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Abstract
Background  Radiomics holds great potential for the noninvasive evaluation of EGFR-TKIs and ICIs responses, but 
data privacy and model robustness challenges limit its current efficacy and safety. This study aims to develop and 
validate an encrypted multidimensional radiomics approach to enhance the stratification and analysis of therapeutic 
responses.

Materials and methods  This multicenter study incorporated various data types from 506 NSCLC patients, which 
underwent preprocessing through anonymization methods and were securely encrypted using the AES-CBC 
algorithm. We developed one clinical model and three radiomics models based on clinical factors and radiomics 
scores (RadScore) of three distinct regions to evaluate treatment response. Additionally, an integrated radiomics-
clinical model was created by combining clinical factors with RadScore. The study also explored the association 
between different EGFR mutations and PD-1/PD-L1 expression in radiomics biomarkers.

Findings  The radiomics-clinical model demonstrated high performance, with AUC values as follows: EGFR 
(0.884), 19Del (0.894), L858R (0.881), T790M (0.900), and PD-1/PD-L1 expression (0.893) in the test set. This model 
outperformed both clinical and single radiomics models. Decision curve analysis further supported its superior clinical 
utility. Additionally, our findings suggest that the efficacy of EGFR-TKIs and ICIs therapy may not depend on detecting 
a singular tumor feature or cell type.

Conclusion  The proposed method effectively balances the level of evidence with privacy protection, enhancing the 
study’s validity and security. Therefore, radiomics biomarkers are expected to complement molecular biology analyses 
and guide therapeutic strategies for EGFR-TKIs, ICIs, and their combinations.

Keywords  Radiomics imaging biomarkers, EGFR-TKIs therapy, ICIs therapy, Privacy protection, Non-small cell lung 
cancer
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Introduction
In recent years, advancements in molecular biology 
have brought about a significant transformation in the 
landscape of non-small cell lung cancer (NSCLC) treat-
ment. Targeted therapies, particularly those involving 
epidermal growth factor receptor (EGFR) mutation, have 
proven to be instrumental in prolonging the survival 
of affected patients [1, 2]. The predominant activating 
mutations, exon 19 deletion (19Del) and exon 21 L858R 
missense, encompass approximately 90% of EGFR muta-
tions in NSCLC [3]. Patients carrying these mutations 
exhibit a favorable response to EGFR tyrosine kinase 
inhibitors (EGFR-TKIs), but other mutations may be 
insensitive [4, 5]. Despite initial positive outcomes, most 
patients develop resistance to first- or second-generation 
EGFR-TKIs within 8 to 13 months, resulting in a poorer 
prognosis [6, 7]. Notably, the EGFR-T790M mutation 
accounts for 50–60% of cases involving acquired resis-
tance mechanisms.

Immunotherapy is another novel treatment modal-
ity that inhibits immune checkpoints, preventing tumor 
cells from escaping immune surveillance [2, 8]. Immune 
checkpoint inhibitors (ICIs) targeting anti-programmed 
cell death protein 1 (PD-1) and anti-programmed cell 
death ligand 1 (PD-L1) are spearheading a revolution in 
immunotherapy. Numerous studies have demonstrated 
that this therapy can significantly improve long-term 
survival in NSCLC patients [3, 8], particularly those 
without actionable mutations. However, only about 20% 
of patients respond favorably to this treatment. Further-
more, the optimal therapeutic strategy remains unclear 
after resistance to EGFR-TKIs. Some studies suggest that 
EGFR-TKIs therapy affects PD-L1 production [9, 10], 
and immunotherapy may offer a new option for resis-
tant patients. Therefore, accurately identifying patients 
responsive to EGFR-TKIs and ICIs therapies is essential 
for optimizing and personalizing treatment regimens.

