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Abstract
Objective  This study aims to develop and validate a predictive model that integrates clinical features, MRI radiomics, 
and nutritional-inflammatory biomarkers to forecast progression-free survival (PFS) in cervical cancer (CC) patients 
undergoing concurrent chemoradiotherapy (CCRT). The goal is to identify high-risk patients and guide personalized 
treatment.

Methods  We performed a retrospective analysis of 188 patients from two centers, divided into training (132) and 
validation (56) sets. Clinical data, systemic inflammatory markers, and immune-nutritional indices were collected. 
Radiomic features from three MRI sequences were extracted and selected for predictive value. We developed and 
evaluated five models incorporating clinical features, nutritional-inflammatory indicators, and radiomics using 
C-index. The best-performing model was used to create a nomogram, which was validated through ROC curves, 
calibration plots, and decision curve analysis (DCA).

Results  Model 5, which integrates clinical features, Systemic Immune-Inflammation Index (SII), Prognostic Nutritional 
Index (PNI), and MRI radiomics, showed the highest performance. It achieved a C-index of 0.833 (95% CI: 0.792–0.874) 
in the training set and 0.789 (95% CI: 0.679–0.899) in the validation set. The nomogram derived from Model 5 
effectively stratified patients into risk groups, with AUCs of 0.833, 0.941, and 0.973 for 1-year, 3-year, and 5-year PFS in 
the training set, and 0.812, 0.940, and 0.944 in the validation set.
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Introduction
Cervical cancer (CC) is the fourth most common malig-
nancy among women worldwide [1]. According to the 
International Federation of Obstetrics and Gynaecology 
(FIGO) staging system, the stage at diagnosis significantly 
impacts patient prognosis. Patients diagnosed at an early 
stage can often achieve effective disease control and pro-
longed survival through surgical treatment [2]. However, 
due to the insidious nature and high malignancy of CC, 
many patients are diagnosed at an advanced stage, miss-
ing the optimal window for surgical intervention [3]. For 
these advanced-stage patients, concurrent chemora-
diotherapy (CCRT) has become the primary treatment 
modality. Despite the significant improvements offered 
by CCRT, approximately 30% of patients still face the risk 
of recurrence and metastasis [4–8]. Current treatment 
options for recurrent or metastatic CC remain limited, 
leading to shorter survival times [9, 10]. Therefore, there 
is an urgent need to identify biomarkers that can predict 
survival risk, guide personalized treatment plans, and 
enhance clinical outcomes for these patients.

Imaging plays a pivotal role in monitoring tumor mor-
phology and predicting patient outcomes. Magnetic 
Resonance Imaging (MRI) is the preferred modality for 
CC due to its superior tissue resolution, multiparamet-
ric capabilities, and multi-sequence imaging advantages. 
In particular, the combination of T2-weighted anatomi-
cal sequences with functional imaging techniques, such 
as Diffusion-Weighted Imaging (DWI), significantly 
enhances diagnostic accuracy for CC. DWI has become 
essential for evaluating lymph node metastasis, as stan-
dard MRI and dynamic contrast-enhanced MRI (DCE-
MRI) offer no significant advantage over CT for lymph 
node staging. In addition, advent of multi-b value DWI 
further improves accuracy by generating fitted Apparent 
Diffusion Coefficient (ADC) values, which more precisely 
reflect tissue diffusion properties, aiding in the differen-
tiation between benign and malignant lymph nodes [11, 
12]. However, detecting small lesions or those that have 
not yet exhibited significant morphological changes can 
be challenging with the naked eye, potentially leading 
to delays in treatment for high-risk patients [13]. The 
emergence of radiomics has addressed this limitation. 
Through high-throughput and automated techniques, 
radiomics can extract a wide range of features from med-
ical images and develop radiomic scores. These scores, 
when combined with regression models and support 

vector machines (SVM), facilitate quantitative analysis 
of images [14, 15]. The predictive power of radiomics 
based on MRI has been validated across various cancers, 
including CC [16–19].

Recent studies have increasingly recognized the critical 
role of inflammation response and nutritional deficien-
cies in tumor development and progression. These fac-
tors influence tumor growth through mechanisms such 
as inhibiting apoptosis, promoting angiogenesis, and 
inducing DNA damage [20, 21]. Tumor-induced inflam-
mation is typically reflected in alterations in hemato-
logical parameters, including neutrophils, lymphocytes, 
monocytes, and platelets [22]. Systemic inflammatory 
markers, such as the neutrophil-to-lymphocyte ratio 
(NLR), platelet-to-lymphocyte ratio (PLR), SII, derived 
from peripheral blood, are valuable in assessing overall 
inflammation and stress levels in patients. These markers 
have been shown to predict adverse outcomes in cancer 
patients [22–25]. In addition, serum albumin is widely 
used as clinical indicator for evaluating nutritional status 
before treatment. However, newly developed immune-
nutritional indices, such as the PNI and the Hemoglobin-
Albumin-Lymphocyte-Platelet Index (HALP), combine 
albumin with various other parameters to provide a more 
comprehensive assessment of both nutritional status and 
immune function. These indices are increasingly being 
recognized and utilized by clinicians for a more nuanced 
understanding of patient health [26, 27].

Currently, composite models that combine radiomics, 
nutritional-inflammatory indices, and clinical features 
have shown superior prognostic value compared to 
models relying on single indicators alone [28–32]. For 
example, Liu et al. demonstrated that incorporating MRI 
radiomics into a composite model markedly enhanced its 
performance over models based solely on clinical data 
[19]. Similarly, Qu et al. showed that integrating the PNI, 
NLR, and other risk factors significantly improved the 
model’s predictive accuracy [33]. Despite these advance-
ments, the combined use of clinical features, radiomics, 
and nutritional-inflammatory biomarkers for predictive 
purposes has not been thoroughly validated. This study 
aims to develop a predictive model that integrates clini-
cal features, nutritional-inflammatory biomarkers, and 
radiomics to forecast 1-year, 3-year, and 5-year PFS prob-
abilities in patients with CC undergoing CCRT.

Conclusions  The integrated model combining clinical features, nutritional-inflammatory biomarkers, and radiomics 
offers a robust tool for predicting PFS in CC patients undergoing CCRT. The nomogram provides precise predictions, 
supporting its application in personalized patient management.

