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Associations between ADC histogram 
analysis values and tumor-micro milieu 
in uterine cervical cancer
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Abstract 

Background The complex interactions of the tumor micromilieu may be reflected by diffusion‑weighted imag‑
ing (DWI) derived from the magnetic resonance imaging (MRI). The present study investigated the association 
between apparent diffusion coefficient (ADC) values and histopathologic features in uterine cervical cancer.

Methods In this retrospective study, prebiopsy MRI was used to analyze histogram ADC‑parameters. The biopsy 
specimens were stained for Ki‑67, E‑cadherin, vimentin and tumor‑infiltrating lymphocytes (TIL, all CD45 posi‑
tive cells). Tumor‑stroma ratio (TSR) was calculated on routine H&E specimens. Spearman’s correlation analysis 
and receiver‑operating characteristics curves were used as statistical analyses.

Results The patient sample comprised 70 female patients (age range 32–79 years; mean age 55.4 years) with squa‑
mous cell cervical carcinoma. The interreader agreement was high ranging from intraclass coefficient (ICC) = 0.71 
for entropy to ICC = 0.96 for ADCmedian. Several ADC‑histogram parameters correlated strongly with the TSR. The 
highest correlation coefficient achieved p10 (r = ‑0.81, p < 0.0001). ADCmean can predict tumors with high TSR, AUC: 
0.91, sensitivity: 0.91 (95% CI 0.77;0.96), specificity: 0.91 (95% CI 0.78;0.97). Several ADC‑histogram parameters cor‑
related slightly with the proliferation index Ki‑67. No associations were found with TIL, E‑Cadherin and vimentin. In 
well and moderately differentiated cancers, ADC histogram values showed stronger correlations with Ki‑67 and TSR 
than in poorly differentiated tumors.

Conclusion ADC values are strongly associated with tumor‑stroma ratio. The ADC mean can be used to predict 
tumors with high TSR. Associations between histopathology and ADC values depend on tumor differentiation. ADC 
values show only weak associations with Ki‑67 and none with TIL, vimentin and E‑cadherin.
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Background
Uterine cervical cancer (UCC) is the third frequent 
cancer and the fourth leading cause of cancer death in 
females worldwide [1].

Magnetic resonance imaging (MRI) is the imaging 
modality of choice for staging of UCC due to its excel-
lent soft tissue contrast [2]. According to the literature, 
MRI can also characterize tumor microstructure in [3]. 
Diffusion-weighted imaging has the potential to reveal 
tumoral architectural details [3–5]. Previously, some 
studies reported that apparent diffusion coefficient 
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(ADC) was inversely correlated with tumor cell count in 
UCC [4, 5].

At present, modern imaging analysis can more sensi-
tively reflect tumor biology than conventional imaging 
values such as signal intensity or ADC [6, 7]. For instance, 
histogram analysis approach uses a distribution of vox-
els within a region of interest [6]. This method provides 
information about tumor homo-and/or heterogeneity 
[6]. Typical histogram parameters include percentiles, 
median, mode, skewness, kurtosis and entropy [6]. In 
UCC, it has been shown that ADC histogram parameters 
has been shown to discriminate between cervical physio-
logical tissue and cancer [8]. In addition, histogram anal-
ysis can discriminate between low and high grade UCC 
as well UCC with and without lymph node metastases [8, 
9].

According to the literature, several histopathological 
features such as epidermal-growth factor, hypoxia-induc-
ible factor 1-alpha, vascular endothelial growth factor, 
human epidermal growth factor receptor 2 (HER 2) and 
histone 3 are associated with prognosis and prediction 
of treatment success [10–13]. Tumor-stroma ratio and 
tumoral lymphocytes are also associated with prognosis 
in UCC [14, 15]. Previously, it has been shown that ADC 
histogram parameters can reflect expression of epider-
mal-growth factor and histone 3 but not expression of 
vascular endothelial growth factor and hypoxia-induci-
ble factor 1-alpha in UCC [16]. Furthermore, histogram 
analysis parameters of T1-weighted and T2-weighted 
images reflect HER2 status and EGFR expression in UCC 
[17].