In recent years, radiomics has gained widespread atten-
tion as a noninvasive tumor analysis tool due to its abil-
ity to extract many quantitative features from medical 
images in a high-throughput manner [11]. These features 
reflect the phenotypic characteristics and heterogene-
ity of tumors and provide critical information regarding 
tumor sensitivity to treatment, thus supporting clinical 
diagnosis and treatment response prediction [12–14]. 
Despite its great potential, the development of radiomics 
technology is still limited by model robustness and scal-
ability issues [15]. For instance, variations in image 
acquisition, reconstruction protocols, and preprocessing 
procedures can affect the reliability of the results. Addi-
tionally, it has been shown that features from the largest 
2D region of the lesion perform comparably to radiomic 
features from a 3D region of interest (ROI) in terms of 
predictive performance [16, 17]. Meanwhile, peri-tumor 

region features can significantly improve prediction 
accuracy in the medical field due to their unique abil-
ity to reflect both the tumor and its microenvironment 
[18–20].

On the other hand, an often-overlooked issue is that 
medical images contain sensitive information related to 
patient identity and health status. During storage and 
sharing, this information is vulnerable to unauthorized 
processing and privacy breaches [21, 22], which limits 
the openness and clinical applicability of the research. 
Currently, most studies have focused on medical image 
encryption techniques [21], but no reports have been on 
combining image encryption with radiomics. Therefore, 
integrating multi-region features into radiomic analysis 
can optimize traditional methods while combining pri-
vacy-preserving data encryption mechanisms, which can 
further improve the applicability of radiomics in clinical 
settings. This combined strategy is expected to yield ben-
efits in constructing more accurate and robust predictive 
models.

In existing studies, radiomic features extracted from 
CT images of primary tumors have been used to predict 
19Del, L858R, and T790M mutations [23, 24], as well as 
PD-1/PD-L1 expression [25] in NSCLC. However, these 
studies have focused only on regional features of primary 
tumors, ignoring peritumoral regions or potentially com-
plementary bi-regional features. Additionally, most stud-
ies are limited to predicting a single or a few mutation 
types. Combining multiregional characterization could 
help more comprehensively assess patient responses 
to EGFR-TKIs, ICIs, and their potential combination 
therapies.

In this study, we combined image encryption with 
radiomics to develop a noninvasive preoperative model 
for predicting the response to treatment with EGFR-TKIs 
and ICIs based on radiomic features from three tumor 
regions and clinical factors. Additionally, we explored 
potential relationships between responses to different 
therapies through a stratified analysis of radiomics imag-
ing biomarkers.

Materials and methods
Patient population and study design
The study population was retrospectively selected from 
two sources: the First Affiliated Hospital of Gannan 
Medical University (FAHGMU) in China and the publicly 
accessible “NSCLC Radiogenomics” dataset from The 
Cancer Imaging Archive (TCIA) in the United States. A 
total of 368 NSCLC patients meeting the inclusion crite-
ria were enrolled in the FAHGMU cohort, with recruit-
ment conducted in two phases: from August 2017 to 
April 2021 (FAHGMU1) and from May 2021 to Decem-
ber 2021 (FAHGMU2). Detailed inclusion and exclusion 
criteria are provided in Appendix A.
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The samples in the TCIA cohort were obtained from 
two institutions in the United States. They included 
clinical data, CT scans, EGFR mutation status, and RNA 
sequencing (RNA-seq) data. The screening criteria for 
the TCIA cohort were identical to those used for the 
FAHGMU cohort, and data from 138 patients who met 
the quality standards were ultimately included. Cases 
from the FAHGMU1 cohort were designated as the 
training set (Cohort I). Based on previous work and pre-
experimental results, the model was trained and opti-
mized using a five-fold cross-validation method with 30 
repetitions. The combined cases from the FAHGMU2 

and TCIA cohorts served as an independent external test 
set (designated as Cohort II).

As depicted in Fig.  1, the research design consists of 
two primary steps. Step 1 is conducted within a secure 
local environment. Firstly, the CT images undergo pre-
processing to identify two distinct intratumoral regions 
and one peritumoral region. Subsequently, these delin-
eated regions are encrypted using an encryption algo-
rithm to ensure data security for the subsequent step.

Step 2 is executed within a cloud computing environ-
ment and encompasses three stages. First, radiomic fea-
tures are extracted from the three encrypted ROIs using 
a decryption algorithm. Second, a sequential three-step 

Fig. 1  Study design for this integrative radiomics-clinical approach
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procedure is applied to identify the most stable and dis-
criminative features. Third, the selected features were 
integrated with clinical factors and analyzed using seven 
classifiers to develop a baseline clinical model, three 
independent radiomics models, and a comprehensive 
radiomics-clinical model. Finally, the performance of all 
models is comprehensively evaluated and compared.

