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Abstract 

Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous hematological malignancy resulting in a range 
of outcomes, and the early prediction of these outcomes has important implications for patient management. Clinical 
scoring systems provide the most commonly used prognostic evaluation criteria, and the value of genetic testing 
has also been confirmed by in-depth research on molecular typing. [18F]-fluorodeoxyglucose positron emission 
tomography / computed tomography ([18F]FDG PET/CT) is an invaluable tool for predicting DLBCL progression. Con-
ventional baseline image-based parameters and machine learning models have been used in prognostic FDG PET/
CT studies of DLBCL; however, numerous studies have shown that combinations of baseline clinical scoring systems, 
molecular subtypes, and parameters and models based on baseline FDG PET/CT image may provide better predic-
tions of patient outcomes and aid clinical decision-making in patients with DLBCL.
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Background
Diffuse large B-cell lymphoma (DLBCL) is the most com-
mon non-Hodgkin lymphoma and accounts for 30% 
of all lymphomas. Although 60%−70% of patients with 
newly diagnosed DLBCL can be cured using the tra-
ditional standard therapy combining rituximab, cyclo-
phosphamide, doxorubicin, vincristine, and prednisone 
(R-CHOP), up to 30%−40% of patients will have disease 

that is refractory to this treatment or will have a relapse 
after an initial response [1–6]. Patients with refractory 
disease have a poor prognosis after salvage chemother-
apy, but their outcomes may be greatly improved fol-
lowing Pola-R-CHP, which was approved by Food and 
Drug Administration (FDA) in 2023, immunotherapy or 
targeted therapies [5–7]. It is therefore necessary to con-
struct an accurate model for predicting patient outcomes 
to enable early risk stratification and optimal treatment 
decisions for patients with DLBCL [8].

Clinical predictive indicators have been widely used for 
assessing DLBCL prognosis. Additionally, baseline FDG 
PET/CT plays an increasingly important role in pre-
dicting DLBCL outcomes. Since 2014, the International 
Conference on Malignant Lymphoma imaging consensus 
guidelines has recognized the use of FDG PET/CT for 
evaluating glucose metabolism in lymphoma lesions [9–
12]. Other FDG-PET-derived parameters, such as meta-
bolic tumor volume (MTV), total lesion glycolysis (TLG), 
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and maximal distance between two farthest lesions 
(Dmax) may also predict DLBCL outcomes [13].

Numerous studies have used novel indicators and risk 
factors to construct new models to predict DLBCL pro-
gression. This review focuses on the important clinical 
scoring systems, molecular subtypes, and FDG PET/CT 
parameters related to DLBCL prognosis, to guide the 
selection of treatment regimens after the prediction of 
DLBCL outcomes.

Clinical scoring systems
The International Prognostic Index (IPI) clinical scor-
ing system has been widely used for risk stratification 
and to select rational therapeutic strategies in patients 
with DLBCL since 1993 [14, 15]. IPI versions have been 
updated to stratify patient prognosis along with changes 
in DLBCL treatment methods, including the revised IPI 
(R-IPI), National Comprehensive Cancer Network IPI 
(NCCN-IPI), central nervous system IPI (CNS-IPI), and 
age-adjusted IPI (aa-IPI) (Table 1).

IPI and aa‑IPI
The IPI stratifies DLBCL into four discrete risk catego-
ries (low, low-intermediate, high-intermediate and high) 
with five clinical characteristics: age, lactate dehydroge-
nase level, number of extra-nodal sites, Ann Arbor stage, 
and Eastern Cooperative Oncology Group (ECOG) per-
formance status; however, its stratified prognostic ability 
has been greatly reduced by gradual changes in DLBCL 
treatment methods [15–17].

The aa-IPI was developed for patients aged ≤ 60 years, 
who have notably different outcomes from older patients, 
and thus this is the age limit for the most-intensive 
experimental treatments for non-Hodgkin lymphoma. 
The aa-IPI involves three adverse prognostic factors: dis-
ease stages III-IV, high lactate dehydrogenase level, and 
ECOG performance status ≥ 2 [18].

