically significant.

Results
Clinical and pathological features of patients
Table 1 displays patients’ clinical and pathological char-
acteristics in the training and testing sets. Our study 
comprised 224 patients, including 158 (70.5%) LVI-
absent and 66 (29.5%) LVI-present patients. There 
were no significant differences in age, sex, and location 
between the two groups. Pathological features, including 
pLength, pThick, pT stage, tumor differentiation, PNI, pN 
stage, and pAJCC stage, significantly differed between the 
two groups.

Radiomics feature extraction and model construction
A total of 753 2D and 1130 3D radiomics features were 
extracted from 2D and 3D ROIs, respectively. We investi-
gated the relationship between the 2D and 3D radiomics 
features and visualized it via a heatmap shown in Fig. 3. 
392 of 753 radiomics characteristics derived from 2D 
ROIs exhibited good agreement and reproduction with 
ICCs greater than 0.75. 937 of 1130 radiomics features 
derived from 3D ROIs exhibited good agreement and 
reproduction with ICCs greater than 0.75. According to 
the Wilcoxon rank-sum test, 258 2D radiomics features 
and 525 3D radiomics features showed a statistically sig-
nificant difference between LVI-present and LVI-absent 
patients. These radiomics features were included in the 
following Spearman correlation analysis. Through Spear-
man correlation analysis, radiomics features with ICCs 
larger than 0.9 were discarded, leaving 56 2D radiomics 
features and 77 3D radiomics features for the subsequent 
LASSO analysis.

For 2D radiomics features and 3D radiomics features, 
the optimal λ values of 0.019 and 0.025, with log (λ) 
=-1.721 and − 1.602, respectively, were chosen (Fig.  4). 
Lastly, the 2D and 3D radiomics models were built using 
multivariable stepwise logistic regression, retaining the 
feature set with the lowest AIC value. Seven radiomics 
features were retained in both the 2D and 3D radiomics 
models, respectively. Figure 5 depicts the selected 2D and 
3D radiomics features and their coefficients. The particu-
lar interpretations and formulas for 2D and 3D radiomics 

Table 1 Clinical and pathological features of the patients in the 
training and testing sets
Variable LVI-absent 

(N = 158)
LVI-present 
(N = 66)

P

Gender, n 0.175#

 male 106 (67.1%) 51 (77.27)
 female 52 (32.9%) 15 (22.73)
Age (years), median (quartile) 65.00 

[58.00;69.00]
62.000 
[56.00;67.75]

0.140#

Location 0.420#

 upper 10 (6.3%) 5 (7.6%)
 middle 114 (72.2%) 42 (63.6%)
 lower 34 (21.5%) 19 (28.8%)
pLength (cm), median (quartile) 3.50 

[3.00;4.00]
4.00 
[3.00;5.00]

0.002*

pThick (cm), median (quartile) 1.000 
[0.80;1.38]

1.10 
[1.00;1.68]

0.005*

Differentiation, n 0.003&

 I 2 (1.3%) 0
 II 112 (70.9%) 33 (50.0%)
 III 44 (27.6%) 33 (50.0%)
PNI, n 0.172 #

 absent 110 (69.6%) 39 (59.1%)
 present 48 (30.4%) 27 (40.9%)
pT stage, n 0.019#

 1 12 (7.6%) 1 (1.5%)
 2 41 (26.0%) 9 (13.6%)
 3 104 (65.8%) 56 (84.8%)
 4 1 (0.6%) 0
pN stage, n <0.001#

 0 100 (63.3%) 14 (21.2%)
 1 40 (25.3%) 23 (34.9%)
 2 12 (7.6%) 16 (24.2%)
 3 6 (3.8%) 13 (19.7%)
pTNM stage, n <0.001#

 I 8 (5.1%) 0
 II 94 (59.5%) 14 (21.2%)
 III 50 (31.6%) 39 (59.1%)
 IV 6 (3.8%) 13 (19.7%)
#, Chi-square test; *, Mann–Whitney U test; PNI, peripheral nerve invasion; pT, 
pathological T stage; pN, pathological N stage; pTNM, pathological TNM stage
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features can be found in the Table S1 and Table S2, 
respectively. For each patient, the radiomics score (Rad-
score) was derived from a linear combination of selected 
features with their corresponding coefficients, which can 
be expressed as follows:

2 D - R a d s c o r e = - 1 . 6 8 3  +  0 . 5 5 1 * o r i g i n a l _
g l c m _ C o r r e l a t i o n _ 2 D - 0 . 5 6 8 * o r i g i n a l _ g l r l m _
ShortRunEmphasis_2D-0.160*log.1.0_glszm_LowGray
LevelZoneEmphasis_2D + 0.625*log1.0_gldm_Depen-
denceVariance-0.985*log.3.0_ngtdm_Coarseness_2D-
0.702*Wavelet .LH_glcm_Idn_2D-0.725*Wavelet .
LH_gldm_LargeDependenceLowGrayLevelEmphasis
_2D;

3D-R adscore= -1 .906 +  1 .617*or ig inal_shape_
Max2DDiameterSlice_3D-1.940*original_shape_
Sphericity_3D.