Keywords  Cervical cancer, Concurrent chemoradiotherapy, MRI radiomics, Nutritional-inflammatory biomarkers, 
Prognosis
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Materials and methods
Patient selection
This study involved a retrospective analysis of patient 
cohorts from two independent hospitals: Shanxi Bethune 
Hospital (SBH, 2014–2022) and Shanxi Datong Second 
People’s Hospital Cancer Center (DSPHCH, 2020–2022). 
The inclusion criteria were as follows: (i) histologically 
confirmed squamous cell carcinoma of the cervix; (ii) 
FIGO stage IB to IVA based on the 2018 FIGO staging 
system; (iii) no prior surgical treatment; (iv) pelvic MRI 
conducted 1–2 weeks before treatment; (v) receipt of 
radical CCRT; (vi) complete hematological data avail-
able before treatment and within one week after exter-
nal beam radiotherapy(EBRT) including white blood 
cell count (WBC, ×10^9/L), neutrophil count (NEU, 
×10^9/L), absolute lymphocyte count (LYM, ×10^9/L), 
monocyte count (MONO, ×10^9/L), eosinophil(EOS, 
×10^9/L ), hemoglobin (HB, g/L), and albumin (Alb, g/L). 
A total of 188 patients met these criteria, with 128 from 
SBH and 60 from DSPHCH. These patients were ran-
domly assigned to a training set (132 patients) and a vali-
dation set (56 patients) in a 7:3 ratio. The flowchart of the 
study population is shown in Fig. 1.

Additionally, the study included clinical and patho-
logical features with potential prognostic significance, 
such as age, disease stage (according to the 2008 FIGO 

staging system), and the presence of pelvic lymph node 
metastases.

Nutritional-inflammatory biomarkers calculation
Peripheral blood indices were collected from patients 
before treatment (within 7 days prior to EBRT, referred 
to as “pre”) and after treatment (within 7 days following 
EBRT, referred to as “post”). The changes in biomark-
ers from pre- to post-treatment were calculated as fol-
lows (denoted as “change = post/pre”). The calculation 
of biomarkers was conducted as follows: (i) Changes in 
Systemic Inflammatory Markers: NLR_ change, PLR_ 
change, Monocyte-to-Lymphocyte Ratio (MLR_ change), 
Eosinophil-to-Lymphocyte Ratio (ELR_ change), SII_ 
change; (ii) Pre-Treatment Immune-Nutritional Indi-
cators: HALP_ pre, PNI_ pre. Specific formulas for 
nutritional-inflammatory biomarkers are as follows: 
NLR = NEU / LYM; PLR = PLT / LYM, MLR = MONO 
/ LYM; SII = PLT*NEU / LYM; ENLR = EOS / LYM; 
PNI = Alb ( g / L ) + 5*LYM; HALP = Hb*Alb*LYM / PLT.

MRI protocol and tumor segmentation
All MRI images were acquired using a 3.0 T clinical MRI 
scanner (GE Signa HDXT 3.0T MRI, GE Healthcare, 
USA) with a phased-array 8-channel abdominal coil. 
Patients were positioned supine and instructed to hold 
their breath during scanning. The imaging range covered 

Fig. 1  Flowchart of study population with inclusion and exclusion criteria
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the entire pelvis, from the upper margin of the iliac crests 
to the lower margin of the pubic symphysis. The imag-
ing sequences included axial T2-weighted (T2WI_ax), 
sagittal T1-weighted (T1WI_sag), sagittal T2-weighted 
(T2WI_sag), coronal T2-weighted (T2WI_cor), axial 
diffusion-weighted imaging (DWI) with b-values of 0  s/
mm² and 800  s/mm², and apparent diffusion coefficient 
(ADC) maps. Detailed parameters for each sequence are 
provided in S1.

T2WI_ax, T2WI_sag, and DWI images were retrieved 
from the Picture Archiving and Communication System 
(PACS, Carestream, Canada) and exported in DICOM 
format. Manual tumor segmentation was performed 
using ITK-SNAP software (v.3.6, www.itksnap.org). A 
radiologist with 20 years of experience in pelvic MRI 
(Reader 1) manually delineated the tumor regions of 
interest (ROIs) on a slice-by-slice basis, carefully avoid-
ing areas of cystic degeneration, necrosis, or hemorrhage. 
After segmentation, all tumor layers were exported in 
NIFTI format to create a 3D volume of interest (VOI). 
To assess inter-observer reproducibility, a second round 
of tumor segmentation was conducted on 50 randomly 
selected patients by a radiologist with 10 years of experi-
ence in gynecological imaging (Reader 2).

Radiomics feature extraction and selection
Before feature extraction, image preprocessing was con-
ducted to reduce variability introduced by different MRI 
scanners. All images underwent Z-score normalization to 
ensure a standard normal distribution with a mean of 0 
and a standard deviation of 1. The images were then resa-
mpled to a voxel size of 1 × 1 × 1 mm. Radiomics features 
were extracted using the open-source Python-based tool 

Pyradiomics. The extracted features included: (i) First-
order statistics; (ii) Shape features; (iii) Texture features: 
Gray-Level Co-occurrence Matrix (GLCM), Gray-Level 
Size Zone Matrix (GLSZM), Gray-Level Run Length 
Matrix (GLRLM), Neighboring Gray Tone Difference 
Matrix (NGTDM), Gray-Level Dependence Matrix 
(GLDM); (iv)Higher-order features: Wavelet features, 
Laplacian of Gaussian (LoG) features, Gradient features, 
Local Binary Pattern (LBP) features.

To evaluate feature reproducibility, the Intraclass Cor-
relation Coefficient (ICC) was used, retaining only fea-
tures with an ICC greater than 0.9. Univariate analysis 
was then performed to identify features with significant 
differences (P < 0.05). Pearson correlation analysis was 
used to remove redundant features. Finally, the Least 
Absolute Shrinkage and Selection Operator (LASSO) 
regression method was employed to select the final set 
of features. The radiomics score (ImageScore) was cal-
culated using the formula: ImageScore = coefficient 1 × 
feature 1 + coefficient 2 × feature 2 + …. The workflow for 
radiomics feature extraction and selection is illustrated in 
Fig. 2.

Model and nomogram development and evaluation
We constructed five combined models:

i)	 Model 1: Clinical and Radiomics Model. This 
model was built using clinical features and radiomics 
data.

ii)	 Model 2: Clinical and Nutritional-Inflammatory 
Biomarkers Model. This model was built using 
clinical features, systemic inflammatory markers, and 
immune-nutritional biomarkers.

Fig. 2  Radiomics flow chart for predicting PFS in patients with cervical cancer
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iii)	Model 3: Clinical, Systemic Inflammatory 
Markers, and Radiomics Model. This model was 
built using clinical features, systemic inflammatory 
markers, and radiomics data.

iv)	Model 4: Clinical, Immune-Nutritional 
Biomarkers, and Radiomics Model. This model 
was built using clinical features, immune-nutritional 
biomarkers, and radiomics data.

v)	 Model 5: Clinical, Nutritional-Inflammatory 
Biomarkers, and Radiomics Model. This model was 
built using clinical features, systemic inflammatory 
markers, immune-nutritional biomarkers, and 
radiomics data.

