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Abstract
Background  To develop an artificial intelligence (AI)-based model using Radiomics, deep learning (DL) features 
extracted from 18F-fluorodeoxyglucose (18F-FDG) Positron emission tomography/Computed Tomography (PET/CT) 
images of tumor and cervical lymph node with clinical feature for predicting cervical lymph node metastasis (CLNM) 
in patients with esophageal squamous cell carcinoma (ESCC).

Methods  The study included 300 ESCC patients from the First Affiliated Hospital of Zhengzhou University who were 
divided into a training cohort and an internal testing cohort with an 8:2 ratio. Another 111 patients from Shanghai 
Chest Hospital were included as the external cohort. For each sample, we extracted 428 PET/CT-based Radiomics 
features from the gross tumor volume (GTV) and cervical lymph node (CLN) delineated layer by layer and 256 
PET/CT-based DL features from the maximum cross-section of GTV and CLN images We input these features into 
seven different machine learning algorithms and ultimately selected logistic regression (LR) as the model classifier. 
Subsequently, we evaluated seven models (Clinical, Radiomics, Radiomics-Clinical, DL-Clinical, DL-Radiomics, 
DL-Radiomics-Clinical) using Radiomics features, DL features and clinical feature.

Results  The DL-Radiomics-Clinical (DRC) model demonstrated higher AUC of 0.955 and 0.916 compared to the other 
six models in both internal and external testing cohorts respectively. The DRC model achieved the highest accuracy 
among the seven models in both the internal and external test sets, with scores of 0.951 and 0.892, respectively.
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Background
Esophageal carcinoma (EC) has become the sixth leading 
cause of cancer-related deaths globally [1]. Esophageal 
squamous cell carcinoma (ESCC) is a major histologic 
subtype that is most prevalent in East Asian and Mid-
dle Eastern regions [2, 3]. The cancer-related mortality 
of ESCC is mainly attributed to high risk of lymphatic 
spread longitudinally along the lymphatic and nerve 
plexus [4], with reported incidence ranging from 20 to 
40% depending on the location and tumor stage [5]. Cer-
vical lymph node metastasis (CLNM) is defined as No. 
100 (Superficial lymph nodes of the neck), No. 101 (Cer-
vical paraesophageal lymph nodes), No. 102 (Deep cervi-
cal lymph nodes), No. 103 (Peripharyngeal lymph nodes), 
and No. 104 (Supraclavicular lymph nodes) lymph node 
metastasis according to the 11th edition of the Japanese 
Classification of Esophageal Cancer. It is common in 
ESCC patients with a prevalence of at least 20% [6, 7]. 
Even in superficial ESCC with malignant invasion limited 
to submucosa [8], the prevalence of occult CLNM still 
ranges from 1.3 to 13% [9–12].

CLNM not only affects the prognosis of ESCC patients 
but influences the choice of operative treatment, such 
as the selection of surgical procedure or lymph node 
dissection methods. Accurate assessment of CLNM in 
ESCC is of great significance governing procedure selec-
tion for early stage ESCC (i.e., endoscopic resection vs. 
radical esophagectomy), because candidates for endo-
scopic resection need cautious selection to avoid occult 
CLNM who ought to be referred to esophagectomy with 
lymphadenectomy, and determining the extend of lym-
phdenectomy for locally advanced ESCC (i.e., 2-field 
[thoracic-abdominal] versus 3-field [cervical-thoracic-
abdominal] lymphdenectomy), which is under ongoing 
debate on balancing up-front 90-day mortality caused by 
additional surgical trauma with more-accurate staging 
and unproven long-term survival [13, 14]. Unfortunately, 
the first-line, non-invasive used methods for diagnosis 
of LNM in patients with EC are of limited capability and 
lead to inaccurate staging [15, 16], such as endoscopic 
ultrasound and contrast-enhanced computed tomogra-
phy, both of which relies mainly on elementary morphol-
ogy that is insufficient to distinguish metastasis from 
reactive hyperplasia or inflammation [17]. Therefore, a 

reliable non-invasive method to detect CLNM would 
have important implications for clinical decision support.