In addition to these immunohistochemical param-
eters, there is ongoing research on the importance of 
tumor heterogeneity and the tumor stroma interaction of 
the tumor micro milieu [18]. There is also evidence that 
tumor heterogeneity plays a key role in poor oncologic 
outcomes [19].

These previous studies led to the assumption that 
imaging could non-invasively predict certain aspects of 
the underlying tumor microstructure and also the malig-
nant potential.

In addition to the histogram analysis mentioned above, 
other imaging analyses have been used to reflect tumor 
heterogeneity with FDG-PET volumetry [20]. Very 
promising results have been demonstrated for radiomics 
analyses a more comprehensive approach to assess tumor 
heterogeneity with promising results for diagnostic pur-
poses and treatment prediction [21, 22].

However, further studies with larger patient samples 
and more complex pathological analyses are warranted to 
elucidate the comprehensive relationships between imag-
ing and histopathology. This is especially true, consider-
ing that imaging is the only modality that can determine 

the tumor heterogeneity as a whole, whereas histopathol-
ogy can only assess one portion of the tumor.

Therefore, the purpose of the present study was to 
investigate possible relationships between ADC histo-
gram parameters and histopathological features includ-
ing the expression of Ki-67, tumor-stroma ratio and 
tumoral infiltrating immune cells in UCC.

Methods
Patient acquisition
All consecutive patients with UCC at our tertiary refer-
ral hospital were retrospectively assessed. The study 
was performed after approval of the local Ethics com-
mission in accordance with the ethical standards of the 
institutional and/or national research committee and 
with the 1964 Helsinki declaration and its later amend-
ments or comparable ethical standards (Ethical code: 
012/13–28,012,013).

Inclusion criteria for the present study were biopsy-
proven squamous cell UCC. MRI had to be performed 
before the biopsy and must include a DWI sequence. The 
tumor had to be visible on the ADC maps. Exclusion cri-
teria were available DWI sequence, severe artifacts of the 
ADC maps, no visible tumor on the ADC map, and lack 
of histopathology specimens.

All patients were classified according to the “Fédération 
Internationale de Gynécologie et d’Obstétrique” classifi-
cation [23].

The recruitment period was from 2015–2023. Prior to 
2018, the DWI sequence was not routinely included in 
the MRI protocol.

The primary search comprised 210 patients. Thereof, 
111 patients were excluded due to missing DWI sequence 
of the MRI. Then, 4 patients were excluded due to arti-
facts or not visible tumor on MRI. Finally, 25 patients had 
no corresponding histopathology specimens. Figure  1 
provides the study flow chart of the patient sample. All 
patients were investigated by MRI before any form of 
treatment and the biopsy procedure.

MRI
In all cases, pelvic MRI was performed with a 1.5 T scan-
ner (Aera, Siemens, Erlangen, Germany. Our investiga-
tion protocol included the following sequences: an axial 
T2 weighted (T2w) turbo spin echo (TSE) sequence (TR/
TE: 5590/105), a sagittal T2w TSE sequence (TR/TE: 
4110/131), an axial T1 weighted (T1w) TSE sequence 
(TR/TE:1310/12), an axial T1 TSE sequence after intra-
venous application of contrast medium (0.1  mmol/kg 
body weight Gadobutrol, Bayer Healthcare, Germany) 
(TR/TE:912/12), and a sagittal post contrast T1 TSE 
(TR/TE: 593/12). DWI was performed using a multi-
shot SE-EPI sequence (b 0 and b 1000 s/mm2, repetition 
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time: 4900 ms; echo time: 105 ms; slice thickness: 5 mm; 
matrix: 88 × 134; field of view: 450 × 450 mm.