To evaluate the predictive performance of these models 
in both the training and validation sets, we calculated 
the C-index and its 95% confidence interval (CI) for each 
model. The optimal model was used to develop a prog-
nostic nomogram for PFS, mapping actual scores to 
corresponding point coordinates. The nomogram’s pre-
dictive ability was validated by plotting ROC curves for 
1-year, 3-year, and 5-year PFS. Calibration curves were 
generated to demonstrate the agreement between pre-
dicted and actual outcomes. Finally, the clinical utility of 
the nomogram was evaluated by DCA.

Treatment and follow-up
All patients underwent EBRT combined with intracavi-
tary brachytherapy (ICBT) and concurrent platinum-
based chemotherapy. EBRT was administered at a total 
dose of 45.0–50.4 Gy in daily fractions of 1.8–2.0 Gy, over 
5–6 weeks, with treatment given 5 times per week. ICBT 
was initiated between the 15th EBRT session and the end 
of EBRT, or within one week after EBRT completion, with 
a total dose of 30–45  Gy, administered in 5–6  Gy frac-
tions. Concurrent chemotherapy, typically with cisplatin 
or nedaplatin at a dose of 30–40 mg/m², was started dur-
ing the first week of radiotherapy.

PFS was the primary endpoint, defined as the time 
from the start of CCRT to disease progression, death, or 
the last follow-up (censoring date: August 31, 2023). Fol-
low-up visits were conducted every 3–6 months for the 
first 2 years post-CCRT, every 6–12 months during years 
3–5, and annually thereafter.

Statistical analysis
Statistical analyses were performed using SPSS version 
26.0 and R version 4.1.2. The methods used were: (i) 
Baseline comparison of patients’ characteristics: Categor-
ical variables were presented as n(%) and compared using 
chi-square tests or Fisher’s exact tests; (ii) Optimal cutoff 
values for continuous variables were determined using 
X-tile software, converting them into binary variables. 
(iii) Radiomics features were selected using LASSO-Cox 

regression, and regression coefficients were calculated to 
derive the radiomics score (ImageScore); (iv) Risk scores 
calculated by nomogram and ImageScore were used to 
classify patients into high-risk and low-risk groups based 
on the cutoff values. Kaplan-Meier (K-M) survival curves 
and log-rank tests were used to compare PFS between 
the two groups; (v) Cox proportional hazards regression 
analysis was conducted to identify independent prognos-
tic factors for PFS in CC. All statistical tests were two-
sided, with a significance level set at P < 0.05.

Results
Patient characteristics
Baseline characteristics showed no significant clinical dif-
ferences between the training and validation sets in terms 
of clinical features, systemic inflammatory markers, and 
immune-nutritional indicators (Table 1; all P > 0.05). The 
median follow-up duration for the entire cohort was 
31.40 months, with a range of 8.97 to 99.50 months. At 
the final follow-up, disease progression was observed in 
24 patients (18.2%) in the training set and 11 patients 
(30.8%) in the validation set.

Univariate Cox regression analysis revealed several fac-
tors significantly associated with PFS. Among clinical 
features, age (HR = 0.479, 95% CI: 0.235–1.023, P = 0.479), 
SCC-Ag (HR = 3.387, 95% CI: 1.545–7.354, P = 0.0023), 
and stage (HR = 5.180, 95% CI: 2.240–11.950, P < 0.0001) 
were associated with PFS. In systemic inflammatory 
markers, SII (HR = 2.513, 95% CI: 1.082–5.832, P = 0.0323) 
was significantly associated with PFS. Among immune-
nutritional indicators, FNI (HR = 0.335, 95% CI: 0.172–
0.649, P = 0.0013) was also significantly associated with 
PFS (S2).

Feature selection and imagescore construction
1,153 radiomic features were extracted from each imag-
ing sequence: T2WI_ax, T2WI_sag, and DWI, within the 
VOI. After a comprehensive multi-step selection process, 
16 features were identified as particularly valuable. The 
ImageScore, calculated using these features, was found 
to be an independent prognostic factor for PFS in CC 
(HR = 2.358; 95% CI: 1.480–3.758). Detailed information 
on the selected features and their coefficients is provided 
in S3.

Patients were categorized into high-risk and low-risk 
groups using an ImageScore cutoff of -0.34. K-M curves 
revealed significant survival differences between these 
groups in both the training set (Fig.  3A) and validation 
set (Fig.  3B), with the high-risk group showing mark-
edly lower PFS compared to the low-risk group (both 
P < 0.0001, log-rank test).
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Multiple models construction and evaluation
In constructing and evaluating multivariable Cox pro-
portional hazards models incorporating clinical features 
(such as age, stage, and SCC-Ag), SII, FNI, and ImageS-
core, we found that, after adjusting for various auxiliary 
factors, only stage and ImageScore maintained significant 
relevance to PFS (see S2). Based on Cox univariate analy-
sis, we developed the following models: Model 1 includes 
clinical features and ImageScore; Model 2 integrates 
clinical features with SII_ change and FNI_ pre; Model 3 
combines clinical features with SII_ change and ImageS-
core; Model 4 merges clinical features with FNI_ pre and 

ImageScore; and Model 5 encompasses clinical features, 
SII_ change, FNI_ pre, and ImageScore.

As detailed in Table  2, in the training set, all mod-
els except the one incorporating clinical features and 
nutritional-inflammation biomarkers outperformed the 
model based on stage and radiomics from Cox multivari-
ate analysis. Among the five models, Model 5 (C-index: 
0.833; 95% CI: 0.792–0.874) and Model 4 (C-index: 0.833; 
95% CI: 0.793–0.873) demonstrated similar performance 
in predicting PFS following CCRT in CC patients. How-
ever, in the validation set, Model 5 achieved superior 
predictive performance compared to the other models 

Table 1  Clinical and pathological characteristics of patients in the training and validation cohorts
Total
(N= 188)
No.(%)

Training cohort
(n=132)
No.(%)

Validation cohort
(n=56)
No.(%)