PET/CT using 18F-FDG enhances staging accuracy 
by adding metabolic data to anatomical insights [8, 18, 
19]. However, relying solely on conventional parameters 
from initial scans for EC staging offers unstable sensi-
tivity and specificity [20, 21]. Radiomics provided novel 
information by extracting and analyzing high-throughput 
quantitative images features [22]. Current research on its 
clinical use in EC primarily targets assessing radiotherapy 
and chemotherapy effectiveness [23–28], prognosis pre-
diction [29, 30] and systematic LNM forecasting [31–34]. 
Deep learning (DL) presents a promising method for 
extracting comprehensive image features, both locally 
and globally. Convolutional neural networks (CNNs) 
serve as a quintessential approach for extracting high-
dimensional numerical data from images by learning 
pertinent features from signal intensities [35]. Numerous 
studies [36, 37] have highlighted its impressive success 
in using DL in ESCC. These DL attributes are harvested 
using an extensive array of image filters. DL filter param-
eters are optimized using training images for superior 
classification results. Although DL’s data-driven feature 
extraction is considered more effective than radiomics’ 
handcrafted features [38], it’s uncertain if they are redun-
dant or complementary in predicting CLNM in ESCC. 
Previous studies have demonstrated that models com-
bining Radiomics and DL have superior predictive per-
formance for LNM [39, 40]. This suggests that DL and 
Radiomics may complement each other in predicting 
LNM. Therefore, in this study, we explored the feasibility 
of joint modeling using DL features, Radiomics features, 
and clinical features. A recent review emphasized the 
importance of specifying the parameters in each model-
ing step during model development, which has positive 
significance for other researchers to replicate the study 
[41]. In this study, we reported the parameters selected 
during DL analysis and Radiomics analysis, striving to 
reproduce the details of the modeling process.

To the best of our knowledge, no studies has evalu-
ated a PET/CT-based DL-Radiomics model for CLNM 
prediction in ESCC. We hypothesize that Radiomics and 
DL features are of independent potential value in predi-
cating CLNM, and that a combination of Radiomics, 
DL and clinical features can improve to distinguish 

Conclusions  Through the combination of Radiomics features and DL features from PET/CT imaging and clinical 
feature, we developed a predictive model exhibiting exceptional classification capabilities. This model can be 
considered as a non-invasive method for predication of CLNM in patients with ESCC. It might facilitate decision-
making regarding to the extend of lymph node dissection, and to select candidates for postoperative adjuvant 
therapy.
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ESCC patients with and without CLNM. Therefore, we 
attempted to input the filtered DL features, Radiomics 
features, and clinical features to machine learning algo-
rithms to establish a DL-Radiomics-Clinical (DRC) 
model, exploring whether this model can effectively pre-
dict CLNM in ESCC patients.

Methods
Study population
Two ESCC patient cohorts were collected from the First 
Affiliated Hospital of Zhengzhou University (Center 1) 
and Shanghai Chest Hospital (Center 2). The inclusion 
criteria were follows: (1) underwent radical esophagec-
tomy with 3-field lymphadenectomy; (2) without other 
histopathology type of EC; (3) without other primary 
cancer; (4) without history of neck surgery or neoadju-
vant therapy; (5) have complete image data and adequate 
image quality (misalignment by respiratory motion 
were excluded) for analysis; Fig. 1 outlines patient selec-
tion, which leads to 411 participants. Among them, 

300 patients from center 1 were divided into a training 
(n = 239) and internal testing cohort (n = 61) by an 8:2 
ratio. The other 111 patients from center 2 were used to 
assessed model applicability. The study was approved by 
the Institutional Review Boards at the two centers adher-
ing to ethical standards of the 1964 Helsinki Declaration 
and its later amendments.

Baseline clinicopathological data were obtained from 
hospital records, including age, sex, tumor length, tumor 
thickness, tumor differentiation, vascular infiltration, 
tumor location, T stage (the 8th edition of TNM classi-
fication), RLNM (recurrent laryngeal nerve lymph node 
metastasis), SLNM (supraclavicular lymph node metas-
tasis), No.100 ~ No.103 LNM and thoracic or abdominal 
LNM. The explanation of tumor location is based on the 
lower margin of the azygos vein arch, which divides the 
lesion into the cervical/thoracic upper segment and the 
thoracic middle/lower segment (the 8th edition of TNM 
classification).

Fig. 1  The flowchart of inclusion criteria of patients; ESCC, esophageal squamous cell carcinoma
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Image preprocessing and tumor segmentation
Figure 2 shows the workflow of this study. Patients from 
both centers received 18F-FDG PET/CT scans using Sie-
mens Biograph TruePoint 64-slice systems. 18F-FDG 
used in center 1 was synthesized via Sumitomo HM-20 
cyclotron and CFL-100 module, achieving 98% radio-
chemical purity after quality control. 18F-FDG used in 
center 2 was produced and supplied by Shanghai Atom 
Kexin Pharmaceutical Co., Ltd. (Shanghai, China), with a 
pH value of ~ 7.0 and radiochemical purity of > 95%. All 
patients fasted for ≥ 6 h with blood glucose < 7.8 mmol/L 
pre-scan. Scanning commenced 1 h post 18F-FDG injec-
tion (0.10 ~ 0.15 mCi/kg based on patient weight). CT 
parameters were 120  kV and 40–120  mA, with a 0.8  s/
rotation speed, followed by PET scans at 3 min/bed. The 
attenuation was corrected by CT and reconstructed by 
iterative method.