Histogram analysis of ADC values
Automatically generated ADC maps were further pro-
cessed offline with a custom-made Matlab-based appli-
cation (The Mathworks, Natick, MA). The ADC maps 
were displayed within a graphical user interface (GUI), 
which enables the reader to scroll through the slices and 
draw a volume of interest (VOI) at the tumor’s bound-
ary, in accordance to the T2-weighted images (whole 
lesion measure). All measures were performed by one 
author independently to each other and blinded to his-
topathology (AS with 19  years of experience in radiol-
ogy). The ROIs were modified in the GUI and saved (in 
Matlab-specific format) for later processing. Following 
parameters were calculated: mean (ADCmean), maxi-
mum (ADCmax), minimum (ADCmin), median, 10th 
(p10 ADC), 25th (p25 ADC), 75th (p75 ADC), 90th (p90 
ADC) percentile, and mode (ADC mode). Additionally, 
histogram parameters were calculated comprising kur-
tosis, skewness and entropy. For interreader agreement 
a subset of randomly selected 20 patients were meas-
ured by a second reader with 8 years of general radiology 

experience. Figure 2 provides a representative case of the 
present cohort to demonstrate the measurement.

Histopathological analysis
In every patient, the biopsy specimens before the MRI 
was further analyzed. Histopathology evaluation was 
performed by one experienced pathologist (AKH) with-
out knowledge of the patients or imaging data. Forma-
lin-fixed, paraffin-embedded tissue serial Sects. (2  µm) 
were dewaxed in xylol and rehydrated by descending 
concentrations of ethanol. For each specimens, standard 
hematoxylin and eosin (HE) staining and immunohis-
tochemistry were performed. For antigen detection, we 
used the automated immunohistochemistry slide stain-
ing system VENTANA BenchMark ULTRA (Roche Diag-
nostics GmbH), the VENTANA iVIEW DAB Detection 
Kit (Roche Diagnostics GmbH), and the indirect biotin-
streptavidin method before counterstaining with Hae-
malaun solution. Antigen retrieval was performed with 
CC1mild, followed by incubation with specific primary 
antibodies recognizing CD45/leucocyte common anti-
gen (polyclonal mouse antibody, clone 2B11 + PD7/26; 
DAKO/ Agilent #M0701) or Ki-67 (polyclonal mouse 
antibody, clone Mib1; DAKO/Agilent #M7240), at 36 °C 

Fig. 1 Study flow chart of the acquisition of the patient sample. The final patient sample was comprised of 70 patients

Fig. 2 Representative patient of the present cohort. A T2‑weighted axial image showing the large, inhomogeneous tumor. B ADC‑map 
of the patient. C Drawn region of interest within the boundaries of the tumor. D The resulting ADC histogram for this patient. It shows a high 
kurtosis and a low skewness. Histopathological findings of the tumor shows a low stromal area (E, H&E staining), a high proliferation index (F, 
MIB staining), low number of CD 45 positive cells (G, CD 45 staining), a high expression of E‑cadherin (H, E‑cadherin staining), and a moderate 
expression of vimentin (I, vimentin staining)

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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for 32  min, dilution 1:500 or 1:100, respectively. Every 
histopathological parameter was evaluated in five power 
fields (× 40; 0.23  mm2 per field). For each specimen, the 
mean values of the quantified parameter were calcu-
lated. Tumor-stroma ratio (TSR) was evaluated on the 
HE-stained specimens and percentages were given per 
tumor and stroma content separately. Density of tumor-
infiltrating immune cells were estimated as a mean of 
overall cell counts or CD45 + leucocytes per high power 
field, respectively. The extracellular matrix was stained by 
vimentin (DAKO, clone Vim 3B4, dilution 1:200) and the 
percentage of the stained HPF was measured. The mouse 
anti-E-cadherin monoclonal primary antibody (Clone: 
NCH-38; M3612; DakoCytomation, Denmark) was used 
to stain for E-cadherin. The rate of proliferation was 
indicated by the percentage of Ki-67-positive cells from 
all tumor cells (Ki-67-index). Ki-67 was defined as the 
highest value of the five measurements. Histopathologi-
cal evaluation was done with the Nikon ECLIPSE Ni-E 
microscope. Figure 2 (images E-I) shows a representative 
case of the sample.

Subgroup analyses were performed stratified to the 
tumor grading. Well and moderately differentiated 
tumors were grouped together and compared with poorly 
differentiated tumors.