+  1 . 1 1 3 * l o g . 1 . 0 _ g l s z m _ S i z e Z o n e N o n U n i f o
rmityNormalized_3D-1.021* log. l. 0_gldm_
LargeDependenceEmphasis_3D-0.810*Wavelet.LHL_glrlm_
ShortRunHighGrayLevelEmphasis_3D + 0.828*Wavelet.
H L L _ g l c m _ M C C _ 3 D - 0 . 9 7 1 * W a v e l e t . 
HHL_firstorder_Maximum_3D.

The 2D and 3D Radscores for each patient between 
training and testing sets are displayed in Fig. 6.

Model evaluation
Figure  7 displays the ROC curves of the two mod-
els. Based on the Delong test, the 3D radiomics model 
showed significantly greater AUCs values than the 2D 
radiomics model (3D, 0.930; 2D, 0.852, P = 0.006) in the 
training set. The difference in the AUC values between 
the two radiomics models was not significant in the test-
ing set (3D, 0.897; 2D, 0.851, P = 0.343). In both the train-
ing and testing sets, the accuracy of the 3D radiomics 
model was 0.899 and 0.788, respectively, both surpass-
ing the accuracy of the 2D model (0.728 and 0.758). In 
both the training and testing sets, the 2D radiomics 
model showed greater sensitivity and NPV than the 
3D radiomics model. Conversely, the 3D radiomics 
model revealed higher specificity and PPV than the 2D 
radiomics model. Table 2 displays the detailed diagnostic 
performance of the 2D and 3D radiomics models.

The calibration curves for the training and testing sets 
of 2D and 3D radiomics models demonstrated good con-
cordance (Fig. 8a, b).The HL test produced a nonsignifi-
cant P value, indicating no deviation from the exact fit 
(Fig. 8a, b). The DCA showed that the overall net benefit 
of the 3D radiomics model (green curve) was higher than 
that of the 2D radiomics model (red curve) in predicting 
LVI within most threshold probability ranges (Fig.  8c, 

Fig. 3 Heat map of 2D and 3D radiomics feature clusters containing four classifications. The redder areas indicate that the corresponding 2D and 3D 
radiomics features are more strongly correlated, while the darker green areas represent the contrary
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Fig. 5 Construction of 2D and 3D radiomics models. The histograms show the contribution of the selected 2D (a) and 3D (b) radiomics features and their 
regression coefficients in the 2D and 3D radiomics models, respectively

 

Fig. 4 2D and 3D radiomics feature selection using LASSO logistic regression. The AUC curve was plotted versus log (λ). 2D log (λ) = − 1.721, with λ = 0.019 
was chosen; 3D log (λ) = − 1.602, with λ = 0.025 was chosen, respectively (a, c). 2D and 3D radiomics LASSO coefficients profile of the 56 and 77 radiomics 
features, respectively (b, d). The vertical red line was drawn at the value selected using 10-fold cross-validation, where the optimal λ yield 19 and 15 
features with non-zero coefficients, respectively
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Fig. 7 The ROC curves of the 2D and 3D radiomics models in the training (a) and testing (b) sets. The 3D radiomics model (blue curve) provides higher 
AUC values than the 2D radiomics model (red curve). The AUC values and 95% confidence interval (CI) values are shown in the lower right-hand corner 
of the figure

 

Fig. 6 Bar charts of Radscore for each patient of 2D and 3D radiomics models in the training (a, b) and testing sets (c, d). The light red bars represent 
the Radscore of LVI-absent ESCC patients, whereas the light blue bars indicate the Radscore of LVI-present ESCC patients. The light red bars below the 
threshold represent correctly identified LVI-absent ESCC patients, whereas those above represent incorrect identifications. The light blue bars above the 
threshold are correctly identified LVI-present ESCC patients, whereas those below are incorrect identifications
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d). It means that the 3D model has a high actual clinical 
utility.