P value

Age 0.87
<62 89(47.3%) 63(47.7%) 26(46.4%)
≥62 99(52.7%) 69(52.3%) 30(53.6%)
Stage 0.71
I-II 94(50.0%) 66(50.0%) 28(50.0%)
III-IV 94(50.0%) 66(50.0%) 28(50.0%)
SCC_Ag 0.21
<27.0 140(74.5%) 102(77.3%) 38(67.9%)
≥27.0 48(25.5%) 30(22.7%) 18(32.1%)
Pelvic LNM 0.16
Yes 81(43.1%) 61(46.2%) 20(35.7%)
No 107(56.9%) 71(53.8%) 36(64.3%)
NLR_ change 0.62
<0.4 73(38.8%) 56(42.4%) 17(30.3%)
≥0.4 115(61.2%) 76(57.6%) 39(69.6%)
PLR_ change 0.99
<2.1 147(78.2%) 105(79.5%) 42(75.0%)
≥2.1 41(21.8%) 27(20.4%) 14(25.0%)
MLR_ change 0.11
<0.3 45(23.9%) 32(24.2%) 13(23.2%)
≥0.3 143(76.1%) 100(75.8%) 43(76.8%)
SII_ change 0.50
<2.6 118(62.8%) 82(62.1%) 36(64.3%)
≥2.6 70(37.2%) 50(37.9%) 20(35.7%)
ELR_ change 0.68
<0.1 35( 18.6%) 27(20.5%) 8( 14.3%)
≥0.1 153(81.4%) 105(79.5%) 48(85.7%)
HALP_ pre 0.99
<30.8 82(43.6%) 57(43.2%) 25(44.6%)
≥30.8 106(56.4%) 75(56.8%) 31(55.4%)
FNI_ pre 0.99
<44.7 91(48.4%) 53(47.0%) 29(51.8%)
≥44.7 97((51.6%) 79(53.0%) 27(48.2%)
Clinical endpoints 0.11
None 153(81.4%) 108(81.8%) 45(69.2%)
Recurrence or distant metastasis 35( 18.6%) 24( 18.2%) 11(30.8%)
SCC-Ag=squamous cell carcinoma antigen; pre=pre-concurrent radiochemotherapy; change=post/pre concurrent radiochemotherapy; NLR=neutrophil-to-
lymphocyte ratio; PLR=platelet-to-lymphocyte ratio; MLR=monocyte to lymphocyte ratio; SII=systemic immunoinflammatory index; PNI=prognostic nutritional 
index; HALP=hemoglobin, albumin, lymphocyte, platelet; ELR=eosinophil-to-lymphocyte ratio
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(C-index: 0.789; 95% CI: 0.679–0.899). Therefore, based 
on its predictive accuracy and validation results, Model 
5, which incorporates clinical features, SII_ change, FNI_ 
pre, and ImageScore, is identified as the optimal model.

Nomogram development and validation
Our results demonstrate that Model 5 exhibits superior 
predictive performance in both the training and valida-
tion sets. Therefore, we converted Model 5 into a nomo-
gram to predict 1-year, 3-year, and 5-year PFS (Fig. 4A). 
This nomogram visualizes each patient’s risk factors and 
predicted outcomes, allowing us to aggregate scores and 
compute the probabilities of 1-year, 3-year, and 5-year 
survival using the total point axis.

The ROC curves for the 1-year, 3-year, and 5-year PFS, 
as derived from the nomogram, show an AUC of 0.833, 
0.941, and 0.973 in the training set, respectively, and 

0.784, 0.940, and 0.944 in the validation set (Fig. 4B and 
C). Calibration curves (Fig.  4D and E) reveal excellent 
agreement between observed outcomes and nomogram 
predictions, confirming the nomogram’s high accuracy 
in forecasting PFS for CC patients after CCRT. Further-
more, DCA (Fig. 4F and G) indicates that the nomogram 
provides significant net benefits in predicting PFS at 3 
years and 5 years, with the greatest net benefit observed 
for 5-year PFS, emphasizing its clinical utility.

The total points were mapped to the linear predictor in 
the nomogram to differentiate patient risk levels accord-
ing to the cutoff (0.13). K-M curves indicated that the 
high-risk group had significantly shorter PFS compared 
to the low-risk group in both the training set (Fig.  3C) 
and the validation set (Fig.  3D), highlighting a poorer 
survival outcome for high-risk patients.

Table 2  C-indexes of six combined models
Models Training cohort(n=132) Validation cohort(n=56)
Stage+Imagescore 0.822(95%CI: 0.781-0.863) 0.785(95%CI: 0.653-0.917)
Clinical+Imagescore 0.826(95%CI: 0.785-0.867) 0.781(95%CI: 0.652-0.920)
Clinical+FNI+SII 0.778(95%CI: 0.727-0.829) 0.784(95%CI: 0.673-0.895)
Clinical+Imagescore+FNI 0.826(95%CI: 0.783-0.869) 0.783(95%CI: 0.674-0.892)
Clinical+Imagescore+SII 0.833(95%CI: 0.793-0.873) 0.776(95%CI: 0.646-0.906)
Clinical+Imagescore+FNI+SII 0.833(95%CI: 0.792-0.874) 0.789(95%CI: 0.679-0.899)
Clinical data included age, stage, SCC_Ag; The Imagescore means radiomics score; CI=confidence interval; SII=systemic immunoinflammatory index; PNI=prognostic 
nutritional index

Fig. 3  The Kaplan–Meier curves for survival in CCRT CC stratified in various risk stratification subgroups in the training cohort and validation cohort. 
Patients with high and low risks of PFS were stratified by the nomogram in the training (A) and validation (B) cohorts. Patients with high and low risks of 
PFS were stratified by the ImageScore in the training (C) and validation (D) cohorts. The log-rank test was used to calculate P values
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Discussion
This study investigates the predictive value of integrat-
ing clinical features, systemic inflammatory markers, 
immune-nutritional indices, and radiomic features for 
PFS in patients with CC undergoing CCRT. Our findings 
demonstrate that a combined prognostic model incor-
porating clinical characteristics (age, stage, and SCC-
Ag), SII, FNI, and radiomic features provides superior 
predictive performance, achieving the highest C-index 
among all evaluated models. Additionally, we developed 
a nomogram based on this integrated model to pre-
dict 1-year, 3-year, and 5-year PFS for CC patients. The 
nomogram has been validated for accuracy and clinical 
utility, effectively stratifying patients into high-risk and 
low-risk groups and showing clear correlations between 
risk scores and survival outcomes. These results were 
supported by validation set data, confirming the model’s 
robustness and practical relevance.

Clinical features such as age, stage, LNM, and tumor 
markers are traditionally used to assess treatment 
response and prognosis in CC [34–37]. Our study reaf-
firms the significant roles of stage, age, and SCC-Ag in 
predicting PFS. However, we observed a weaker asso-
ciation between LNM and PFS. This discrepancy may be 

due to our focus on the presence of pelvic lymph node 
metastasis alone, without considering the size, shape, 
number of metastatic lymph nodes, or metastasis in 
other regions. The omission of these factors might have 
influenced the prognostic value of LNM.