R‑IPI
Since the late 1990s, rituximab (R) added to CHOP for 
DLBCL has significantly improved survival among all 
risk groups; however, the IPI discrimination ability has 
declined, especially among higher-risk patients. The 
R-IPI was therefore developed to risk-stratify DLBCL 
patients treated with R-CHOP [15, 16, 19] into three risk 
groups: low [0], intermediate [1, 2], and high [3–5, 16]. 
Sehn et al. used the R-IPI to identify three distinct prog-
nostic groups with very good (94%), good (79%), or poor 
(55%) overall survival (OS) (P < 0.001) [14]. More precise 
grouping can help doctors to balance efficacy against 
excessive toxicity.

NCCN‑IPI
Neither the IPI nor the R-IPI can identify risk groups 
with < 50% chance of survival (4-year OS: IPI 59%, 
R-IPI 55%) [14, 20]. Pooled data showed a 5-year OS 
of approximately 50% in the IPI high-risk group, and 
an enhanced NCCN-IPI was therefore constructed to 
identify the above subgroups [19]. Unlike the IPI sys-
tem, the NCCN-IPI regarded bone marrow, CNS, liver/
gastrointestinal tract, and lung lesions as risk factors 
[21]. The IPI, R-IPI, and NCCN-IPI gave 5-year OS 
estimates with accuracy rates of 54%-88%, 61%-93%, 
and 49%-92%, respectively. The NCCN-IPI may be the 
best-performing scoring system, with similar ability of 
the R-IPI for discerning subgroups with favorable long-
term survival and better ability than the IPI for detect-
ing a less-heterogeneous high-risk group [15, 20, 22].

CNS‑IPI
CNS infiltration occurs in 2%-10% of DLBCLs patients, 
and the CNS-IPI is developed for cases involving CNS 
relapse. The prognostic score includes IPI risk factors 
and involvement of the kidney and/or adrenal glands 
[23]. The CNS-IPI-predicted CNS relapse rates were 
0.0%, 0.8%, and 13.8% for patients with low, intermedi-
ate, and high risk, respectively [24]. The CNS-IPI has 
thus been proposed as a prognostic tool to improve 
prospective validation and guide therapy [24, 25].

Compared with CNS-IPI alone, the combination 
model of CNS-IPI, such as the model based on high 
CNS-IPI score and ABC/unclassified cell of origin 
(COO) or based on CNS-IPI and the model incorporat-
ing images and clinical variables, could identified the 
high-risk population with a higher 2-year CNS-relapse 
probability (15.2% or 17.1% vs 8.9%) [26, 27].

IBPS and R/R‑IPI
Scoring systems other than IPI-based systems also 
exist. The Inflammation-Based Prognosis Score (IBPS) 
was constructed from the systemic immune inflamma-
tion index, prognostic nutrition index, and modified 
Glasgow prognostic score, and generated C-indices 
for OS in training and validation cohorts of 0.844 and 
0.828, respectively [28]. The relapsed/refractory-
IPI(R/R-IPI) was constructed for relapsed/refractory 
DLBCL patients, using only age and front-line time to 
progression, with good C-indices in discovery (0.67) 
and validation sets (0.64, 0.68). This study provided a 
robust method with readily available clinical details to 
identify patients that should be considered for imme-
diate treatment with the complex and costly chimeric 
antigen receptor T-cell therapy [29, 30].
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The addition of new clinical indicators has been pro-
posed to improve the predictive ability of existing scor-
ing systems, including low serum cholesterol, uric acid, 
and apolipoprotein A-I, absolute lymphocyte/mono-
cyte ratio, red blood cell distribution width, platelet 
count, and beta-2 microglobulin level [31–33].

Molecular subtypes
Although the IPI is easy to apply in clinical practice, it 
does not fully account for disease heterogeneity [8]. Gene 
expression profiling has identified DLBCL subgroups 
(activated B-cell-like [ABC], germinal-center B-cell-
like [GCB], and unclassified) according to the cells of 

Table 1  Summary of the clinical scoring systems mentioned in this study

IPI International Prognostic Index, ECOG Eastern Cooperative Oncology Group, aa-IPI age-adjusted IPI, R-IPI revised IPI, NCCN-IPI National Comprehensive Cancer 
Network IPI, CNS-IPI central nervous system IPI, IBPS Inflammation-Based Prognosis Score, SII Systemic immune-inflammation index, PNI prognostic nutrition index, 
mGPS modified Glasgow prognostic score

Clinical scoring 
systems

Release year Factors Score Total score: risk group

IPI 1993 Age > 60 ys 1 0-1: Low
2: Low-intermediate
3: High-intermediate
4-5: High