Data preprocessing
Regarding data definition, based on genetic test reports, 
EGFR mutation subtypes were categorized as 19Del 
mutation, L858R mutation, T790M resistance muta-
tion, and EGFR wild-type. The definition of PD-1/PD-L1 
expression status is derived from the tumor proportion 
score (TPS) and categorized into two groups: expressed 
and non-expressed. More detailed definitions and classi-
fications are provided in Appendix B.

For CT imaging, all patients underwent a chest CT 
scan; however, the scanning protocols and acquisi-
tion parameters varied. FAHGMU used two scanners 
to acquire the CT images, and the detailed scanning 
protocols and acquisition parameters are provided in 
Appendix C. For TCIA patients, although specific imag-
ing details were not available, planar resolution and slice 
thickness could be extrapolated from the available image 
data.

Two medical experts with 5 and 10 years of experience 
manually segmented and corrected the 3D ROI for tumor 
segmentation. Subsequently, an internal algorithm auto-
matically selects the cross-sectional slice with the larg-
est area from the 3D ROI as the 2D ROI. It extends the 
boundary outward by 3 mm to generate the peri-tumor 
ROI. Figure 1 (Step 1) illustrates the three ROIs for one 
of the patients. The detailed segmentation process is out-
lined in Appendix D.

Finally, the voxel spacing of the 2D ROI, 3D ROI, and 
peritumoral ROI was resampled to 0.8 mm ×  0.8 mm, 
1.0 mm ×  1.0 mm ×  1.0 mm, and 1.0 mm ×  1.0 mm 
×  1.0  mm, respectively, based on the resolution and 
fidelity distributions of the CT images. For more details 
on the resampling analysis and the design process, please 
refer to Appendix E.

Data anonymization and image encryption
Regarding data anonymization, only the relevant clinical 
factors and indicators are retained through file parsing 
and processing of textual data. For CT image encryption, 
the original images are transformed into encrypted ver-
sions by modifying pixel data, rendering them noisy or 
unintelligible, thereby protecting sensitive information. 
This study utilizes the advanced encryption standard 
(AES) algorithm to ensure the reversibility of the encryp-
tion process while maintaining image quality. A detailed 

theoretical explanation of this algorithm is presented in 
Appendix E.

In the encryption process illustrated in Fig. 1 (Step 1), 
the cipher-block chaining (CBC) mode necessitates the 
generation of a random initialization vector (IV) as an 
initial step. This IV is then XOR-ed with the first plain-
text block. Once the first encrypted block is produced, 
subsequent encrypted blocks are derived by XOR-ing 
the preceding encrypted block with the current plaintext 
block.

As illustrated in Fig. 1 (Step 2), the decryption process 
in CBC mode closely resembles the encryption proce-
dure. First, the initial ciphertext block is decrypted using 
the key, and the resulting output is XOR-ed with the IV 
to produce the first plaintext block. For subsequent plain-
text blocks, the process involves XOR-ing the previous 
ciphertext block with the decryption result of the current 
ciphertext block.

Radiomic feature extraction
Before proceeding with feature extraction, the encrypted 
ROI must be decrypted using the AES-CBC decryption 
program. The resulting decrypted data will serve as input 
for the feature extraction process; however, it will not be 
retained. Subsequently, the voxel spacing for the three 
ROI types has been standardized to 0.8 mm2 for 2D ROIs 
and 1.0 mm3 for 3D and peritumoral ROIs. This stan-
dardization aims to maximize the advantages of each ROI 
type. For a detailed analysis of resampling and the trade-
offs associated with different voxel spacing sizes, please 
refer to Appendix F.