In clinical practice, it is common to observe significant 
variations in survival outcomes among patients with sim-
ilar clinical characteristics. This underscores the urgent 
need for objective and efficient assessment methods to 
address this challenge. Radiomics, which involves analyz-
ing the entire tumor and extracting high-dimensional fea-
tures, offers a more comprehensive prognostic evaluation 
than relying on individual clinical factors alone. Numer-
ous studies have highlighted the substantial advantages 
of radiomics in cancer prognosis assessment [38]. Spe-
cifically, MRI, with its excellent soft tissue resolution and 
multi-sequence imaging capabilities, has demonstrated 
considerable success in predicting survival outcomes in 
CC. While early research primarily focused on extract-
ing features from single MRI sequences [39–42], recent 
evidence suggests that multi-sequence MRI radiomics 
provides superior predictive performance compared 
to single-sequence approaches [13, 43–45]. To mini-
mize feature redundancy and simplify dimensionality 

Fig. 4  Nomogram and its prediction efficacy for CC patients receiving CCRT. Nomogram predicting the one-, three- and five-year PFS (A). The ROC curve 
of the nomogram for the one-, three- and five-year PFS in the training (B) and validation cohorts (C). Calibration curves of nomogram for the one-, three- 
and five-year PFS in the training (D) and validation cohorts (E). Decision curve analysis of the nomogram for the one-, three- and five-year PFS in the 
training (F) and validation cohorts (G). In the calibration curve, predicted survival probabilities by the nomogram are plotted on the x-axis, while actual 
survival rates are plotted on the y-axis. The diagonal dashed line represents perfect prediction. Solid blue lines depict the performance of the nomogram 
at 1 year, 3 years, and 5 years, respectively, with closer proximity to the dashed line indicating higher accuracy
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reduction, our study focused on axial and sagittal T2WI 
and DWI sequences for feature extraction. T2WI 
sequences are essential for assessing tumor size and mor-
phology, while DWI offers valuable metabolic informa-
tion. These sequences are widely recognized for radiomic 
feature extraction [40, 46]. Our study incorporated first-
order features, texture features, and wavelet transform 
features to provide a comprehensive representation of 
tumor imaging. First-order features reflect the distribu-
tion of gray levels, while texture features—derived from 
GLCM, GLSZM, and GLDM—reveal the internal struc-
ture and texture of the tumor. Wavelet transform fea-
tures enhance texture detail by adjusting the balance of 
high and low-frequency signals and using LoG features 
to smooth images and capture tumor heterogeneity 
[47]. Shape features were not included in our study due 
to their focus on geometric shape and structure (such as 
volume and shape complexity), which are less effective 
than texture and wavelet transform features in revealing 
tumor heterogeneity and intricate details.

Radiomics is primarily concerned with the morpholog-
ical characteristics of tumors, providing detailed insights 
into tumor growth and spread. However, relying solely 
on radiomic features may not capture the full extent of 
a patient’s systemic inflammation and nutritional sta-
tus—factors that play a crucial role in tumor behavior, 
metastasis, and treatment response. This understanding 
has led to a shift from traditional prognostic methods 
towards a more comprehensive approach that includes 
overall patient health. By integrating peripheral blood 
markers such as NLR, PLR, ELR, SII, and FNI, we can 
acquire a more nuanced view of a patient’s systemic 
health, improving the accuracy of disease progression 
predictions [31, 32, 48–51]. Our findings demonstrate 
that changes in SII before and after treatment, as well 
as pre-treatment FNI, are significantly associated with 
the prognosis of CC patients. Specifically, SII reflects 
the overall systemic inflammatory burden, where ele-
vated levels often indicate a more robust inflammatory 
response, which correlates with tumor aggressiveness 
and metastatic potential. The fluctuations in SII during 
treatment can promptly indicate shifts in tumor burden 
and immune response, thus offering more accurate prog-
nostic predictions. Similarly, pre-treatment FNI provides 
an effective measure of nutritional status, which directly 
affects immune cell function and quantity, thereby influ-
encing immune response and overall prognosis [52].

Recent advancements in combined predictive models 
have markedly improved the accuracy of survival out-
come predictions, treatment responses, and metastasis 
risk. Research has consistently shown that multi-indica-
tor models outperform single-indicator models in terms 
of predictive performance. For example, Zhang et al. 
found that a model integrating T-stage, LNM location, 

and radiomic scores significantly outperformed models 
based solely on clinical features or radiomics [38]. Simi-
larly, Cai et al. demonstrated that combining radiomic 
scores with four clinical and pathological factors 
improved the C-index from 0.778 to 0.821 in the train-
ing set and from 0.816 to 0.829 in the validation set, indi-
cating enhanced predictive capability [53]. Combining 
radiomics with systemic inflammatory and nutritional 
indicators provides a more holistic view of a patient’s 
health than either method alone. This approach not only 
evaluates local tumor characteristics but also considers 
the patient’s overall systemic condition, offering a more 
comprehensive disease assessment. Moreover, incorpo-
rating multiple indicators accounts for variability among 
patient populations, thereby improving the accuracy and 
relevance of predictions. Fang et al. have shown that a 
combined model integrating MRI radiomics, clinical 
pathological features, and peripheral blood parameters 
offers superior predictive performance [54]. In our study, 
a model that integrates clinical features, SII, FNI, and 
radiomics demonstrated superior predictive capability 
compared to models using only some of these indicators. 
The nomogram developed from this integrated model 
accurately predicted 3-year and 5-year PFS rates, with 
AUC values of 0.941 and 0.973, respectively. Compared 
to Zhang et al.’s model, which was based on IVIM-DWI 
parameters and Rad-Score before and after treatment 
[28], our model achieved higher predictive accuracy with 
a more streamlined approach. Furthermore, it leveraged a 
large, multi-center patient cohort, optimizing its perfor-
mance. Our findings indicate that combining radiomics 
with both SII and FNI provides superior predictive per-
formance compared to using radiomics with either SII or 
FNI alone. This enhancement is attributed to the com-
plementary nature of SII and FNI, which together pro-
vide a more comprehensive assessment of the patient’s 
overall health. Research emphasizes that inflammatory 
responses are crucial in the development and progression 
of cancer-related malnutrition, which in turn exacerbates 
inflammation, creating a harmful feedback loop. This 
cycle weakens the immune system, increases the risk of 
infections and complications, and negatively affects treat-
ment outcomes and prognosis [55]. These insights high-
light the importance of simultaneously monitoring both 
inflammatory responses and nutritional status in clinical 
practice.

It is crucial to note that all our models were constructed 
based on single-factor analysis results, which revealed 
the independent predictive value of each indicator for 
PFS. However, the increased complexity of multivariate 
models may have led to the attenuation of some variables’ 
effects. In our study, while age, SCC-Ag, SII, and FNI did 
not reach significance in the multivariate analysis, mod-
els incorporating these variables collectively showed 
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superior C-index values in both the training and valida-
tion cohorts. This indicates that these indicators may 
provide valuable predictive insights through their inter-
actions with other variables, highlighting the intricate 
roles of the tumor microenvironment, patient physiologi-
cal characteristics, and systemic inflammation in disease 
progression. Therefore, these findings highlight the need 
for future research to further investigate variable selec-
tion and model-building strategies to enhance the accu-
racy and clinical applicability of predictive models.