ECOG PS ≥ 2 1

LDH > normal 1

Extranodal involvement > 1 1

Ann Arbor stage III/IV 1

aa-IPI 1993 Age ≤ 60 ys 0: Low
1: Low-intermediate
2: High-intermediate
3: High

ECOG PS ≥ 2 1

LDH > normal 1

Ann Arbor stage III/IV 1

R-IPI 2006 Age > 60 ys 1 0: Very good
1-2: Good
3-5: Poor

ECOG PS ≥ 2 1

LDH > normal 1

Extranodal involvement > 1 1

Ann Arbor stage III/IV 1

NCCN-IPI 2014 Age, ys 0-1: Low
2-3: Low-intermediate
4-5: High-intermediate
6-8: High

> 40 to ≤ 60 1

> 60 to ≤ 75 2

 > 75 3

LDH, normalized

> 1 to ≤ 3 1

> 3 2

Ann Arbor stage III-IV 1

Extranodal disease 1

Performance status ≥ 2 1

CNS-IPI 2016 Kidney and/or adrenal glands involved 1 0-1: Low
2-3: intermediate
4-6: High

Age > 60 ys 1

LDH > normal 1

ECOG PS > 1 1

Ann Arbor stage III/IV 1

Extranodal involvement > 1 1

IBPS 2023 SII ≥ 1109.90 1 0-1: Low
2-5: HighPNI ≥ 42.55 1

mGPS

C-reactive protein ≤ 10 mg/L 0

C-reactive protein > 10 mg/L

Albumin ≥ 35 g/L 1

Albumin < 35 g/L 2
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origin. ABC DLBCL is characterized by B-cell-receptor 
dependence, constitutive nuclear factor-κB activation, 
and interferon regulatory factor4 (IRF4) /MUM1 multi-
ple myeloma oncogene1 (MUM1) expression, while GCB 
DLBCL is characterized by CD10 expression and BCL2 
rearrangements [8, 34, 35]. Compared with GCB, ABC 
DLBCL has higher risk of relapse and inferior outcome 
following R-CHOP [35, 36].

The appropriate treatments based on the subtype clas-
sification can improve prognosis. Different subclassifica-
tions requiring fluorescence in situ hybridization testing 
to identify MYC, BCL2, and BCL6 rearrangements have 
been introduced to identify patients with increased risk 
profiles [37, 38]. MYC translocation is a strong adverse 
prognostic factor related to inferior OS and progres-
sion-free survival (PFS) [35]. Li et al. recommended bro-
modomain and extra-terminal protein family inhibitor 
therapy, either alone or in combination with other drugs, 
to improve the prognosis of patients with MYC expres-
sion [39].

Previous studies designated the 5%–15% of DLBCL 
cases with MYC, BLC2, and/or BCL6 translocations as 
DHL (MYC/BLC2, MYC/BCL6) and THL (MYC/BLC2/
BCL6), respectively [40–43]. However, the 2022 World 
Health Organization (WHO) and International Consen-
sus Classification (ICC) recommendations re-categorized 
MYC/BCL6 as “DLBCL, not otherwise specified” and 
MYC/BCL2 and MYC/BLC2/BCL6 as “DLBCL/high-
grade B-cell lymphoma-MYC/BCL2” [34, 40, 41]. Based 
on these new classifications, a multicenter, retrospective 
study including 220 patients with DLBCL revealed that 
MYC/BCL6 patients had superior and longer OS than 
patients with MYC/BCL2-rearrangements and THL, and 
treatment intensification was associated with next treat-
ment time and OS in patients with MYC/BCL2 and THL 
but no improvement in MYC/BCL6 patients [41]. More 
clinical trials are needed to confirm the optimal classifi-
cation for DLBCL prognosis.

As mentioned above, molecular subclassification might 
predict clinical outcomes of current therapeutic strate-
gies, with specific phenotypes enabling the development 
of precision therapies [35, 36]. A study of 412 patients 
with DLBCL identified 14 metabolism-associated genes 
characteristic of the immunosuppressive microenvi-
ronment and associated with prognosis. The resulting 
metabolism-associated prognosis risk model may facili-
tate personalized treatment strategies and provide the 
basis for further studies of metabolism-associated genes 
and the immune microenvironment [42].