We systematically characterized the radiological phe-
notype of each tumor region by two distinct feature 
categories: raw features and wavelet features. The raw 
feature ensemble comprised 14 shape features, 19 first-
order statistical features, 24 GLCM features, 16 GLRLM 
features, 16 GLSZM features, 5 NGTDM features, and 
14 GLDM features. Concerning the wavelet feature 
sets, we extracted original feature sets from each of the 
eight derived images, excluding shape features. Subse-
quently, a comprehensive total of 743 radiomic features 
were extracted for each ROI. The definition of these fea-
tures followed the guidelines set by the Image Biomarker 
Standardization Initiative. Further details on the feature 
extraction can be found in previous works [26] and the 
corresponding parameter settings provided in Table S1.

Selection of optimal features
Before proceeding with subsequent analyses, the training 
and test sets underwent a standardization process using 
Z-score normalization. This process involved parameters 
derived from the mean and standard deviation calculated 
from the training set. Following normalization, we imple-
mented a careful three-step feature selection procedure. 
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Initially, discriminative features were selectively retained 
based on the Mann-Whitney U test, with correction 
facilitated through the false discovery rate (FDR = 5%) 
Benjamini-Hochberg procedure (p-value < 0.05). Sub-
sequently, the minimum Redundancy Maximum Rel-
evance algorithm was applied to eliminate redundant 
and extraneous features. Lastly, LASSO regression was 
employed to identify optimal descriptors with non-zero 
coefficients. The LASSO hyperparameter (lambda) was 
determined through 5-fold cross-validation, optimizing 
against the overall misclassification error (MCE). Post-
selection, the radiomics scores (RadScore) formulation 
occurred as a linear amalgamation of the chosen supe-
rior features, each weighted according to their respective 
coefficients as ascertained in the training set.

Model building and performance evaluation
The selected optimal feature set served as the founda-
tion for a combinatorial strategy that utilized seven com-
monly employed machine learning classifiers, aiming to 
discern suitable predictive models. The optimization 
parameters of these algorithms were determined through 
a 5-fold cross-validated grid search method. We devel-
oped specific models using the RadScore of the three 
tumor regions, including a 2D radiomics model, a 3D 
radiomics model, and a peritumoral radiomics model, 
respectively. Simultaneously, we established a quantita-
tive clinical model using relevant clinical features. Sub-
sequently, the Akaike Information Criterion method was 
applied to identify the most important clinical factors. 
These factors were then integrated with the RadScore 
derived from the combined feature set, constructing a 
comprehensive radiomics-clinical model. A detailed list 
of the employed classifiers is provided in Appendix G.

To assess the predictive capabilities for responses to 
EGFR-TKIs and ICIs therapies, models derived from 
the training set underwent validation in an independent 
test set. We employed a 30-times 5-fold stratified cross-
validation method to address categorical sample size 
limitations during model training and optimization. This 
approach aimed to provide an unbiased estimation of 
the models, mitigating overfitting and enhancing result 
robustness. Model performance was evaluated through 
the area under the receiver operating characteristic 
(ROC) curve, with higher AUC values indicating supe-
rior discrimination by the corresponding model features. 
Decision curve analysis (DCA) assessed the clinical util-
ity of the clinical, 2D, 3D, peritumoral, and radiomics-
clinical models. The DeLong test was utilized to discern 
differences in AUC among all models. Ultimately, these 
developed models were comprehensively compared 
and analyzed in an independent test set to ensure their 
efficacy.

Stratified analysis of radiomics imaging biomarkers
To identify disparities in the distribution of radiomics 
imaging biomarkers between therapies involving EGFR-
TKIs and ICIs, we investigated to assess the consistency 
of RadScore values across distinct EGFR mutations (spe-
cifically, EGFR+, 19Del, L858R, and T790M) and PD-1/
PD-L1 expression levels. Subsequent subgroup analy-
ses, based on RadScore distributions, were performed 
to elucidate the associations between radiomics imaging 
biomarkers and the therapeutic response to EGFR-TKIs 
and ICIs. Critical thresholds for different EGFR mutation 
subtypes and PD-1/PD-L1 expression were established by 
referring to the quartiles of RadScore within the training 
set. Patient stratification followed, categorizing individu-
als into three groups (RadScore-high, RadScore-median, 
and RadScore-low) based on tertiles, with detailed delin-
eation of group boundaries in Appendix H.