Before segmentation, a critical concern is that the orig-
inal PET/CT images exhibit variations in voxel dimen-
sions resulting from different CT equipment and setting. 
To resample the PET/CT images from both centers to a 
consistent resolution and size, SimpleITK package (ver-
sion 2.0.2) was used to normalize the PET and CT images 
voxel size from 0.9765 × 0.9765 × 1.5 mm3 (Center 1) and 
0.7246 × 0.7246 × 1 mm3 (Center 2) to 1 × 1 × 1 mm3. In 
addiation, the differences of CT image parameters were 
also minimized by standardizing CT image window 
width and window level to a same index. HUs were dis-
cretized to a bin width of 25 HU and the intensity of each 
image was truncated to a range of 0.5 to 99.5% points to 
minimize the side effects of voxel outliers.

Tumor segmentation was performed using 3D Slicer 
software (version 4.2.1). The normalized PET/CT images 
were inputted in DICOM format. A nuclear medi-
cine radiologist (nuclear medicine radiologist 1, F.F.C) 
with over 5 years of experience manually delineated the 
regions of interest (ROIs) along the boundary of the 
tumor and CLN which is considered the most likely to 
be malignant based on its shape, size and SUV value via 
3D Slicer. The ROI images contained the regions of whole 
tumor or cervical lymph node, which were manually 
cropped layer by layer from the raw PET/CT images. For 
DL, we extract the maximum cross-section of each ROI 
to serve as input for the convolutional neural network 
(CNN). During the process of segmentation, all delinea-
tions were reviewed by a senior nuclear medicine radi-
ologist (K.S, nuclear medicine radiologist 2) particularly 
the uncertain ones.

Radiomics features extraction
Radiomics features were extracted from the ROIs of 
tumor and CLN using Pyradiomics package (version 
3.0.1). Supplementary Text 1 and 2 respectively showed 
the parameters used for Radiomics features extraction 

from CT images and PET images using Pyradiomics. Ini-
tially, we performed ROIs segmentation in a double-blind 
review process, conducted by nuclear medicine radiolo-
gist 1 who was informed about the diagnosis of ESCC, 
but was blinded to any clinical or pathological data. 30 
random images were delineated (by K.S, nuclear medi-
cine radiologist 2) and utilized to calculate intraclass 
correlation coefficients (ICCs) in order to ascertain the 
reliability and reproducibility of the Radiomics features. 
Radiomics characteristics having an ICC value of greater 
than 0.75 (indicating excellent consistency) were selected 
for feature extraction.

DL features extraction
Resnet50, Alexnet, Googlenet, Mobilenet_V2, 
Mobilenet_V3, Shufflenet_V2 and Vgg16, pre-trained on 
the ImageNet datasets, were used for transfer learning. 
The PET/CT slice showing the maximum tumor or CLN 
ROI area was chosen as the original image and the reso-
lution was normalized to 224 × 224 to adapt it to the net-
work’s input size. DL features were extracted from each 
model’s penultimate layer for both internal and external 
cohorts. Feature dimensions were condensed using prin-
cipal component analysis (PCA) to maintain the balance 
among features.

Radiomics and DL features selection
DL features were merged with Radiomics features to 
form a combined DL-radiomics dataset for each image. 
Z-score normalization was applied to all extracted fea-
tures, including Radiomics, DL, and combined DL-
radiomics, for standardization. Regarding the fusion of 
DL-Radiomics features, we chose to perform Z-score 
normalization after the features have been merged. The 
Spearman correlation coefficient was used to assess fea-
ture correlations, retaining one feature from pairs with 
a correlation above 0.9. The least absolute shrinkage and 
selection operator (LASSO) logistic regression was then 
applied, with penalty parameter tuning via 10-fold cross-
validation to identify CLN-status-related features with 
nonzero coefficients in the training cohort.