R-CHOP therapy may be extended to include person-
alized treatment with agents targeting genes for DLBCL. 
A randomized phase II trial reported that R-CHOP-X 
including targeted Bruton’s tyrosine kinase inhibitors 

(ibrutinib), histone deacetylase inhibitors, demethylating 
agents (decitabine), and lenalidomide based on mutated 
MCD, BN2, EZB, TP53, and N1, resulted in significantly 
higher 2-year PFS and OS rates than R-CHOP [43]. 
Wang’s et  al. study demonstrated that high cyclin D2 
(CCND2) expression in ABC DLBCL was an independ-
ent prognostic indicator of PFS, potentially promoting 
further research on CCND2 inhibition and R-CHOP 
combination therapy [44]. Acylglycerol kinase inhibitors 
represent another possible approach to enhance the effi-
cacy of venetoclax (a highly selective BCL-2 inhibitor) 
[45], while other targeted agents include the anti-CD79b 
antibody–drug conjugate polatuzumab vedotin, and anti-
CD19 chimeric antigen receptor T-cell products [37].

FDG PET/CT parameters
FDG PET/CT is an essential screening tool for DLBCL 
because it can reflect differential glycolytic activity 
between lesions and healthy tissue [46, 47]. Baseline PET 
metrics have demonstrated prognostic value in DLBCL 
in many studies, including a phase III clinical trial of obi-
nutuzumab plus CHOP chemotherapy (GOYA) [48].

The standardized uptake value (SUV), as a semiquan-
titative measure of FDG retention, including SUVmax, 
SUVmean, and SUVpeak, quantifies the ratio of radio-
activity at a given image location and the whole-body 
injected radioactivity [13, 49]. A systematic review of 25 
studies from 2011 to 2020 concluded that SUV in base-
line FDG PET/CT could not predict PFS or OS in DLBCL 
patients [13, 48, 50, 51]. However, other FDG PET/CT 
indicators including MTV, TLG, and Dmax could have 
prognostic value (Fig. 1).

MTV and TLG
MTV is the volume of disease contoured at a specified 
SUV threshold, with some semiautomated methods: a 
fixed SUV threshold of 2.5/4.0 g/cm3, 41% of SUVmax 
per lesion, a majority vote including voxels detected by 
at least 2/3 methods (MV2/3) and so on [52–54], while 
TLG is the sum of the products of each lesion’s MTV 
and SUVmean [13, 55, 56]. Some studies have com-
pared those methods. SUV2.5 and SUV41% were rec-
ommended by El-Galaly et  al., while SUV4.0 and MV2 
were recommended by Barrington et  al. [52, 53]. MV3 
performed best in Zwezerijnen et  al.’s research, with 
acceptable delineation in 90% of lesions and a positive 
agreement of 93%. It is worth noting that, in their study, 
delineation quality scores and agreement per method 
strongly depended on lesional SUV, which means that an 
approach that identifies the optimal delineation method 
per lesion as a function of tumor [18F]FDG uptake char-
acteristics is required [54]. In actual situations, although 
MV3 performs well in some cases, the SUV2.5 and 
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SUV41% methods are more commonly used in clinical 
practice due to their simplicity, ease of standardization, 
and extensive research support [49–51, 57].

A randomized trial demonstrated that high total meta-
bolic tumor volume (TMTV) was significantly associ-
ated with shorter PFS and OS [58], while in the other 
two studies, R-CHOP resulted in significantly worse out-
comes in patients with TMTV > 220 cm3 than in those 
with TMTV < 220 cm3 [57, 59]. With chimeric antigen 
receptor (CAR) T-cell therapy has emerged as an option 
for relapsed/ refractory (R/R) DLBCL, the high baseline 
TMTV has been proven as a predictor of early progres-
sion in the form of unfavorable OS [60]. Kostakoglu et al. 
showed that baseline TMTV and TLG were independent 
predictors of 4-year PFS in DLBCL patients after first-
line immunochemotherapy [48]. Using a model com-
bining baseline TLG and MTV, Ceriani et al. confirmed 
significantly poorer outcomes for both DLBCL and pri-
mary mediastinal B-cell lymphoma in patients at high 
risk of progression (P < 0.001), with no treatment failure 
in the low-risk group [56]. Most studies, however, only 
demonstrated that TLG was associated with survival, 
rather than being an independent predictor of PFS and 
OS, and its predictive value for DLBCL requires more in-
depth research in large and multicenter studies.