Discussion
LVI within tumors not only signifies an increased likeli-
hood of metastases but also serves as an independent 
prognostic factor, significantly associated with higher 
risks of tumor recurrence and diminished overall sur-
vival [26–29]. From a clinical perspective, preoperatively 
predicting the LVI of patients with ESCC is essential to 
selecting an appropriate treatment strategy. In this study, 

based on preoperative contrast-enhanced CT images, 
we used 2D and 3D ROIs of tumors to extract radiomics 
features and build prediction models for predicting the 
LVI status of ESCC patients, respectively. The results 
revealed that the 2D and 3D radiomics models could 
effectively predict the preoperative LVI in ESCC patients, 
with AUCs of 0.852 versus 0.930 for the training set and 
0.851 versus 0.897 for the testing set, respectively. DCA 
suggested that the 3D radiomics model is more clinically 
beneficial than the 2D radiomics model. The value of 
this study is to compare the performance of 2D and 3D 

Table 2 Diagnostic performance of the 2D and 3D radiomics models
Model AUC Sensitivity Specificity Accuracy PPV NPV
Training
 2D 0.852(0.793–0.911) 0.957(0.787-1.000) 0.631(0.333–0.721) 0.728(0.651–0.796) 0.523(0.474–0.534) 0.972(0.949–0.976)
 3D 0.930(0.882–0.977) 0.851(0.638–0.936) 0.919(0.721–0.973) 0.899(0.841–0.941) 0.816(0.769–0.830) 0.936(0.920–0.939)
Testing
 2D 0.851(0.762–0.940) 0.842(0.576-1.000) 0.723(0.574–0.872) 0.758(0.636–0.855) 0.552(0.457–0.594) 0.919(0.900-0.932)
 3D 0.897(0.823–0.971) 0.789(0.579-1.000) 0.787(0.660–0.957) 0.788(0.670–0.879) 0.600(0.524–0.655) 0.902(0.886–0.918)
Values within parentheses are 95% confidence interval values; PPV, positive predictive value; NPV, negative predictive value

Fig. 8 Calibration curves and DCA curves of the radiomics models. Calibration curves in the of the 2D and 3D radiomics models in the training (a) and 
testing (b) sets indicate that no significant departure from a perfect fit. The DCA showed that in the training (c) and testing (d) sets, the overall net benefit 
of the 3D radiomics model (green curve) was higher than that of the 2D radiomics model (red curve) in predicting LVI within most threshold probability 
ranges. It means that the 3D model has a high actual clinical utility. The y-axis represents the overall net benefit and the x-axis represents the threshold 
probability
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models for the prediction of the LVI in ESCC and to pro-
vide guidance for the clinical selection of suitable predic-
tion methods to optimize the treatment modality.

In recent years, radiomics has emerged as an impor-
tant imaging technique for identifying histological and 
biological features of tumors [12]. Traditional imaging 
methods cannot directly observe or predict LVI status; 
however, many studies have found that radiomics fea-
tures can effectively predict LVI status. Zhang et al. [14] 
found that multimodal (CT/MR) radiomics could effec-
tively predict LVI status in rectal cancer and show great 
potential in improving treatment decisions. Li et al. [30] 
developed a whole-volume 3D CT radiomics model for 
LVI prediction in gastric cancer (GC) patients, resulting 
in AUCs of 0.698 and 0.676 in training and testing sets, 
respectively. In another study, Chen et al. [13] discovered 
that radiomics features derived from 3D ROIs had the 
potential to serve as valuable markers for predicting the 
LVI and progression-free survival in patients with GC. 
Li et al. [17] adopted 3D intratumoral and peritumoral 
radiomics features for LVI prediction in rectal cancer. 
The AUC values of their models were 0.761 in the train-
ing group and 0.748 and 0.763 in the internal and exter-
nal validation, respectively. These studies confirmed the 
potential of the 3D radiomics model in predicting LVI 
in digestive tract tumors but did not reveal the value of 
the 2D radiomics model or its differences from the 3D 
radiomics model.

However, whether 3D or 2D ROIs are better for clini-
cal use is still being determined [31]. Compared to 2D 
radiomics analysis, 3D radiomics analysis covers the 
entire tumor volume and provides a more comprehen-
sive description of tumor heterogeneity. Huang et al. [32] 
found that the 3D radiomics model performed better 
than the best combined 2D model in predicting the inva-
siveness of pancreatic solid pseudopapillary neoplasm. 
Liu et al. [33] reported that the 3D radiomics analysis 
provided better stratification of the histologic grade of 
cervical cancer compared with the 2D radiomics analy-
sis. Consistent with the above studies, our results sug-
gest that 3D radiomics model performed better than 2D 
radiomics model in predicting LVI. The 3D radiomics 
model had higher AUCs (0.930 and 0.897), accuracy 
(0.899 and 0.788), specificity (0.919 and 0.787) and PPV 
(0.787 and 0.600) than that of the 2D radiomics model in 
the training and testing sets. However, the 2D radiomics 
model showed higher sensitivity and NPV. Therefore, it 
can be inferred that the esophagus being a hollow organ, 
ESCC may not exhibit LVI only at the level of the larg-
est tumor. Consequently, relying solely on one-slice 2D 
radiomics features may not fully characterize the pathol-
ogy of the entire tumor.