To elucidate the complex relationship between EGFR-
TKIs and ICIs, particularly in the context of ICIs admin-
istered after resistance to EGFR-TKIs, we conducted a 
comprehensive analysis of correlation coefficients for 
radiomics imaging biomarkers across different treatment 
modalities. The primary metric employed to define thera-
pies involving EGFR-TKIs and ICIs is RadScore’s Spear-
man’s rho, which evaluates the correlation between EGFR 
mutation status (including EGFR wild type, 19Del muta-
tion, and L858R mutation) and PD-1/PD-L1 expression. 
Additionally, RadScore’s Spearman’s rho for the T790M 
mutation about PD-1/PD-L1 expression serves as a refer-
ence for assessing combination therapies. Subsequently, 
correlation heatmaps were generated and subjected to 
a meticulous comparative analysis across these varied 
scenarios.

Statistical methods
Radiomic analyses were conducted using an internally 
developed Python program (version 3.7.6). Continu-
ous variables and RadScore were assessed through the 
Wilcoxon signed-rank test, while categorical variables 
underwent Fisher’s exact test. To address multiple com-
parisons, p-values were adjusted using a false discov-
ery rate procedure, following the Benjamini-Hochberg 
method with a 5% threshold. RNA-seq data were quan-
tified in Cohort II using the reads per kilobase million 
method. Model performance evaluation included ROC 
curves, AUC, accuracy, sensitivity, and specificity, with 
95% confidence intervals computed through 1000 boot-
strap samples. Spearman’s correlation elucidated the rela-
tionship between RadScore and responses to EGFR-TKIs 
and ICIs therapies. The pre-determined significance level 
was set at a p-value < 0.05.
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Results
Statistical characteristics of patients
The detailed clinical information and RadScore for all 
patients are presented in Table  1. Statistical analysis of 
the combined datasets (Cohort I and Cohort II) revealed 
that the prevalence of EGFR mutation, 19Del mutation, 
and L858R mutation, which are associated with EGFR-
TKIs therapies, were 38.5%, 19.1%, and 14.9%, respec-
tively. The prevalence of the T790M mutation, which 
confers resistance to EGFR-TKIs, was 9.2%. Additionally, 
47.1% of patients with PD-1/PD-L1 expression responded 
to ICIs therapy. Clinical characteristics in Table 1 with a 
p-value < 0.05 were considered statistically significant.

For the three RadScore calculated from the 2D, 3D, 
and peritumoral regions, the mean RadScore for posi-
tive patients in the EGFR, 19Del, L858R, T790M, and 
PD-1/PD-L1 groups were higher than those for negative 
patients. A significant difference was observed in all cases 
(p-value < 0.001), except for the 2D RadScore (p-value = 
0.015) and the peritumoral RadScore (p-value = 0.012) in 
the T790M group. Thus, RadScore is an independent pre-
dictor of response to EGFR-TKIs and ICIs therapies.

Image decryption and pixel correlation
Medical diagnosis is highly sensitive to even minor varia-
tions in image pixels, making it essential to preserve the 
quality of encrypted images to prevent any adverse effects 
on radiomic analysis. The Structural Similarity (SSIM) 
index is an effective metric for evaluating how brightness, 
contrast, and structural differences impact the visual 
quality of an image. The results demonstrate that the 
SSIM value between each patient’s original CT image and 
its corresponding decrypted image is 1, confirming that 
the proposed AES-CBC encryption and decryption pro-
cess is entirely lossless. As shown in Fig. 2, the encrypted 
image resembles noise or a meaningless pattern, while 
the decryption process restores the original image with-
out any data loss.

Pixel correlation is an important indicator of image 
randomness. In chest CT images, adjacent pixels typi-
cally exhibit high correlation; thus, an effective encryp-
tion method must significantly reduce this correlation to 
enhance security. As shown in Table S7, pixel correlation 
in the encrypted image is substantially reduced in the 
horizontal, vertical, and diagonal directions, approach-
ing zero. Therefore, the proposed AES-CBC algorithm 

Table 1  Clinical characteristics and RadScore of all patients
Characteristic Cohort I 

(n = 303)
Cohort II 
(n = 203)