Statistical analysis
The statistical analysis and graphics creation were per-
formed using GraphPad Prism 10 (GraphPad Soft-
ware, La Jolla, CA, USA) and SPSS (IBM, Version 25.0; 
Armonk, NY, USA). Collected data were evaluated by 
means of descriptive statistics (absolute and relative fre-
quencies). Spearman’s correlation coefficient (r) was 
used to analyze associations between the investigated 
ADC-histogram parameters and the investigated his-
topathological parameters after testing for normality 
distribution. Group differences were calculated with 
Mann–Whitney-U-test. Interreader agreement was 
investigated by means of intraclass-coefficient (ICC). 
Diagnostic accuracy was tested with receiver operating 
characteristics curve (ROC) with area under the curve 
(AUC). Results are presented with 95% confidence inter-
vals (CI). In all instances, p-values < 0.05 were used to 
demonstrate statistical significance.

Results
The patient sample consisted of 70 female patients (age 
range 32–79 years; mean age 55.4 years) with squamous 
cell cervical carcinoma. Table 1 summarizes the charac-
teristics of the patient sample.

An overview of the ADC-histogram parameters and 
the histopathological parameters are given by Tables  2 

and 3. The interreader agreement was high ranging from 
ICC = 0.71 for entropy to ICC = 0.96 for ADCmedian.

Correlation analysis
The results of correlation analysis are given by Tables 4, 
5 and 6.

ADC-histogram parameters correlated weakly with 
the proliferation index Ki-67. The strongest correlation 

Table 1 Overview of the investigated patient sample

FIGO stage
 IB1 24 (34.2%)

 IB2 5 (7.1%)

 IIA 5 (7.1%)

 IIB 23 (32.9%)

 IIIA 3 (4.3%)

 IIIB 8 (11.5%)

 IVA 2 (2.9%)

T stage
 1 20 (29%)

 2 31 (44%)

 3 14 (20%)

 4 5 (7%)

N stage
 N0 27 (39%)

 N + 43 (61%)

M stage
 M0 57 (%)

 M1 13 (%)

Tumor grade
 G1 3 (4%)

 G2 33 (47%)

 G3 34 (49%)

Table 2 Descriptive overview of the investigated ADC‑
histogram parameters

ADC values M ± SD

ADC Mean 0.51 ± 0.43

ADC Min 0.34 ± 0.31

ADC Max 0.76 ± 0.65

ADC P10 0.43 ± 0.37

ADC P25 0.46 ± 0.39

ADC Median 0.50 ± 0.43

ADC P75 0.54 ± 0.46

ADC P90 0.59 ± 0.50

ADC Mode 0.49 ± 0.41

Kurtosis 4.64 ± 3.24

Skewness 0.63 ± 0.84

Entropy 3.71 ± 0.58
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coefficient was identified for p10 (r = −0.31, p = 0.008) 
(Fig. 3a).

Several ADC-histogram parameters correlated 
strongly with tumor-stroma ratio, the highest corre-
lation coefficient achieved p10 (r = −0.81, p < 0.0001) 
(Fig. 3b).

There were no correlations between ADC values and 
TIL, E-Cadherin and vimentin.

At the next step, a subanalysis of associations 
between ADC histogram values and histopathology was 
performed in well and moderate differentiated tumors 
separately.

In well and moderately differentiated cancers, ADC 
histogram values showed stronger correlations with 
Ki-67 and tumor-stroma ratio than in poorly differenti-
ated tumors (Table).

Furthermore, skewness correlated with vimentin 
expression (r = −0.41, p = 0.01) as well as between kur-
tosis and E-cadherin expression (r = −0.35, p = 0.03) 
(Fig. 4).

Prediction of histopathological features
The prediction for ADC-histogram parameters for 
tumors with high tumor-stroma ratio defined by the 
median value of 30 was carried out using ROC analysis.

The highest AUC achieved ADCmean: sensitivity of 
0.91 (95% CI 0.77;0.96) and a specificity of 0.91 (95% CI 
0.78;0.97). The corresponding ROC curve is shown in 
Fig. 5.

Discussion
The present study elucidated the complex interactions 
between ADC histogram parameters and histopatho-
logic features in UCC. A strong inverse association was 
found between ADC values and the tumor-stroma ratio, 
whereas only a weak association was demonstrated with 
the proliferation potential.