Model development and assessment
Three feature sets (Radiomics, DL, and clinical) were fed 
into various kinds of machine learning algorithm in dif-
ferent combinations, resulting in seven models: Clinical, 
Radiomics, DL, Radiomics-Clinical, DL-Clinical, DL-
Radiomics, and DL-Radiomics-Clinical (DRC). The per-
formance of seven models was assessed using the area 
under the curve (AUC) of the receiver operating char-
acteristics curve (ROC) with a 95% confidence interval 
(CI), Acc (accuracy), sensitivity and specificity for three 
cohorts.
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Fig. 2  The workflow of this study. ROI, region of interest; DL, deep learning; CLN, cervival lymph node metastasis; LASSO, Least absolute shrinkage and 
selection operator; Grad-CAM, gradient-weighted class activation mapping; ROC, receiver operating characteristic; KM, kaplan-meier
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After comparing the performance of each model, the 
internal (n = 61) and external (n = 111) testing cohorts 
were then introduced to assess the selected model’s sta-
bility. Nuclear medicine radiologist 1, 3, 4 (F.F.C, T.T.L, 
and J.J.Z) and four thoracic surgeons (Y.H.Y., F.C.B., 
J.M.X, and J.H.) were invited to outline the ROIs of the 
test cohort. Our goal is to test the stability of the model 
across different datasets, and to investigate the effect of 
the minor differences between the individual radiolo-
gists and specialist physicians in delineating the ROIs. 
The features extracted from the ROIs were used to test 
the selected model by comparing the AUC values in both 
internal and external test sets.

Additionally, we stratified patients with complete fol-
low-up survival data into high-risk and low-risk groups 
based on the scores generated by the best model. The 
objective was to determine if there were any survival 
differences between patients grouped according to the 
selected model and those with or without CLNM.

Follow-up and survival analysis
After the surgery (performed by Y.Q. and X.N.L.), 
patients were scheduled for visit at the 1st and 4th 
month. then regular visit every 6 months for the first 2 
years after the surgery, and annually thereafter either at 
our outpatient’s clinic or by the physician around their 
residence. Data were gathered from outpatient records 
or phone calls until death or cancer recurrence. Rou-
tine chest-abdomen CT, esophagoscopy, and neck ultra-
sound were scheduled every 6 months in the first year, 
then annually. Other examinations like bone scan, PET/
CT and bronchoscopy were performed based on clinical 
indications.

Follow-up was completed for 107 patients across both 
cohorts. Using the Youden index, the optimal DRC score 
cutoff divided patients into low-risk and high-risk groups 
to explore the correlation between DRCS and clinical 
outcomes. Our goal was to assess the DRC model’s prog-
nostic value for these patients.

Statistical analysis
Data analysis was conducted using Python (version 3.7.6) 
and R (version 3.6.3). The normality of continuous vari-
ables was assessed using the Kolmogorov-Smirnov test. 
The homogeneity of variance for continuous variables 
was evaluated with the Levene test. Inter-group differ-
ences were compared using the Mann-Whitney U test or 
Student’s t-test. Differences in categorical variables were 
compared using the Chi-squared test or Fisher’s exact 
test. A two-sided p < 0.05 indicated statistical significance. 
Univariable and multivariable logistic regressions identi-
fied CLNM clinical predictors in ESCC. Model diagnos-
tic performance was assessed by ROC curve and AUC. 
Kaplan-Meier analysis evaluated prognostic differences, 

with the log-rank test comparing survival rates. Overall 
survival (OS) was defined as the duration from surgery 
to death due to any cause. Disease-free survival (DFS) 
was defined as the period from surgery to either recur-
rence, metastasis, or death from any cause. All statistical 
analyses were two-sided, with a P-value of less than 0.05 
deemed to indicate a statistically significant difference.

Results
Clinical characteristics
Table 1 shows the clinical factors of the studied patients. 
After careful screening according to our inclusion cri-
teria, 411 patients were finally included. There were no 
statistically significant differences in age, sex, tumor dif-
ferentiation, T stage in three cohorts. RLNM and tumor 
location showed statistical differences only in the train-
ing cohort, vascular infiltration only in the external test-
ing cohort, and tumor thickness in both. Tumor length, 
SLNM, No.100 ~ No.103 LNM, Thoracic or abdominal 
LNM differed statistically across all three cohorts. As 
shown in Supplementary Tables 1, to construct the clini-
cal model, we conducted both univariable and multivari-
able logistic regression analyses on the training set and 
found tumor location to be an independent predictor for 
CLNM (p < 0.05). Survival analysis revealed the CLNM 
group (n = 32) had median OS and DFS of 22.5 and 16.5 
months, respectively, versus 37 and 31 months for the 
non-CLNM group (n = 75). High-risk group (n = 29) had 
median OS and DFS of 15.0 and 14.1 months, signifi-
cantly shorter than 38.2 and 35.0 months of the low-risk 
group (n = 78), respectively.