MTV can serve as a single prognostic indicator and 
also improve the predictive reliability of prognoses based 
on other indicators, such as stage, IPI scores, and ECOG 

performance status. In 2020, Mikhaeel et al. proposed a 
new dynamic prognostic index for DLBCL: International 
Metabolic Prognostic Index (IMPI) composed of MTV, 
age, and stage which represents a significant advance for 
implementing MTV in lymphoma research [61–63]. For 
the patients with R/R DLBCL treated with CAR T-cell, 
Winkelmann et al. found that only IMPI showed a signifi-
cant trend for PFS stratification (P = 0.030), while both 
IPI and IMPI didn’t show a significant association with 
OS after CAR T-cell [62]. Zhao et al. found that patients 
with low MTV had better 2-year PFS and OS than those 
with high MTV, especially in the low-intermediate-risk 
NCCN-IPI subgroup [64]. The phase III GOYA study 
demonstrated that patients with high TMTV and IPI had 
higher risks of relapse or progression than those with low 
TMTV and IPI (5-year PFS: 49.0% vs 74.3%) [48]. As an 
IPI scoring indicator, ECOG performance status has been 
proven to be an independent indicator of PFS and OS [57, 
65]. For example, in Thieblemont et al.’s study, ECOG > 2 
had a relatively high HR for PFS and OS in all three test 
sets [59]. Based on a positive net reclassification index 
for 4-year PFS and OS, Vercellino et  al. concluded that 
a combined TMTV/ECOG variable had a higher model 
performance than the IPI [57], and the integrated model 
based on PET and tumor genotyping had a negative pre-
dictive value of 100% for disease progression or recur-
rence in the low-risk group.

Fig. 1  Three semiquantitative parameters in coronal (a) and axial coronal images(b, c) of FDG PET/CT from one patient: SUV, MTV and TLG. Dmax, 
the distance between two lesions that are furthest apart in sagittal images (d) of FDG PET/CT
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Dmax
Dissemination features, including the distance between 
two most distant lesions (Dmaxpatient) and the distance 
between the largest lesion and most distant lesions 
(Dmaxbulk) were first proposed as DCBCL prognostic 
factors by Cottereau et  al. in 2019 and have since been 
widely used [66–68]. Dmax was considered to be a bet-
ter prognostic predictor for DLBCL, reflecting the 
extent of tumor invasion [66–69], while Dmaxpatient and 
Dmaxbulk were negative prognostic factors for 4-year PFS 
(P < 0.001) and OS [67]. Eertink et al. also concluded that 
dissemination features had better predictive value than 
other PET parameters for 2-year progression of DLBCL 
[70].

Early identification of high-risk DLBCL patients who 
are unlikely to be cured by R-CHOP is an important 
step in testing alternative treatment approaches and 
requires a well-developed risk-scoring approach [71]. 
Many studies combined Dmax and MTV as comple-
mentary prognostic factors for predicting PFS and OS, 
reflecting tumor spread and tumor burden, respectively 
[66–68, 70]. In two studies involving different cohorts, 
a combined model based on MTV and Dmax identified 
significant differences in 4-year PFS and OS rates among 
the three groups. Specifically, this model could identify 
a group of patients with a poor prognosis (two risk fac-
tors) even after R-CHOP therapy, for whom clinicians 

might consider alternative treatment approaches [67, 
71]. Standardized Dmax (SDmax) is Dmax normalized 
by body surface area. PFS differed significantly among 
three risk groups based on MTV (P = 0.031) and SDmax 
(P = 0.001) in high-risk (NCCN-IPI ≥ 4) and low-risk 
(NCCN-IPI < 4) groups [66]. Eertink et  al. found that 
the area under the curve (AUC) for a clinical PET model 
based on MTV, Dmaxbulk, SUVpeak, performance status, 
and age (AUC = 0.71) was significantly larger (P < 0.001) 
than that for the IPI (AUC = 0.62) [72].

Machine learning
Developments in image processing and analysis tech-
nology have led to the increasing application of compu-
tational software, fixed algorithms, and neural network 
models to analyze PET images to predict DLBCL pro-
gression [56, 73–76]. The main research methods cur-
rently include texture analysis, radiomics, and deep 
learning [73]. (Fig. 2).

Texture analysis
Texture analysis was the first method applied in image-
processing research. A combined model based on clini-
cal and texture features had C-indices of 0.83 for PFS and 
0.90 for OS, which were higher than the corresponding 
values of the clinical model (0.68 and 0.78) [77].