Table 3 Descriptive overview of the investigated 
histopathological features of the tumors

M ± SD

Tumor‑stroma ratio 31.1 ± 19.4

Ki‑67, % 68.5 ± 15.6

Expression of E‑cadherin 3.6 ± 0.7

Expression of Vimentin 4.8 ± 14.9

Stromal TIL 41.0 ± 24.5

Tumoral TIL 3.3 ± 3.4

Table 4 Spearman’s correlation analysis between the ADC histogram parameters and the investigated histopathological features

Statistically significant correlations are highlighted in bold

ADC histogram 
parameters

Ki-67 Tumor-stroma-ratio E-Cadherin Vimentin Stromal TIL Tumoral TIL

mean r = −0.30, p = 0.01 r = −0.80, p < 0.0001 r = −0.04, p = 0.72 r = 0.01, p = 0.87 r = −0.07,
p = 0.55

r = −0.14, p = 0.25

Min r = −0.30, p = 0.01 r = −0.75, p < 0.0001 r = −0.04, p = 0.72 r = −0.04, p = 0.73 r = 0.03,
p = 0.77

r = −0.09, p = 0.43

Max r = −0.28, p = 0.01 r = −0.71, p < 0.0001 r = −0.10, p = 0.37 r = −0.01, p = 0.91 r = −0.05,
p = 0.63

r = −0.12, p = 0.29

P10 r = −0.31, p = 0.008 r = −0.81, p < 0.0001 r = −0.05, p = 0.65 r = 0.04, p = 0.72 r = −0.05,
p = 0.66

r = −0.14, p = 0.24

P25 r = −0.30, p = 0.01 r = −0.79, p < 0.0001 r = −0.05, p = 0.65 r = 0.04, p = 0.70 r = −0.06,
p = 0.57

r = −0.14, p = 0.24

P75 r = −0.30, p = 0.01 r = −0.78, p < 0.0001 r = −0.04, p = 0.75 r = 0.01, p = 0.89 r = −0.06,
p = 0.57

r = −0.14, p = 0.26

P90 r = −0.29, p = 0.01 r = −0.80, p < 0.0001 r = −0.04, p = 0.77 r = −0.005, p = 0.96 r = −0.07,
p = 0.52

r = −0.14, p = 0.25

Median r = −0.27, p = 0.02 r = −0.80, p < 0.0001 r = −0.04, p = 0.75 r = 0.03, p = 0.77 r = −0.06,
p = 0.58

r = −0.14, p = 0.23

Mode r = −0.31, p = 0.08 r = −0.80, p < 0.0001 r = −0.07, p = 0.54 r = 0.05, p = 0.63 r = −0.05,
p = 0.67

r = 0.13,
p = 0.30

Kurtosis r = −0.19, p = 0.11 r = 0.003, p = 0.97 r = −0.22, p = 0.06 r = 0.002, p = 0.98 r = 0.06,
p = 0.58

r = −0.06, p = 0.61

Skewness r = −0.11, p = 0.36 r = 0.09, p = 0.44 r = −0.20, p = 0.09 r = −0.20, p = 0.08 r = 0.03,
p = 0.77

r = −0.06, p = 0.61

Entropy r = −0.09, p = 0.44 r = 0.14, p = 0.24 r = −0.08, p = 0.50 r = −0.04, p = 0.69 r = 0.02,
p = 0.81

r = −0.08, p = 0.49
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Table 5 Spearman’s correlation analysis in the subgroup analysis of the well and moderate differentiated tumors (G1 + 2)

Statistically significant correlations are highlighted in bold

ADC histogram 
parameters

Ki-67 Tumor-stroma-ratio E- Cadherin Vimentin Stromal TIL Tumoral TIL

mean r = -0.49, p = 0.002 r = -0.88, p < 0.0001 r = ‑0.13, p = 0.44 r = ‑0.08, p = 0.63 r = ‑0.25, p = 0.14 r = ‑0.08, p = 0.62

Min r = -0.46, p = 0.004 r = -0.80, p < 0.0001 r = 0.08, p = 0.63 r = ‑0.08, p = 0.63 r = 0.09, p = 0.57 r = ‑0.02, p = 0.89