Radiomics and DL features analysis
For each sample, we extracted 428 PET/CT-based 
Radiomics features from the GTV and CLN delineated 
layer by layer and 256 PET/CT-based DL features from 
the maximum cross-section of GTV and CLN images. 
Supplementary Fig.  1 showed the proportion of differ-
ent kinds of features. Radiomics features includes 72 
first-order, 96 Gray level co-occurrence matrix (GLCM), 
64  Gray level size zone matrix (GLSZM), 56  Gray level 
dependence matrix (GLDM), 64  Gray level run length 
matrix (GLRLM), 20 Neighbouring Gray Tone Difference 
Matrix (NGTDM) and 56 shape features. The meanings 
of various kinds of Radiomics features can be found on ​h​
t​t​​p​s​:​/​​/​p​y​​r​a​​d​i​o​​m​i​c​s​​.​r​e​​a​d​​t​h​e​d​o​c​s​.​i​o​/​e​n​/​l​a​t​e​s​t​/​f​e​a​t​u​r​e​s​.​h​t​m​
l​#​r​a​d​i​o​m​i​c​s​-​f​e​a​t​u​r​e​s​-​l​a​b​e​l​​​​​. DL dimensions were reduced 
to 64 to enhance model generalization and mitigate over-
fitting risk. After LASSO regression, using 10-fold cross-
validation to select λ, optimal λ values for Radiomics, 
DL, and DL-Radiomics models were 0.0193, 0.0018, and 
0.0126 (Supplementary Fig. 2), respectively, selecting 11, 
25, and 26 features for model construction (Supplemen-
tary Fig.  3). The description of the selected Radiomics 

https://pyradiomics.readthedocs.io/en/latest/features.html#radiomics-features-label
https://pyradiomics.readthedocs.io/en/latest/features.html#radiomics-features-label
https://pyradiomics.readthedocs.io/en/latest/features.html#radiomics-features-label
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features for DL-Radiomics model was demonstrated in 
Supplementary Text 3.

Selection of the DL models and the development of 
different models
Internal cohort patients were randomly divided into 
training and testing groups at an 8:2 ratio, with model 
optimal parameter based on the training group. By 
adjusting the hyperparameters of each DL model, 

Resnet50 was selected as the superior DL model which 
is outperformed other models (Supplementary Table 2) 
which used the optimizer of stochastic gradient descent, 
an initial learning rate of 0.001, and a batch size of 32. 
Gradient-weighted class activation mapping (Grad-
CAM) was utilized to enhance DL model interpretability, 
highlighting how tumor and CLN areas influence CLNM 
detection, particularly identifying the heartland region as 
a key metastasis indicator (Fig. 3).

Fig. 3  The attention regions of DL (resnet50) in a CLNM patient’s tumor (A) and CLN (B), and a non-CLNM patient’s tumor (C) and CLN (D); DL, deep 
learning; ESCC, esophageal squamous cell carcinoma; CLNM, cervical lymph node metastasis
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Assessment of the performance of seven models
Supplementary Table 3 showed the comparison results 
of seven machine learning algorithms. We found that LR 
(logistic regression) was the best classifier and chose it 
as the best machine learning model for accepting differ-
ent feature inputs. In the training, internal and external 
testing cohorts, we comprehensively assessed the AUC, 
accuracy, sensitivity, and specificity of the seven mod-
els. The DL-Radiomics-Clinical (DRC) model exhibited 
higher AUC than the other six models in three cohorts 
(Table  2). In all three cohorts, the DRC model consis-
tently demonstrated superior performance. After the 
differentiation of DRC mocel, the samples of the three 
cohorts were divided into high-risk group and low-risk 
group. The number of high-risk group in three cohorts 
was 39 (training cohort), 5 (internal testing cohort) and 
32 (external testing cohort). The number of low-risk 
group in three cohorts was 200 (training cohort), 56 
(internal testing cohort) and 79 (external testing cohort). 
In the training, internal and external testing cohorts, the 
DRC model achieved the highest AUC values among all 
models, with values of 0.999, 0.955 and 0.916, respec-
tively. Figure  4 illustrated the ROC curves and AUC 
values for various DL models and seven models using 
different combinations of Radiomics, DL and clinical fea-
tures. It also presented the ROC curves and AUC values 
of the DRC model under ROIs delineated by different 
physicians highlighting the model’s consistent effective-
ness and adaptability. To enhance the interpretability of 

the model features, we used the GraphViz package (ver-
sion 0.19.2) to output the coefficients of each feature in 
the DRC model, with the results recorded in Supplemen-
tary Text 4. Additionally, we also plotted a nomogram for 
the DRC model (Supplementary Fig. 4).