Fig. 2  The workflow of machine learning, which includes texture analysis, radiomics, and deep learning, consists of four steps. Firstly, manually 
or automatically delineate the lesions to obtain the region of interest. Secondly, translate images into radiomic features. Thirdly, select features 
associated with prognosis for model construction. Finally, validate the predictive ability of the model internally or externally
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Metabolic heterogeneity (MH) is a texture features in 
FDG PET/CT that is calculated from the AUC of the 
cumulative SUV-volume histogram corresponding to 
the lesion with the largest MTV [56, 76]. MH can quan-
tify the variable coefficient of glucose uptake within the 
tumor and reflect the inhomogeneity of the tumor micro-
environment [78]. Recent studies suggested that a high 
MH at DLBCL diagnosis predicted a worse outcome [51, 
76, 79]. Patients with large MTV and MH had a 2-year 
PFS rate of 42% and experienced early relapse (median 
PFS 11.4 months) [79]. Senjo et al. used a model integrat-
ing MH and TMTV based on two independent DLBCL 
cohorts to stratify patients into three groups with signifi-
cantly different outcomes (5-year OS: 90.4% vs 69.5% vs 
34.8%, P < 0.001) [76]. These studies indicated that texture 
analysis might help to identify high-risk patients, ena-
bling them to be offered intensive treatment at an early 
stage.

Radiomics
Radiomics conventionally constructs models by fixed 
algorithms using mass first-order and high-order fea-
tures from images for clinical analysis. Conventional 
FDG PET/CT radiomics has been used in numerous lym-
phoma studies, and a systematic review showed that radi-
omics features could serve as diagnostic and prognostic 
indicators of lymphoma [80]. A model, which assessed by 
C-index and Akaike information criteria, based on WHO 
performance status, patient age, and radiomics provided 
better predictions of 2-year PFS and OS for DLBCL com-
pared with the IPI risk score [72].

Radiomics is generally used to construct models based 
on combinations of features. An optimal model using 
clinical indicators and radiomics features predicted 
the 2-year time to progression of DLBCL with an AUC 
of 0.79 [68]. A wavelet transform model incorporating 
clinical indicators and FDG PET/CT radiomics yielded 
a higher AUC (0.75) than a model based solely on MTV 
(0.67) to predict 2-year event-free survival in patients 
with DLBCL [75]. A combined model of DLBCL progres-
sion based on metabolic metrics, clinical risk factors, and 
FDG PET/CT radiomics was superior to the single model 
and provided high C-indices for both the training set 
(PFS 0.825, OS 0.834) and validation set (PFS 0.831, OS 
0.877) [74, 81]. A model combining BCL-6 and radiomics 
features dimensionally reduced using linear discriminant 
analysis had high predictive efficiency for DLBCL (AUC 
= 0.904, accuracy 90%, sensitivity 100%, specificity 80%) 
[82]. By comparing the time-dependent ROC curves, a 
nomogram including blood platelet count, sex, and radi-
omics score (Rad-scores) had been proven to provide a 
better recurrence risk assessment [83], and Zhao et  al. 
also proved that a combination of different classifiers 

yielded a higher AUC for DLBCL prognosis than a single 
classifier [84].

Despite the promise of PET radiomics, some challenges 
still need to be addressed to improve model reliability 
and interpretability [80, 85]. However, radiomics models 
could be successfully used in DLBCL clinical settings if 
more robust prognostic models can be established using 
big data from multicenter studies.

Deep learning
Deep learning neural networks, especially convolutional 
neural networks (CNN), have been widely used to iden-
tify, segment and tumors, extract features and predict 
outcomes. [73, 86–89].

It’s crucial to identify early patients with bone marrow 
(BM) involvement since BM lymphoma invasion is a sign 
of advanced disease [90]. The BM lesions obtained from 
FDG PET/CT through the method of manual detection, 
radiomics or deep-learning combined with the results 
of bone marrow biopsy, could all improve the detection 
of BM involvement in patients with DLBCL and provide 
more accurate prognoses [26, 91–94]. For example, Jemaa 
et al. proved that patients with both positive biopsy and 
PET results, analyzed using a deep learning algorithm, 
have the worst prognosis compared to those with both 
negative results (2-year PFS: 62% vs. 72%) [26].