While our combined model demonstrates impressive 
performance, several limitations must be considered. 
First, the retrospective nature of our study highlights 
the need for prospective studies to confirm our find-
ings. Second, in this study, the DWI b-value was set at 
800 s/mm². While this provided valuable information, it 
may have restricted the scope of the data. Using multi-b 
value DWI, particularly with higher b-values, could offer 
a more nuanced characterization of tissue properties and 
result in richer radiomic data. Future research in this 
area is warranted to explore these possibilities. Third, our 
analysis was based solely on features extracted from the 
primary tumor prior to treatment, neglecting character-
istics of metastatic lymph nodes. Since metastatic lymph 
node features could provide significant insights into dis-
ease progression, future studies should include radiomic 
features from these nodes, as well as peritumoral regions 
and other relevant areas, to improve predictive accuracy. 
Finally, our research concentrated on 1-year, 3-year, and 
5-year PFS. Future research should expand to include 
longer-term overall survival assessments and investigate 
how integrating radiomics with systemic inflammatory 
and nutritional markers can better predict long-term 
quality of life for patients.

Conclusion
Our study demonstrates that integrating clinical features, 
systemic inflammatory markers, immune-nutritional 
indices, and MRI radiomics into a combined model pro-
vides an effective tool for predicting PFS in CC patients 
undergoing CCRT. The nomogram developed dem-
onstrates superior performance in forecasting 1-year, 
3-year, and 5-year PFS, offering enhanced accuracy. 
This model facilitates personalized treatment by pro-
viding precise patient risk stratification and supporting 
informed clinical decision-making.

Abbreviations
CC	� Cervical Cancer
PFS	� Progression-Free Survival
CCRT	� Concurrent Chemoradiotherapy
MRI	� Magnetic Resonance Imaging
FIGO	� International Federation of Obstetrics and Gynaecology
SII	� Systemic Immune-Inflammation Index
PNI	� Prognostic Nutritional Index
NLR	� Neutrophil-to-Lymphocyte Ratio

PLR	� Platelet-to-Lymphocyte Ratio
MLR	� Monocyte-to-Lymphocyte Ratio
ELR	� Eosinophil-to-Lymphocyte Ratio
HALP	� Hemoglobin-Albumin-Lymphocyte-Platelet Index
WBC	� White Blood Cell count
NEU	� Neutrophil count
LYM	� Absolute Lymphocyte count
MONO	� Monocyte count
EOS	� Eosinophil count
HB	� Hemoglobin
Alb	� Albumin
GLCM	� Gray-Level Co-occurrence Matrix
GLSZM	� Gray-Level Size Zone Matrix
GLRLM	� Gray-Level Run Length Matrix
NGTDM	� Neighboring Gray Tone Difference Matrix
GLDM	� Gray-Level Dependence Matrix
LoG	� Laplacian of Gaussian
LBP	� Local Binary Pattern
ICC	� Intraclass Correlation Coefficient
LASSO	� Least Absolute Shrinkage and Selection Operator
AUC	� Area Under the Curve
ROC	� Receiver Operating Characteristic
DCA	� Decision Curve Analysis
VOI	� Volume of Interest
EBRT	� External Beam Radiotherapy
ICBT	� Intracavitary Brachytherapy
PACS	� Picture Archiving and Communication System
SVM	� Support Vector Machines
T2WI_ax	� Axial T2-weighted imaging
T2WI_sag	� Sagittal T2-weighted imaging
T2WI_cor	� Coronal T2-weighted imaging
DWI	� Diffusion-weighted imaging
ADC	� Apparent diffusion coefficient
CI	� Confidence Interval

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s40644-024-00789-2.

Supplementary Material 1

Acknowledgements
Not applicable.

Author contributions
QY and XY provided the concept and the design of the work. GNL, BJQ, 
and YPZ carried out data acquisition and the interpretation of MRI data. 
QY and MHW participated in the data preprocessing and drafted the initial 
manuscript. JZ and JYY processed the data analysis. JBS provided oversight 
and supervision and approved the final version of the manuscript.

Funding
The authors state that this work has not received any funding.

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
The study was reviewed and approved by the Ethics Committee of 
Shanxi Bethune Hospital. Written informed consent was obtained from all 
participants prior to their inclusion in the study.

Consent for publication
Not applicable.

https://doi.org/10.1186/s40644-024-00789-2
https://doi.org/10.1186/s40644-024-00789-2


Page 11 of 12Yan et al. Cancer Imaging          (2024) 24:144 

Competing interests
The authors declare no competing interests.

Author details
1Cancer Center, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi 
Academy of Medical Sciences, Third Hospital of Shanxi Medical University, 
Taiyuan, Shanxi, China
2Cancer Center, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical 
University, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, 
Longcheng Street No.99, Taiyuan, China
3Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and 
Precision Protection, Taiyuan, China
4China institute for radiation protection, Taiyuan, China
5Gynecological Tumor Treatment Center, the Second People’s Hospital of 
Datong, Cancer Hospital, Datong, China
6Imaging Department, the Second People’s Hospital of Datong, Cancer 
Hospital, Datong, China

Received: 4 September 2024 / Accepted: 9 October 2024

References
1.	 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer 

statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide 
for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

2.	 Koh W-J, Abu-Rustum NR, Bean S, Bradley K, Campos SM, Cho KR, et al. Cervi-
cal Cancer, Version 3.2019, NCCN Clinical Practice guidelines in Oncology. J 
Natl Compr Canc Netw. 2019;17:64–84.

3.	 Serkies K, Jassem J. Systemic therapy for cervical carcinoma - current status. 
Chin J Cancer Res. 2018;30:209–21.

4.	 Kalaghchi B, Abdi R, Amouzegar-Hashemi F, Esmati E, Alikhasi A. Concurrent 
chemoradiation with Weekly Paclitaxel and Cisplatin for locally Advanced 
Cervical Cancer. Asian Pac J Cancer Prev. 2016;17:287–91.

5.	 Hirakawa M, Nagai Y, Inamine M, Kamiyama K, Ogawa K, Toita T, et al. Predic-
tive factor of distant recurrence in locally advanced squamous cell carcinoma 
of the cervix treated with concurrent chemoradiotherapy. Gynecol Oncol. 
2008;108:126–9.

6.	 Zhao B, Cao K, Li X-T, Zhu H-T, Sun Y-S. Whole lesion histogram analysis of 
apparent diffusion coefficients on MRI predicts disease-free survival in locally 
advanced squamous cell cervical cancer after radical chemo-radiotherapy. 
BMC Cancer. 2019;19:1115.

7.	 Zheng X, Guo W, Dong J, Qian L. Prediction of early response to concurrent 
chemoradiotherapy in cervical cancer: value of multi-parameter MRI com-
bined with clinical prognostic factors. Magn Reson Imaging. 2020;72:159–66.