Correlation of DRCS with prognosis of ESCC patients
Among the 172 patients in the internal testing set (n = 61) 
and the external testing set (n = 111), we excluded 65 
patients who were lost to 5-year follow-up and selected 
a total of 107 patients who had at least five years of com-
plete follow-up survival data and included these 107 
patients in the survival analysis. Figure  5 showed the 
Kaplan-Meier survival curve of different groups. Patients 
in the CLNM group had decreased OS (hazard ratio 
[HR], 2.57 [95% CI: 1.52, 4.35]; Logrank-test: P = 0.006) 
and DFS (HR, 2.88 [95% CI: 1.80, 4.60]; Logrank-test: 
P = 0.001) compared with patients in the non-CLNM 
group in the test set (Fig. 5A and D). Patients in the high-
risk group had decreased OS (HR, 1.96 [95% CI: 0.77, 
5.00]; Logrank-test: P < 0.001) and DFS (HR, 2.22 [95% 
CI: 0.92, 5.34]; Logrank-test: P < 0.001) compared with 
patients in the low-risk group in the test set (Fig. 5B and 
E). Logrank-test confirmed longer OS and DFS for non-
CLNM over CLNM patients, and for low over high DRCS 
patients (p < 0.01). No significant OS or DFS differences 
were observed between CLNM and high-risk or non-
CLNM and low-risk groups, suggesting CLNM predic-
tion is closely related to patient prognosis.

Table 2  Performance of different models for detecting CLNM in ESCC PET/CT images in three cohorts
Model Cohort Acc AUC 95%CI Sensitivity Specificity
Clinical Training 0.803 0.614 0.5107–0.7166 0.0000 1.0000

Internal testing 0.902 0.500 0.2548–0.7452 0.0000 1.0000
External testing 0.766 0.500 0.3726–0.6273 0.0000 1.0000

Radiomics Training 0.941 0.965 0.9205-1.0000 0.7895 0.9801
Internal testing 0.918 0.818 0.6057-1.0000 0.6667 0.9455
External testing 0.856 0.909 0.8316–0.9882 0.4615 0.9765

DL Training 0.987 0.999 0.9985-1.0000 0.8947 0.9950
Internal testing 0.852 0.927 0.8588-1.0000 0.6667 0.8727
External testing 0.874 0.904 0.8228–0.9843 0.5000 0.9529

Radiomics-Clinical Training 0.941 0.966 0.9214-1.0000 0.7368 0.9900
Internal testing 0.902 0.818 0.6057-1.0000 0.6667 1.0000
External testing 0.865 0.911 0.8328–0.9888 0.4615 0.9882

DL-Clinical Training 0.987 0.999 0.9985-1.0000 0.8421 0.9950
Internal testing 0.869 0.930 0.7866-1.0000 0.6667 0.9455
External testing 0.865 0.904 0.8247–0.9852 0.5385 0.9647

DL-Radiomics Training 0.987 0.999 0.9988-1.0000 0.9211 0.9950
Internal testing 0.934 0.942 0.8107-1.0000 0.8333 0.9818
External testing 0.883 0.914 0.8379–0.9910 0.5769 0.9765

DL-Radiomics-Clinical Training 0.987 0.999 0.9988-1.0000 0.9474 1.0000
Internal testing 0.951 0.955 0.8696-1.0000 0.8333 1.0000
External testing 0.892 0.916 0.8342–0.9975 0.6154 0.9765

Abbreviations: Acc, accuracy; AUC, area under curve; CI, confidence interval; DL, deep learning.
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Fig. 4  ROC curves of different deep learning models in the internal testing (A) and external testing (B) cohorts; ROC curves of Radiomics model, DL 
model and DL-Radiomics model in the internal testing (C) and external testing (D) cohorts; ROC curves of DL-Radiomics model using ROIs delineated by 
different physicians in the internal testing (E) and external testing (F) cohorts; ROC, receiver operating characteristic
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Subgroup analysis
A total of 172 patients from the internal (n = 61) and 
external (n = 111) testing cohorts were divided into three 
subgroups based on T stage: T0 ~ 1 group, T2 group, and 
T3 ~ 4 group. Supplementary Table 4 shows the clinical 
baseline data of these three subgroups. The AUC was 
0.855 (T0 ~ 1group), 0.948 (T2 group) and 0.908 (T3 ~ 4 
group) respectively which meant DRC model exhibited 
excellent performance across the three subgroups.