However, in other studies, 3D models did not perform 
better than 2D models. Zhu et al. [34] suggested that the 

2D annotation was a more time-efficient and effective 
method for predicting immunotherapy and chemother-
apy response in ESCC patients. Meng et al. [16] showed 
that 2D radiomics models revealed slightly higher 
AUCs than 3D radiomics models in predicting the LVI, 
lymph node metastasis and T-stage classification of GC. 
Piazzese et al. [35] reported that 2D radiomics features 
extracted from CT images of EC patients performed 
slightly better than 3D ones. These studies suggest that 
the 2D radiomics analysis may have better predictive 
value in digestive tract tumors. This may be because 3D 
annotation introduces additional noise that drowns out 
relevant information and affects the results. Moreover, 
annotating multiple slices may exacerbate this effect [16].

Theoretically, 3D radiomics features may be more 
reproducible than 2D radiomics features. In the present 
study, out of 753 2D features, 392 demonstrated good 
agreement and reproducibility, while among the 1130 
3D features, 937 exhibited ICCs > 0.75. The prediction 
accuracy of the 3D radiomics model was slightly higher 
compared to that of the 2D radiomics model. The extrac-
tion and selection of radiomics features are essential 
procedures in radiomics research. In our previous study, 
we conducted a radiomics analysis using CECT images 
acquired from two CT scanners to predict the LVI sta-
tus of ESCC [19]. Probably due to the differences in CT 
models and parameters, only two radiomics features were 
ultimately retained after filtering sequences. In the pres-
ent study, we selected ESCC patients who underwent 
CT scans using only one scanner and scanning protocol, 
which improved the homogeneity of the CT images to 
some extent. In the previous study [19], the AUC values 
of the 3D imaging histology model were 0.847 and 0.826 
in the training group. It is noteworthy that the AUC val-
ues of the 3D model in this study improved to 0.930 and 
0.897, respectively. In addition, the accuracy, sensitivity, 
specificity, PPV, and NPV of the 3D model in this study 
were improved compared to the previous study.

The specific radiomics features included in the 2D and 
3D radiomics models are presented in Fig.  5. However, 
the retained 2D and 3D radiomics features included in 
the two models were different. It may be due to a variety 
of factors. One possible explanation for this divergence is 
related to filters and filtration processes. Log-transform 
and wavelet-transform are often used in medical images 
before texture feature extraction, enabling the extraction 
of more valuable features [36, 37]. Another significant 
factor could be the varying extents and levels of tumor 
heterogeneity present in 2D and 3D Regions of Inter-
est (ROIs), including variations in internal tumor den-
sity, cytoarchitecture, and vascular structure. Therefore, 
the two radiomics models preserved various radiomics 
features.
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In the 3D radiomics model, 7 radiomics features were 
finally retained, including 3 wavelet-transform features, 
2 original shape features, and 2 log-transform features. 
Two shape features were preserved in the 3D radiomics 
model: Sphericity and maximum 2D diameter slice. As 
seen in Fig. 5, among the features with a positive corre-
lation, Max2DDiameterSlice had the greatest influence. 
In contrast, Sphericity had the greatest impact among 
the features with a negative correlation. Additionally, 
three positively correlated features and two negatively 
correlated features were included. The Maximum2DDi-
ameter slice refers to the largest pairwise Euclidean dis-
tance in the row-column (usually axial) plane between 
tumor surface grid vertices. The larger the Maximum2D-
Diameter, the greater the likelihood of LVI. Sphericity is 
a shape features that describes how closely a given vol-
ume resembles a perfect sphere [38]. ESCC tumors with 
lower Sphericity were more likely to develop LVI, which 
is consistent with previous findings [19]. In the previ-
ous study [19], only two features, Sphericity and GLNU, 
were retained in the 3D model. The performance of the 
3D model in the present study has improved compared 
to the previous 3D model. This difference may be attrib-
uted to the significant difference in the data from using 
two different CT scanners while acquiring the previous 
CT dataset.