P value Genotypes Training (Cohort I) Test (Cohort II) P 
value

Age (years) < 0.001 EGFR < 0.001
  Mean ± SD 62.1 ± 10.8 67.7 ± 9.5 Mutant 137 (45.2) 55 (29.9)
Gender 0.014 Wildtype 166 (54.8) 129 (70.1)
  Male 190 (62.7) 140 (69.0) 19Del < 0.001
  Female 113 (37.3) 63 (31.0) Mutant 59 (26.2) 21 (14.0)
Smoking status < 0.001 Wildtype 166 (73.8) 129 (86.0)
  Smoker 151 (49.8) 143 (70.4) L858R < 0.001
  Nonsmoker 152 (50.2) 60 (29.6) Mutant 44 (5.8) 16 (11.0)
Tumor location 0.020 Wildtype 166 (79.0) 129 (89.0)
  RUL 89 (29.4) 70 (34.5) T790M < 0.001
  RML 27 (8.9) 19 (9.4) Mutant 19 (10.3) 9 (6.5)
  RLL 53 (17.5) 35 (17.2) Wildtype 166 (89.7) 129 (93.5)
  LUL 92 (30.4) 53 (26.1) Immune molecule Training (Cohort I) Test (Cohort II) P 

value
  LLL 42 (13.9) 26 (12.8) PD-1/PD- L1 0.016
LVI < 0.001 Positive 58 (51.3) 26 (40.0)
  Present 120 (39.6) 43 (21.2) Negative 55 (48.7) 39 (60.0)
  Absent 183 (60.4) 160 (78.8) RadScore Training (Cohort I) Test (Cohort II) P 

value
PI < 0.001 2D region

Median (six groups)
(0.051, 0.131, 0.0976, 
0.074, -0.004)

(-0.027, -0.119, -0.145, 
-0.046, -0.066)

< 0.001
  Yes 232 (76.6) 87 (42.9)
  No 71 (23.4) 116 (57.1) 3D region

Median (six groups)
(0.050, 0.101, 0.092, 
0.178, -0.018)

(0.000, -0.131, -0.023, 
-0.094, -0.022)

< 0.001
T stage < 0.001
  T4 100 (33.0) 25 (12.3) Peritumoral region

Median (six groups)
(-0.006, 0.072, 0.039, 
0.138, -0.032)

(-0.051, -0.064, -0.056, 
-0.067, 0.003)

< 0.001
  Other 203 (67.0) 178 (87.7)
Note Data are presented as n (%) unless otherwise indicated. Six groups represent EGFR, 19Del, L858R, T790M, and PD-1/PD-L1. Abbreviations: SD, standard deviation; 
RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; LVI, Lymphovascular invasion; PI, Pleural invasion
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effectively disrupts pixel correlation, offering strong 
resistance to statistical attacks.

Performance in identifying response to EGFR-TKIs 
therapies
Appendix I provides a detailed description of the pre-
dictive model developed for each case, the key features 
selected, and the formula used to calculate RadScore.

The model’s performance was assessed using indepen-
dent test data unless otherwise specified. Among EGFR 
mutation, the AUC values were 0.730 (95% CI, 0.720–
0.740), 0.746 (95% CI, 0.737–0.755), and 0.752 (95% CI, 
0.742–0.761) for the 2D, 3D, and peritumoral models, 
respectively. The AUC of the model constructed from 
clinical factors was 0.708 (95% CI, 0.697–0.718), indicat-
ing inferior performance compared to radiomics models 
based on a single region. However, the radiomics-clinical 
model exhibited superior performance with an AUC of 
0.884 (95% CI, 0.877–0.890). These results suggest that 
integrating clinical factors, 2D regions, 3D regions, and 
peritumoral regions offers a valuable and synergistic 
advantage.

The ROC curves, DCA, and AUC distributions for 
each model are depicted in the three insets of Fig.  3a. 
The DCA reveals that the radiomics-clinical model (in 
red) encompasses a larger area than the clinical, 2D, 3D, 
and peritumoral models. This result suggests that the 
radiomics-clinical model holds greater promise for clini-
cal decision utility.