Max r = -0.36, p = 0.02 r = -0.76, p < 0.0001 r = 0.06, p = 0.71 r = ‑0.04, p = 0.77 r = ‑0.17, p = 0.30 r = ‑0.03, p = 0.83

P10 r = -0.46, p = 0.004 r = -0.91, p < 0.0001 r = 0.06, p = 0.68 r = 0.04, p = 0.72 r = ‑0.22, p = 0.19 r = ‑0.06, p = 0.73

P25 r = -0.36, p = 0.02 r = -0.91, p < 0.0001 r = 0.09, p = 0.58 r = 0.09, p = 0.57 r = ‑0.26, p = 0.13 r = ‑0.07, p = 0.65

P75 r = -0.46, p = 0.004 r = -0.87, p < 0.0001 r = 0.15, p = 0.37 r = 0.12, p = 0.46 r = ‑0.25, p = 0.14 r = ‑0.08, p = 0.64

P90 r = -0.45, p = 0.005 r = -0.84, p < 0.0001 r = 0.16, p = 0.33 r = 0.03, p = 0.84 r = ‑0.24, p = 0.16 r = ‑0.06, p = 0.70

Median r = -0.48, p = 0.002 r = -0.90, p < 0.0001 r = 0.14, p = 0.38 r = 0.12, p = 0.47 r = ‑0.26, p = 0.11 r = ‑0.06, p = 0.57

Mode r = -0.44, p = 0.006 r = -0.91, p < 0.0001 r = 0.10, p = 0.54 r = 0.16, p = 0.33 r = ‑0.25, p = 0.14 r = ‑0.05, p = 0.74

Kurtosis r = ‑0.11, p = 0.49 r = ‑0.11, p = 0.50 r = -0.35, p = 0.03 r = ‑0.10, p = 0.53 r = 0.28, p = 0.09 r = 0.09, p = 0.56

Skewness r = 0.08, p = 0.96 r = 0.10, p = 0.52 r = ‑0.17, p = 0–32 r = -0.41, p = 0.01 r = 0.21, p = 0.22 r = ‑0.07, p = 0.67

Entropy r = 0.21, p = 0.20 r = 0.22, p = 0.19 r = ‑0.21, p = 0.21 r = 0.02, p = 0.87 r = 0.12, p = 0.46 r = 0.15, p = 0.38

Table 6 Spearman’s correlation analysis in the subgroup analysis of poorly differentiated tumors (G3)

Statistically significant correlations are highlighted in bold

ADC histogram 
parameters

Ki-67 Tumor-stroma-ratio E -Cadherin Vimentin Stromal TIL Tumoral TIL

mean r = ‑0.16, p = 0.34 r = -0.73, p < 0.0001 r = ‑0.21, p = 0.22 r = ‑0.04, p = 0.80 r = 0.11, p = 0.50 r = ‑0.20, p = 0.25

Min r = ‑0.15, p = 0.36 r = -0.70, p < 0.0001 r = ‑0.19, p = 0.26 r = ‑0.004, p = 0.98 r = 0.19, p = 0.26 r = ‑0.15, p = 0.39

Max r = ‑0.18, p = 0.30 r = -0.68, p < 0.0001 r = ‑0.32, p = 0.06 r = 0.006, p = 0.97 r = 0.10, p = 0.55 r = ‑0.19, p = 0.26

P10 r = ‑0.18, p = 0.28 r = -0.72, p < 0.0001 r = ‑0.18, p = 0.30 r = ‑0.02, p = 0.89 r = 0.12, p = 0.47 r = ‑0.19, p = 0.26

P25 r = ‑0.18, p = 0.28 r = -0.71, p < 0.0001 r = ‑0.20, p = 0.24 r = ‑0.02, p = 0.87 r = 0.12, p = 0.49 r = ‑0.21, p = 0.24

P75 r = ‑0.16, p = 0.36 r = -0.72, p < 0.0001 r = ‑0.22, p = 0.19 r = ‑0.04, p = 0.78 r = 0.11, p = 0.51 r = ‑0.19, p = 0.28