8.	 Perucho JAU, Wang M, Vardhanabhuti V, Tse KY, Chan KKL, Lee EYP. Associa-
tion between IVIM parameters and treatment response in locally advanced 
squamous cell cervical cancer treated by chemoradiotherapy. Eur Radiol. 
2021;31:7845–54.

9.	 Liu Y, Wu L, Tong R, Yang F, Yin L, Li M et al. PD-1/PD-L1 inhibitors in Cervical 
Cancer. Front Pharmacol. 2019;10.

10.	 Ma J-H, Huang Y, Liu L-Y, Feng Z. An 8-gene DNA methylation sig-
nature predicts the recurrence risk of cervical cancer. J Int Med Res. 
2021;49:030006052110184.

11.	 Seber T, Caglar E, Uylar T, Karaman N, Aktas E, Aribas BK. Diagnostic value of 
diffusion-weighted magnetic resonance imaging: differentiation of benign 
and malignant lymph nodes in different regions of the body. Clin Imaging. 
2015;39:856–62.

12.	 Vallini V, Ortori S, Boraschi P, Manassero F, Gabelloni M, Faggioni L, et al. 
Staging of pelvic lymph nodes in patients with prostate cancer: usefulness of 
multiple b value SE-EPI diffusion-weighted imaging on a 3.0 T MR system. Eur 
J Radiol Open. 2016;3:16–21.

13.	 Zhang Y, Zhang K, Jia H, Xia B, Zang C, Liu Y, et al. IVIM-DWI and MRI-based 
radiomics in cervical cancer: prediction of concurrent chemoradiotherapy 
sensitivity in combination with clinical prognostic factors. Magn Reson Imag-
ing. 2022;91:37–44.

14.	 Aerts HJWL. The potential of Radiomic-based phenotyping in Precision 
Medicine: a review. JAMA Oncol. 2016;2:1636–42.

15.	 Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The applications of 
Radiomics in Precision diagnosis and treatment of Oncology: opportunities 
and challenges. Theranostics. 2019;9:1303–22.

16.	 Cai M, Yao F, Ding J, Zheng R, Huang X, Yang Y, et al. MRI Radiomic features: 
a potential biomarker for progression-free survival prediction of patients 
with locally Advanced Cervical Cancer undergoing surgery. Front Oncol. 
2021;11:749114.

17.	 Cui Y, Wang G, Ren J, Hou L, Li D, Wen Q, et al. Radiomics Features at Multipa-
rametric MRI Predict Disease-Free Survival in patients with locally advanced 
rectal Cancer. Acad Radiol. 2022;29:e128–38.

18.	 Chu F, Liu Y, Liu Q, Li W, Jia Z, Wang C, et al. Development and validation of 
MRI-based radiomics signatures models for prediction of disease-free survival 
and overall survival in patients with esophageal squamous cell carcinoma. 
Eur Radiol. 2022;32:5930–42.

19.	 Liu L, Pei W, Liao H, Wang Q, Gu D, Liu L, et al. A clinical-Radiomics Nomogram 
based on magnetic resonance imaging for Predicting Progression-Free 
Survival after induction chemotherapy in nasopharyngeal carcinoma. Front 
Oncol. 2022;12:792535.

20.	 Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 
2001;357:539–45.

21.	 Mayne ST, Playdon MC, Rock CL. Diet, nutrition, and cancer: past, present and 
future. Nat Rev Clin Oncol. 2016;13:504–15.

22.	 Walsh SR, Cook EJ, Goulder F, Justin TA, Keeling NJ. Neutrophil-lymphocyte 
ratio as a prognostic factor in colorectal cancer. J Surg Oncol. 2005;91:181–4.

23.	 Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and Cancer. Cell. 
2010;140:883–99.

24.	 Chen Y, Jin M, Shao Y, Xu G. Prognostic value of the systemic inflamma-
tion response index in patients with Adenocarcinoma of the Oesopha-
gogastric Junction: a propensity score-matched analysis. Dis Markers. 
2019;2019:4659048.

25.	 Smith RA, Bosonnet L, Raraty M, Sutton R, Neoptolemos JP, Campbell F, et 
al. Preoperative platelet-lymphocyte ratio is an independent significant 
prognostic marker in resected pancreatic ductal adenocarcinoma. Am J Surg. 
2009;197:466–72.

26.	 Zhu J, Wang D, Liu C, Huang R, Gao F, Feng X, et al. Development and valida-
tion of a new prognostic immune-inflammatory-nutritional score for predict-
ing outcomes after curative resection for intrahepatic cholangiocarcinoma: a 
multicenter study. Front Immunol. 2023;14:1165510.

27.	 Tao C, Hong W, Yin P, Wu S, Fan L, Lei Z, et al. Nomogram based on body 
composition and Prognostic Nutritional Index predicts Survival after curative 
resection of gastric Cancer. Acad Radiol. 2024;31:1940–9.

28.	 Zhang Y, Liu L, Zhang K, Su R, Jia H, Qian L, et al. Nomograms Combining 
Clinical and Imaging parameters to predict recurrence and disease-free Sur-
vival after Concurrent Chemoradiotherapy in patients with locally Advanced 
Cervical Cancer. Acad Radiol. 2023;30:499–508.

29.	 Jiang X, Song J, Duan S, Cheng W, Chen T, Liu X. MRI radiomics combined 
with clinicopathologic features to predict disease-free survival in patients 
with early-stage cervical cancer. Br J Radiol. 2022;95:20211229.

30.	 Zhang X, Zhao J, Zhang Q, Wang S, Zhang J, An J, et al. MRI-based radiomics 
value for predicting the survival of patients with locally advanced cervical 
squamous cell cancer treated with concurrent chemoradiotherapy. Cancer 
Imaging. 2022;22:35.

31.	 Holub K, Biete A. Impact of systemic inflammation biomarkers on the survival 
outcomes of cervical cancer patients. Clin Transl Oncol. 2019;21:836–44.

32.	 Chao B, Ju X, Zhang L, Xu X, Zhao Y. A novel prognostic marker systemic 
inflammation response index (SIRI) for operable cervical Cancer patients. 
Front Oncol. 2020;10.

33.	 Qu Z, Lu Y-J, Feng J-W, Chen Y-X, Shi L-Q, Chen J, et al. Preoperative Prognostic 
Nutritional Index and Neutrophil-to-lymphocyte ratio Predict Survival 
outcomes of patients with Hepatocellular Carcinoma after curative resection. 
Front Oncol. 2021;11:823054.

34.	 Wei G, Jiang P, Tang Z, Qu A, Deng X, Guo F, et al. MRI radiomics in overall 
survival prediction of local advanced cervical cancer patients tread by adju-
vant chemotherapy following concurrent chemoradiotherapy or concurrent 
chemoradiotherapy alone. Magn Reson Imaging. 2022;91:81–90.