In other EGFR mutation groups, similar outcomes were 
observed. Initially, single region-based radiomics models 
exhibited superior predictive efficacy compared to the 

clinical model. The AUC values for predicting the 19Del, 
L858R, and T790M mutations were as follows: 0.715 
(95% CI, 0.701–0.728), 0.728 (95% CI, 0.713–0.745), and 
0.746 (95% CI, 0.719–0.774) for the clinical model; 0.756 
(95% CI, 0.741–0.772), 0.753 (95% CI, 0.739–0.767), and 
0.769 (95% CI, 0.750–0.786) for the 2D model; 0.777 (95% 
CI, 0.767–0.787), 0.784 (95% CI, 0.772–0.797), and 0.816 
(95% CI, 0.796–0.835) for the 3D model; and 0.734 (95% 
CI, 0.718–0.749), 0.746 (95% CI, 0.729–0.763), and 0.771 
(95% CI, 0.757–0.784) for the peritumoral model.

Secondly, our integrated radiomics-clinical model, 
which combines clinical variables with multiregional 
RadScore, demonstrated superior performance com-
pared to other models. The model achieved AUCs of 
0.894 (95% CI, 0.887–0.901) for the 19Del mutation, 
0.881 (95% CI, 0.867–0.896) for the L858R mutation, and 
0.900 (95% CI, 0.889–0.910) for the T790M mutation. 
Figures 3b-c and 4a summarize the performance of each 
model regarding these EGFR mutations, including ROC 
curves, DCA curves, and AUC distributions.

The AUCs of the radiomics-clinical models exhibited 
varying degrees of improvement relative to the conven-
tional single model in predicting the response to EGFR-
TKIs therapies. Supplementary performance metrics for 
each model are delineated in Table S8 for reference.

Performance in identifying response to ICIs therapies
Concerning identifying patients sensitive to ICI thera-
pies, as depicted in Fig. 4b, the radiomics-clinical model 
demonstrated the highest performance, with an AUC of 
0.893 (95% CI, 0.883–0.903). In comparison, the predic-
tive performance of the 2D, 3D, and peritumoral models 

Fig. 2  Effect of the AES-CBC encryption algorithm on CT cross-sectional Images of six random patients
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was moderate, with AUCs of 0.754 (95% CI, 0.737–0.769), 
0.774 (95% CI, 0.758–0.789), and 0.779 (95% CI, 0.764–
0.792), respectively. The clinical model exhibited the low-
est predictive performance, with an AUC of 0.716 (95% 
CI, 0.700-0.732).

Figure 4b presents each model’s ROC curve, DCA, and 
AUC distribution. The integration of key clinical char-
acteristics and RadScore (combined) demonstrated the 
strongest predictive capability. Additionally, the DCA 
analysis indicated that the radiomics-clinical model 

provided a greater net benefit for PD-1/PD-L1 expression 
than the clinical and single-region radiomics models, 
enhancing its clinical feasibility.

Radiomics imaging biomarkers associated with EGFR-TKIs 
and ICIs therapy responses
This study investigated the association between 
radiomics imaging biomarkers and therapeutic responses 
to EGFR-TKIs and ICIs. Notably, the RadScore exhibited 
significant variations (p-value < 0.001) across different 

Fig. 3  ROC curves (left inset) and DCA curves (middle inset) for each model predicting EGFR mutation (a), 19Del mutation (b), and L858R mutation (c) in 
the independent test set, and AUC distribution (right inset) in the training set
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genetic mutations, including the EGFR mutation, 19Del 
mutation, L858R mutation, T790M mutation, and PD-1/
PD-L1 expression. Specifically, the RadScore for the 
L858R mutation (mean, -0.027; 95% CI, -0.469 to 0.325) 
and for PD-1/PD-L1 expression (mean, -0.031; 95% CI, 
-0.293 to 0.169) was significantly lower compared to that 
for the EGFR mutation (mean, 0.013; 95% CI, -0.273 to 
0.334) and the T790M mutation (mean, 0.014; 95% CI, 
-0.539 to 0.343). Moderate results were observed for the 
19Del mutation, with a mean RadScore of 0.008 (95% CI, 
-0.375 to 0.319).