P90 r = ‑0.12, p = 0.47 r = -0.74, p < 0.0001 r = ‑0.25, p = 0.15 r = ‑0.04, p = 0.81 r = 0.12, p = 0.48 r = ‑0.18, p = 0.30

Median r = ‑0.17, p = 0.32 r = -0.72, p < 0.0001 r = ‑0.21, p = 0.22 r = ‑0.04, p = 0.78 r = 0.12, p = 0.48 r = ‑0.20, p = 0.25

Mode r = ‑0.19, p = 0.27 r = -0.72, p < 0.0001 r = ‑0.24, p = 0.16 r = ‑0.02, p = 0.90 r = 0.12, p = 0.47 r = ‑0.18, p = 0.29

Kurtosis r = ‑0.15, p = 0.38 r = 0.14, p = 0.40 r = ‑0.08, p = 0.61 r = 0.10, p = 0.54 r = ‑0.10, p = 0.55 r = 0.01, p = 0.92

Skewness r = ‑0.21, p = 0.23 r = 0.05, p = 0.76 r = ‑0.30, p = 0.08 r = ‑0.005, p = 0.97 r = ‑0.12, p = 0.48 r = ‑0.06, p = 0.71

Entropy r = ‑0.21, p = 0.21 r = 0.04, p = 0.80 r = 0.13, p = 0.43 r = ‑0.14, p = 0.43 r = ‑0.02, p = 0.89 r = ‑0.29, p = 0.09

Fig. 3 A Spearman’s correlation analysis between ADC p10 with the Ki‑67 index, r = −0.31, p = 0.008. B Spearman’s correlation analysis between ADC 
p10 with the tumor‑stroma ratio, r = −0.81, p < 0.0001
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No correlations were found for TIL, vimentin, and 
E-cadherin expression in the overall cohort. However, 
in well and moderately differentiated tumors, there 
were associations with vimentin and E-cadherin. More-
over, the associations with proliferation potential and 
tumor-stroma ratio were stronger in the well and mod-
erate differentiated tumor group. This is a key finding 
of the present study that the associations between ADC 

values and histopathology features are dependent on 
the tumor grading.

These results are in good agreement with previous 
investigation, which could also show a similar trend, for 
example in head and neck cancer [24].

The present study provides new insights into the com-
plex interactions between diffusion within tumor tissue 
quantified by MRI and the underlying microstructural 
processes.

This is especially of great importance as the interac-
tions between tumor, infiltrating immune cells and extra-
cellular matrix, termed microenvironment is of great 
prognostic importance [25–28]. One important feature 
is the remodeling of peritumoral stroma determined by 
a switch from fibroblasts to myofibroblasts, extracellu-
lar matrix alterations (known as desmoplastic change), 
and neo-angiogenesis [27]. The presence of desmoplastic 
changes is high in UCC with 80.6% of cases and leads to 
an inferior overall survival (hazard ratio 3.8 [95% CI 1.4–
10.4], p = 0.002) [27].

As these microstructural changes within the tumors 
also imply prognostic relevance, it could be crucial to 
implement ADC histogram parameters as a way to non-
invasively characterize the whole tumor. Beyond that, 
contrary to the biopsy specimens, which can only provide 
insight into a small area of the tumor, the MRI could pro-
vide insight of the whole tumor.

There is a no doubt that ADC values are directly and 
inversely correlated with the cell density, as was dem-
onstrated in various tumor entities [28]. However, there 
are distinctive differences between the different tumors, 
ranging from weak to strong [28]. Moreover, there was a 
clear trend for ADC values to correlate inversely with the 
Ki-67 index [4, 29].

For cervical cancer, a preliminary explorative study 
could not demonstrate an association with cell density or 
Ki-67 index in UCC [9]. Yet, there was an inverse correla-
tion with p53 expression and ADCentropy [9]. Another 
study could show a moderate inverse correlation between 
ADCmin and Ki-67 index r = −0.48, p = 0.03 [4].