In the 2D radiomics model, 7 radiomics features were 
finally retained, including 2 wavelet-transform features, 1 
original GLRLM feature, 1 original GLCM feature, and 2 
log-transform features. There are 5 negatively correlated 
features and 2 positively correlated features. The most 
influential radiomics features were the two negatively 
correlated features log-transform: LowGrayLevelZone-
Emphasis (log.1.0) and Coarseness (log.3.0). LowGray-
LevelZoneEmphasis measures the distribution of lower 
gray-level size zones, with a higher value indicating a 
greater proportion of lower gray-level values and size 
zones in the image. As the value of LowGrayLevelZone-
Emphasis increases, the likelihood of LVI. Coarseness is 
a measure of the average difference between the center 
voxel and its neighbourhood and is an indication of the 
spatial rate of change. A higher value indicates a lower 
spatial change rate and a locally more uniform texture. It 
means that the smaller the Coarseness value, the greater 
the likelihood of LVI. Among the positively correlated 
radiomics features, DependenceVariance (log1.0) was the 
most influential. The GLDM measures gray-level depen-
dence, while the DependenceVariance measures depen-
dence variance, with a higher value indicating greater 
dependence difference and heterogeneous texture in local 
zone size [39, 40]. It can be hypothesized that the greater 
the DependenceVariance, the higher the likelihood of LVI 
in ESCC. However, in the 2D radiomics model, no valu-
able shape features were retained. As shown in Fig. 7 and 

Table 2, the 3D radiomics model demonstrated superior 
performance in predicting the LVI status of ESCC. One 
potential reason for the superior performance of 3D 
models compared to 2D models may be attributed to the 
incorporation of meaningful shape features.

In a previous study [19], we found that the diagnostic 
performance of the radiomics model generated with the 
(LR) method was equivalent to that of a support vector 
machine (SVM) and higher than that of a decision tree 
(DT) in predicting the LVI of ESCC. Due to its straight-
forward implementation and interpretability, LR is rou-
tinely used in clinical settings. Consequently, we adopted 
LR for the present study, prioritizing its ease of integra-
tion into clinical workflows while maintaining robust 
predictive accuracy for LVI in ESCC.

Radiomics has an interpretability advantage over deep 
learning, but it typically requires medical professionals to 
select and extract features manually [41]. Deep learning 
autonomously learns task-specific features, reducing reli-
ance on domain expertise [41]. Studies have shown that 
deep learning can effectively detect esophageal cancer on 
chest CT scans, minimizing missed diagnoses [42, 43]. In 
predicting tumor LVI, radiomics and deep learning per-
form similarly [44, 45], and their combination enhanced 
the performance [45]. Typically, radiomics features are 
generated from the ROIs of the lesions, which require 
significant expertise and manual annotation [46]. Manual 
annotation is the primary modality for radiomics analysis 
of ESCC. Throughout all the processes of radiomics anal-
ysis, the longest time was spent outlining the extent of the 
tumor ROIs. The manual process of drawing 3D ROIs is 
significantly more time-consuming compared to drawing 
2D ROIs. The present study did not compare the number 
of layers and the time spent outlining the tumors in the 
two models. However, as shown in Table  1, the median 
pathologic lengths of the tumors were 3.5 cm and 4.0 cm 
for patients with LVI and without LVI, respectively. The 
number of layers in the 3D radiomics model was 35 and 
40 times greater than that in the 2D radiomics model, 
based on a thickness of 1.0 mm.

This study has several limitations. Firstly, this was 
a single-center retrospective analysis involving only 
patients who underwent surgery; patients with invisible 
lesions were not included. This may introduce selection 
bias into the data, making the results less comparable. 
In the future, multicenter prospective studies incorpo-
rating larger sample sizes are worthwhile. Secondly, the 
sampling error resulted in a higher prediction perfor-
mance for the training set compared to the testing set. 
Thirdly, the radiomics features extracted in this study 
were derived from arterial-phase CECT images, while 
the plain CT and venous-phase CECT images were not 
analyzed. The performance of radiomics models based 
on multiphase CECT may be enhanced. Fourthly, this 
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study did not include traditional CT features and other 
clinical outcomes, which could improve the predictive 
performance of the model. In the future, our subsequent 
research will focus on exploring whether integrating 
time-saving 2D radiomics with conventional CT features 
can improve the model’s performance.

Conclusion
In conclusion, 2D and 3D radiomics features emerge 
as promising predictors for LVI, with the 3D radiomics 
model demonstrating superior performance compared to 
its 2D counterpart. However, given the single-center ret-
rospective nature of this study, validation in a prospective 
multi-center study is essential to enhance the reproduc-
ibility and broader applicability of the developed models. 
Whether the 2D radiomics model combined with con-
ventional CT features can improve the prediction perfor-
mance makes our next research possible direction.
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