With the DLBCL patients as the training set, on the 
follicular lymphoma test set, a novel cascaded 2D to 3D 
CNN architecture produced a Dice Similarity Coefficient 
(DSC) of 0.886 and a voxel level sensitivity of 92.6% in 
identifying and segmenting tumors [87]. Weisman et al. 
implemented a 3D, multiresolution pathway CNN, Deep-
Medic to automatically detect lymph nodes involved 
in lymphoma and achieved a true-positive rate (TPR) 
of 85% [89]. Based on these predicted tumor mask, the 
automatic calculated TMTV could yield very precise esti-
mates in Jemaa et al.’s study with Spearman’s correlations 
respectively of 0.97 compared with ground truth and pre-
dict the outcomes of DLBCL in Capobianco et al.’s study 
with 4-y OS rates were 90% and 74% for the low- and 
high-TMTV groups (optimal TMTV cutoffs: 148 cm3) 
[86, 87].

Haggstrom et  al.’s ResNet34-based deep learning 
model could distinguish lymphoma patients, includ-
ing DLBCL with and without hypermetabolic tumour 
sites, for binary classification (Deauville 1-3 vs 4-5), 
with AUC, accuracy, and sensitivity all exceeding 0.9 
[95]. Jemaa et  al.’s deep learning-based algorithm for 
automated metabolic response assessment in Lugano 
had strong prognostic value for outcomes. In three tri-
als, there was a trend toward greater accuracy for risk 
of death than adjudicated radiologic responses (haz-
ard ratio for end of treatment CMR of 0.123, 0.054, 
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and 0.205 vs 0.226, 0.292, and 0.272, respectively) 
[96]. Deep learning for automated treatment response 
assessments in DLBCL would eventually change work-
flows and labor and resource allocation in clinical 
research and practice [97], as end-of-treatment PET 
response had been shown to be prognostic for OS 
[98–100].

Deep learning models have been applied in numer-
ous diseases, including lymphoma, breast cancer, rec-
tal cancer, and nasopharyngeal carcinoma [101–103]. 
Multiparametric models based on patient age, Ann 
Arbor stage, SUVmax, TMTV, and deep learning scores 
obtained from VGG19 and DenseNet121 networks were 
built to predict DLBCL prognosis, with C-indices 0.866 
for PFS and 0.835 for OS, and were verified by C-index 
in external validation cohorts [104]. A deep learning 
model based on interim FDG PET/CT images showed 
good performance in a test cohort (AUC = 0.926) and 
external datasets (AUC = 0.925) for directing individu-
alized clinical treatment of DLBCL patients [105].

Discussion
Comparing studies can summarize ways to boost 
research reliability. For multicenter radiomics studies, 
which are reliable than single-center studies, it is neces-
sary to use the Combat method to assess the differences 
between various scanners. Most literature used ROC 
to rate models. Some of them implemented DeLong 
for AUC, assessing differences like sample size more 
rigorously. In addition to comparing the prognostic 
capabilities of models containing different indicators, 
there could be more articles comparing the models 
built using different machine learning methods, such as 
logistic regression with Least Absolute Shrinkage and 
Selection Operator (LASSO), ridge and elasticnet pen-
alties, support vector machine and random forest.

However, the clinical adoption of artificial intelli-
gence (AI) methods has been hindered by the lack of 
interpretability and generalizability, so increasing the 
interpretability of AI algorithms and creating a super-
vised deep-learning system for medical imaging based 
on a large, labeled dataset could gain the confidence 
of doctors and patients [106]. As the first step of the 
research, most studies used a single method to segment 
the lymphoma lesions. The heterogeneity in DLBCL 
lesion tracer uptake means a one-size-fits-all segmen-
tation approach might not be ideal for all patients 
[68, 89]. Another key limitation is studies comparing 
human and AI diagnostics often lack real-world clinical 
context, relying solely on images without considering 
patient histories or additional data. This often increases 
the difficulty of the diagnostic task for the human 
reader [107].

Conclusion
DLBCL is a heterogeneous disease with series of baseline 
IPI-based scoring standards, which have been iteratively 
developed to address the heterogeneity of clinical out-
comes. Molecular characteristics have been included to 
improve predictions of DLBCL progression and identify 
novel biological targets. Various baseline FDG PET/CT 
parameters, including MTV, TLG, and Dmax, have been 
used to construct machine learning models, but base-
line radiomics and deep learning models that can predict 
the outcome of DLBCL remain in their infancy. Further 
development of AI technology will provide better predic-
tive models based on big data from multicenter studies.
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