Discussion
This study aimed to evaluate the efficacy of Radiomics, 
DL, and clinical factors for CLNM identification and 
develop a reliable prediction model using PET/CT images 
and clinical features. The DRC model utilizing the LR 
classifier demonstrated the highest performance among 
the seven models in both internal and external testing 
cohorts. More importantly, the reliability of this model 
also lies in its diversity-tolerant ability under ROI delin-
eation heterogeneity by individual experience of image 
reading. The selected features of the DRC model over-
lapped with those of the Radiomics model (7 Radiomics 
features) and the DL model (15 DL features) which were 
showed in Supplementary Text 5. We speculated that the 
DRC model, when combining Radiomics features and 
DL features, eliminated some relatively unimportant fea-
tures. This allowed the DRC model to exhibit superior 
performance compared to the single Radiomics or DL 
model.

Radiomics-based model for predicting CLNM in ESCC 
was rarely reported. Xie et al. developed a LNM predi-
cating model using Radiomics features from CT images 
of lymph node, they reported an AUC of 0.891 in their 
cervical test set [42]. The DRC model demonstrated a 
better performance (AUC = 0.916) in our external test-
ing cohort. Furthermore, the performance of our model 
was enhanced in the aspect of tolerant of human derived 
diversity during ROI delineation, which may attribute to 
comprehensive utilization of Radiomics, DL and clini-
cal features. In addition, integrating Radiomics features 
from multi-regional image data were reported to improve 
prognosis prediction [43]. Thus, we would also consider 
extracting and analyzing DL/Radiomics features from 
both tumor and lymph node images as another asset of 
DRC model, which would likely enhance our DRC mod-
el’s robustness to some extent. Xie et al. [42] believed 
the Radiomics feature of GLSZM-GrayLevelNonUni-
formity from CT images of cervical lymph nodes could 
serve as an effective predictor for CLNM in ESCC which 
coincided with our results. However, building on their 
research, we supplemented PET/CT image features from 
the tumor region and PET image features from cervical 
lymph nodes, and combined Radiomics with DL which 
might be the reason we achieved better results.

We concerned that diverse tumor boundary delinea-
tions might affect our DRC model’s prediction accuracy. 
However, it performed well, even with ROIs delineated by 
thoracic surgeons with less radiology-based image read-
ing experience. This may be attributed to the introduction 

Fig. 5  The Kaplan-Meier curves show overall survival and disease-free survival of CLNM and non-CLNM groups (A, D), high-risk and low-risk group (B, E), 
CLNM, non-CLNM, high-risk and low-risk group (C, F). OS, overall survival; DFS, disease-free survival; H, high-risk; L, low-risk
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of the models using deep learning approaches other than 
Radiomics alone, which was dependent on precise tumor 
boundary delineation and did not consider potential 
details that may be present in the peritumoral micro-
environment. The result demonstrated the advanced 
deep learning approaches did not require accurate seg-
mentation to achieve better performance in diagnosis 
and prediction [44], which in a way strongly indicated the 
DRC model’s general applicability for physicians that did 
not demand requisite professional background of nuclear 
medicine and radiology when drawing the ROIs.

Our model has potential value in guiding the extend 
of lymphadenectomy in ESCC patients who underwent 
esophagectomy. There has been a long-standing lack 
of consensus regarding the optimal extent of lymph-
adenectomy for ESCC patients. Wider dissection may 
lead to better staging, local control, and survival, nota-
bly in upper chest EC patients [45]. However, Li, B. et al. 
reported that 3-field lymphadenectomy didn’t improve 
OS or DFS for patients with middle and lower chest 
ESCC, even under the fact that 21.5% of patients were 
found to have unforeseen invaded CLN during the sur-
gery [46]. Previous studies have reported that 3-field 
lymphadenectomy increases the incidence of postop-
erative complications [47]. In a retrospective analysis of 
Fujita et al., 122 out of 176 EC patients (69%) who under-
went 3-field lymphadenectomy experienced postop-
erative recurrent laryngeal nerve palsy [48], which may 
predispose patients to severe complications like aspira-
tion pneumonia and detrimentally impact their quality 
of life by aphonia paralytica [46, 49]. Therefore, prophy-
lactic 3-field lymphadenectomy might be deemed exces-
sive in patients without preoperative evidence of CLNM 
[49]. Non-invasive and accurate evaluation of CLNM by 
our DRC model might help to decide the extend of intra-
operative lymphadenectomy, for reducing perioperative 
complications, ensuring post-surgery quality of life, not 
compromising oncological benefit from surgery.