In another study, the associations between ADC his-
togram analysis and immunohistochemical stainings of 
neoangiogenesis, epidermal-growth factor expression 
and histone 3 expression were explored [16]. There were 
no associations with the neoangiogensis related factors, 
but with epidermal-growth factor and histone 3 expres-
sion. The highest correlation was observed for ADCp75 
(p = −0.562, P = 0.015) and ADCp25 with histone 3 
(p = −0.610, P = 0.007) [16].

The role of tumor infiltrating lymphocytes and the 
tumor-stroma ratio is of utter importance in UCC [14, 
15]. The main finding of the present study is the ability 
of ADC values to predict tumors with high tumor-stroma 

Fig. 4 Subgroup analysis of the well and moderate differentiated 
tumors. Spearman’s correlation analysis between kurtosis 
and E‑cadherin expression (r = −0.35, p = 0.03)

Fig. 5 Receiver operating characteristics curve for the prediction 
of high tumor‑stroma ratio tumors using ADCmean. The resulting 
AUC is 0.91 (95%CI 0.84;0.98) with a sensitivity of 0.91 (95%CI 
0.77;0.96) and a specificity of 0.91 (95%CI 0.78;0.97)
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ratio but it is not able to reflect the amount of infiltrating 
lymphocytes. It seems plausible that the microstructural 
characteristics of a small subset of cells within the tumor 
cannot be reflected by a whole tumor ADC measure-
ment. Yet, in a similar study investigating head and neck 
cancer, there was a slight trend for ADC entropy to corre-
late with the tumor infiltrating lymphocytes of the tumor 
compartment [30].

One interesting aspect of the present study is that there 
was a statistical signal for ADCkurtosis to reflect the 
E-cadherin expression and ADCskewness to correlate 
with vimentin expression in the well and moderate dif-
ferentiated tumors. There is definite need for the char-
acterization between poor and well differentiated UCC. 
Moreover, it is well established that ADC histogram 
parameters differ significantly between these groups [8].

An important aspect to discuss is the size of the tumor. 
The tumors studies in the present cohort were all visible 
on DWI and the ADC maps. There is evidence that DWI 
volume and T2-weighted assessed tumor volume can be 
considered similar [31, 32]. However, there may be very 
small tumors, that are not visible on DWI and therefore 
cannot be further assessed with ADC histogram analysis, 
especially in FIGO IA [23].

Another issue is the tumor heterogeneity induced by 
large tumors with central necrosis [20]. In these cases, the 
spatial differences between biopsy and the histopatho-
logical evaluation and the ADC histogram analysis of the 
MRI might lead to a worse correlation between imaging 
and histopathology. This could be a reason for some of 
the non-existing correlations in the present study.

Beyond that, this could be one reason for the differ-
ences identified between the subgroup analysis accord-
ingly to the tumor grading. The weaker correlations 
observed in the poorly differentiated tumor group may 
be due to the higher heterogeneity of the tumors and the 
higher risk of biopsy sampling bias. There is clear need 
to further elucidate the influence of tumor grading on 
immunohistochemical and imaging parameters.

The present study is not free from limitations. First, it 
is a retrospective study with known inherent bias. How-
ever, the imaging and pathologic analysis were performed 
independently and blinded to each other to reduce pos-
sible bias. It should be considered that there may be spa-
tial inconsistencies between imaging and histopathology, 
which may have an influence on the correlations between 
the two modalities. Second, the patient sample is com-
prised from a single center with possible selection bias. 
It could reduce the external validity of the present results. 
Third, the study only included patients with squamous 
cell carcinomas, which need to be considered. There may 
be no translation of the present results to the rare cervi-
cal adenocarcinomas. Fourth, the study only included a 

small set of immunohistochemical parameters. It would 
be interesting to further analyse more parameters, such 
as programmed-death ligand 1, HER2 or even mutations 
[33].

Conclusions
ADC values are strong associated with tumor-stroma 
ratio in uterine cervical cancer and can be used to pre-
dict tumors with a high stroma in a non-invasive manner. 
However, ADC parameters are not able to reflect tumor-
infiltrating lymphocytes. Associations between ADC his-
togram parameters and histopathology depend on tumor 
grading. ADC values correlate stronger with prolifera-
tion potential and tumor-stroma ratio in well and mod-
erate differentiated tumors than in poorly differentiated 
cancers.
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