35.	 Li H, Zhu M, Jian L, Bi F, Zhang X, Fang C et al. Radiomic score as a potential 
imaging Biomarker for Predicting Survival in patients with cervical Cancer. 
Front Oncol. 2021;11.

36.	 Salvatici M, Achilarre MT, Sandri MT, Boveri S, Vanna Z, Landoni F. Squamous 
cell carcinoma antigen (SCC-Ag) during follow-up of cervical cancer patients: 
role in the early diagnosis of recurrence. Gynecol Oncol. 2016;142:115–9.

37.	 Xu F, Li Y, Fan L, Ma J, Yu L, Yi H, et al. Preoperative SCC-Ag and thrombocyto-
sis as predictive markers for pelvic lymphatic metastasis of squamous cervical 
cancer in early FIGO stage. J Cancer. 2018;9:1660–6.



Page 12 of 12Yan et al. Cancer Imaging          (2024) 24:144 

38.	 Zhang X, Zhao J, Zhang Q, Wang S, Zhang J, An J et al. MRI-based radiomics 
value for predicting the survival of patients with locally advanced cervical 
squamous cell cancer treated with concurrent chemoradiotherapy. Cancer 
Imaging. 2022;22.

39.	 Wang Y-T, Li Y-C, Yin L-L, Pu H. Can Diffusion-weighted magnetic resonance 
imaging predict survival in patients with cervical Cancer? A Meta-analysis. Eur 
J Radiol. 2016;85:2174–81.

40.	 Ho JC, Allen PK, Bhosale PR, Rauch GM, Fuller CD, Mohamed ASR, et al. 
Diffusion-Weighted Magnetic Resonance Imaging as a predictor of Outcome 
in Cervical Cancer after Chemoradiation. Int J Radiat Oncol Biol Phys. 
2017;97:546–53.

41.	 Tang Z, Zhang X-Y, Liu Z, Li X-T, Shi Y-J, Wang S, et al. Quantitative analysis of 
diffusion weighted imaging to predict pathological good response to neo-
adjuvant chemoradiation for locally advanced rectal cancer. Radiother Oncol. 
2019;132:100–8.

42.	 Autorino R, Gui B, Panza G, Boldrini L, Cusumano D, Russo L, et al. Radiomics-
based prediction of two-year clinical outcome in locally advanced cervical 
cancer patients undergoing neoadjuvant chemoradiotherapy. Radiol Med. 
2022;127:498–506.

43.	 Zheng R-R, Cai M-T, Lan L, Huang XW, Yang YJ, Powell M, et al. An MRI-based 
radiomics signature and clinical characteristics for survival prediction in early-
stage cervical cancer. Br J Radiol. 2022;95:20210838.

44.	 Chiappa V, Bogani G, Interlenghi M, Vittori Antisari G, Salvatore C, Zanchi 
L et al. Using Radiomics and Machine Learning Applied to MRI to predict 
response to Neoadjuvant Chemotherapy in locally Advanced Cervical Cancer. 
Diagnostics (Basel). 2023;13.

45.	 Zhang Z, Wan X, Lei X, Wu Y, Zhang J, Ai Y, et al. Intra- and peri-tumoral MRI 
radiomics features for preoperative lymph node metastasis prediction in 
early-stage cervical cancer. Insights Imaging. 2023;14:65.

46.	 Liu Z, Li Z, Qu J, Zhang R, Zhou X, Li L, et al. Radiomics of Multiparametric MRI 
for Pretreatment Prediction of Pathologic Complete Response to neoadju-
vant chemotherapy in breast Cancer: a Multicenter Study. Clin Cancer Res. 
2019;25:3538–47.

47.	 Jiang X, Song J, Duan S, Cheng W, Chen T, Liu X. MRI radiomics combined 
with clinicopathologic features to predict disease-free survival in patients 
with early-stage cervical cancer. Br J Radiol. 2022;95.

48.	 Hyder J, Boggs DH, Hanna A, Suntharalingam M, Chuong MD. Changes 
in neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios during 
chemoradiation predict for survival and pathologic complete response in 
trimodality esophageal cancer patients. J Gastrointest Oncol. 2016;7:189–95.

49.	 Yuan X, Feng H, Huang H, Li J, Wu S, Yuan Y, et al. Systemic immune-inflam-
mation index during treatment predicts prognosis and guides clinical treat-
ment in patients with nasopharyngeal carcinoma. J Cancer Res Clin Oncol. 
2023;149:191–202.

50.	 Gangopadhyay A. Neutrophil lymphocyte ratio is significantly associated 
with complete response to chemoradiation in locally advanced cervical 
cancer. Acta Oncol. 2019;58:377–9.

51.	 Chao B, Ju X, Zhang L, Xu X, Zhao Y. A novel prognostic marker systemic 
inflammation response index (SIRI) for operable cervical Cancer patients. 
Front Oncol. 2020;10:766.

52.	 Sakai A, Ebisumoto K, Iijima H, Yamauchi M, Teramura T, Yamazaki A, et al. 
Chemotherapy following immune checkpoint inhibitors in recurrent or meta-
static head and neck squamous cell carcinoma: clinical effectiveness and 
influence of inflammatory and nutritional factors. Discov Oncol. 2023;14:158.

53.	 Cai M, Yao F, Ding J, Zheng R, Huang X, Yang Y et al. MRI Radiomic features: a 
potential biomarker for progression-free survival prediction of patients with 
locally Advanced Cervical Cancer undergoing surgery. Front Oncol. 2021;11.

54.	 Fang Z-Y, Li K-Z, Yang M, Che Y-R, Luo L-P, Wu Z-F et al. Integration of MRI-
Based Radiomics features, clinicopathological characteristics, and blood 
parameters: a Nomogram Model for Predicting Clinical Outcome in Nasopha-
ryngeal Carcinoma. Front Oncol. 2022;12.

55.	 Meng Q-H, Yu H-W, Li J, Wang J-H, Ni M-M, Feng Y-M, et al. Inadequate nutri-
tional intake and protein-energy malnutrition involved in acute and chronic 
viral Hepatitis Chinese patients especially in cirrhosis patients. Hepatogastro-
enterology. 2010;57:845–51.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	﻿MRI radiomics and nutritional-inflammatory biomarkers: a powerful combination for predicting progression-free survival in cervical cancer patients undergoing concurrent chemoradiotherapy
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Patient selection
	﻿Nutritional-inflammatory biomarkers calculation
	﻿MRI protocol and tumor segmentation
	﻿Radiomics feature extraction and selection
	﻿Model and nomogram development and evaluation
	﻿Treatment and follow-up
	﻿Statistical analysis

	﻿Results
	﻿Patient characteristics
	﻿Feature selection and imagescore construction
	﻿Multiple models construction and evaluation
	﻿Nomogram development and validation

	﻿Discussion
	﻿Conclusion
	﻿References