Our study showed patients in the CLNM group had 
significantly lower OS and DFS compared to the non-
CLNM group, consistent with prior research findings [6]. 
Furthermore, After DRC model reclassification, high-risk 
patients had significantly worse survival than low-risk 
ones, indicating accurate preoperative CLN prediction 
not only impacts lymphadenectomy decisions but pro-
vides prognostic insights. This information is crucial 
for physicians’ perioperative and postoperative treat-
ment choices. We observed that within the DRC model’s 
high-risk group, some non-CLNM patients have poor 
prognoses and increased HR, indicating CLNM isn’t 
the only outcome factor. Prior research [50] has inves-
tigated the potential benefits of integrating ctDNA test-
ing with PET/CT imaging. This method could improve 
recurrence risk prediction in post-treatment ESCC, 

allowing better minimal residual disease (MRD) estima-
tion. It suggests PET/CT might reveal concealed MRD 
and prognostic information. We believe some patients 
may have poor outcomes from postoperative MRD, even 
without CLNM. Currently, the standard management 
for patients following neoadjuvant radiochemotherapy 
and surgery is monitoring. For patients with poor prog-
noses, adjuvant therapies are clearly needed to enhance 
outcomes. The CheckMate 577 trial, targeting resect-
able, locally advanced esophageal or gastroesophageal 
junction cancer, showed nivolumab as adjuvant therapy 
outperformed placebo, notably improving OS and DFS 
primary endpoints [51]. This implies that for patients 
classified as high-risk by the model, postoperative treat-
ment may require not only monitoring but also the appli-
cation of different Immune Checkpoint Inhibitors (ICIs) 
to improve their prognosis.

Our study showed that it was entirely possible to accu-
rately predict CLNM of ESCC non-invasively before 
surgery. Even when using the ROIs delineated by sur-
geons, the DRC model still performed stably. The DRC 
model used LR as the final classifier, which meant we 
could extract and quantify the imaging features of each 
ESCC patient. Ultimately, a specific DRC score was out-
put through the LR formula. The level of this score could 
assist surgeons in preoperatively formulating individual-
ized surgical methods or lymph node dissection strate-
gies. Although PET/CT scans have gradually become 
popular in large hospitals, the high cost will still be a 
challenge for the clinical application of the DRC model 
in the future. As can be seen from the comparative stud-
ies mentioned above, the advantages of PET/CT are 
irreplaceable by CT. Three-field lymph node dissection, 
including cervical lymph node dissection, often repre-
sents a more challenging and aggressive method with a 
higher incidence of postoperative complications. How-
ever, if cervical lymph node dissection is neglected, the 
potentially missed malignant cervical lymph nodes could 
have a devastating impact on the prognosis of ESCC 
patients. Therefore, accurately predicting CLNM is 
extremely necessary which makes us believe to improve 
the prediction probability of CLNM through imaging 
models, PET/CT is indispensable.

Several limitations should be addressed. First, the 
infrequent use of PET/CT scans and its retrospective 
design could lead to selection bias from a small sample 
size, necessitating larger cohorts and prospective tri-
als for clinical application. Second, exclusively involving 
Asian ESCC patients, the model’s applicability to other 
ethnicities or to esophageal adenocarcinoma patients 
is uncertain, highlighting the need for models based on 
diverse patient groups. The samples being exclusively 
from China may limit the generalizability of the results to 
other populations or ethnic groups. The lack of diversity 
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in the sample could introduce selection bias. Third, when 
performing cervical lymph node dissection, the coverage 
although including the clearance of No. 104 and No. 101 
lymph nodes, might not entirely encompass the cervical 
region. However, we believe that in the process of model 
training, focusing on the delineation of specific CLNs 
with corresponding pathological results could enable the 
DRC model to maintain strong generalizability and per-
formance when predicting CLNs. Finally,  we solely uti-
lized PET/CT imaging in model construction. Our future 
work will include investigating magnetic resonance 
imaging and pathological images of patients, focusing 
on multi-omics experiments. We will attempt to con-
duct international multicenter studies, including patients 
from different countries or races, to reduce selection bias 
caused by different populations or ethnic groups.

Conclusions
In conclusion, our study demonstrates the potential of AI 
in revealing concealed information in PET/CT images, 
and the DRC model exhibits outstanding performance. 
The developed models hold the potential to identify 
ESCC patients without CLNM, enabling them to avoid 
unnecessary lymph node dissection.
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