When patients were categorized into distinct RadScore 
groups (see Fig. 5a-c), we observed a significantly higher 
rate of the 19Del mutation in the RadScore-High group 
(21.15%) compared to the RadScore-Low group (7.69%). 
Additionally, the prevalence of patients exhibiting both 
the L858R mutation and PD-1/PD-L1 expression was 
15.38% in the RadScore-High and RadScore-Low groups. 
In contrast, the rates for the L858R mutation and PD-1/
PD-L1 expression in the RadScore-Median group were 
9.58% and 25.40%, respectively. Notably, the EGFR muta-
tion rate was the highest, ranging from 42.31 to 53.85%, 
while the T790M mutation rate was the lowest, ranging 
from 5.77 to 7.94%.

Given the limited clinical responses to EGFR-TKIs and 
ICIs, a subgroup analysis was conducted to explore the 
nuanced relationship between RadScore and therapeutic 
responses. This investigation aimed to identify associa-
tions between specific EGFR mutations and PD-1/PD-L1 
expression. As illustrated in Fig. 5d, a statistically signifi-
cant correlation (p-value < 0.05) emerged among three 
EGFR mutation statuses: EGFR mutation, 19Del muta-
tion, and L858R mutation.

Specifically, the 19Del mutation exhibited the strongest 
positive correlation (r = 0.274, p-value < 0.001), while the 
L858R mutation demonstrated a significant negative cor-
relation (r = -0.185, p-value < 0.001). The overall EGFR 
mutation status showed a moderately positive correlation 
(r = 0.178, p-value < 0.01). In contrast, the EGFR wild-
type (r = 0.012, p-value = 0.065) and T790M mutation (r 
= -0.015, p-value = 0.058) exhibited either a negative cor-
relation or a lack of statistical significance.

In the analysis of RadScore disparities associated 
with responses to EGFR-TKIs and ICIs, Fig.  5d illus-
trates the distribution of RadScore across the four 
EGFR mutation statuses and PD-1/PD-L1 expres-
sion levels. The results  (see Fig.  5e) reveal a statistically 

Fig. 4  ROC curves (left inset) and DCA curves (middle inset) for each model predicting T790M mutation (a) and PD-1/PD-L1 expression (b) in the inde-
pendent test set and AUC distribution (right inset) in the training set
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significant variance in RadScore about different thera-
peutic responses (p-value < 0.001).

Additionally, Fig. 6 provides an overview of the poten-
tial applicability of the proposed radiomics imaging bio-
markers in informing treatment strategies for NSCLC, 
particularly in therapy with EGFR-TKIs or ICIs.

Discussion
Identifying predictive biomarkers of treatment response 
to EGFR-TKIs and ICIs is crucial for optimizing treat-
ment decisions, avoiding premature discontinuation of 
therapy, and preventing the prolongation of ineffective 
treatment periods. In this study, we extracted radiomic 
features associated with EGFR mutant subtypes (includ-
ing the 19Del, L858R, and drug-resistant T790M muta-
tions) and PD-1/PD-L1 expression from CT images. 
The multi-scale RadScore developed from these features 

Fig. 5  RadScore (combined) analysis of therapeutic responses to EGFR-TKIs and ICIs in independent test set. a-c RadScore (Combined) for patients in 
different RadScore groups. d, e Correlation heatmap and distribution of RadScore (combined) for different therapy responses
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demonstrates significant potential and is easily accessible 
clinically. More importantly, it strikes a balance between 
privacy protection and the level of radiographic evidence, 
which has not been previously reported in the litera-
ture. As a multicenter study, we constructed and vali-
dated a radiomics-clinical model integrating three tumor 
regional features with clinical factors using encrypted 
CT images and clinical data. Furthermore, we explored 
potential associations between EGFR-TKIs, ICIs therapy, 
and their combination therapy through a stratified analy-
sis of radiomics imaging biomarkers, offering valuable 
insights and references for advancing precision medicine.

In recent years, radiomics analysis has been widely 
used to characterize the biological behavior of malig-
nant tumors, demonstrating significant clinical value. 
For example, Hu et al. [27] utilized deep learning radio-
clinical signatures based on CT to demonstrate excellent 
performance in predicting the response to neoadjuvant 
chemotherapy and prognosis in gastric cancer patients, 
achieving an AUC of 0.82 and a consistency index of 0.64. 
Lan et al. [28] developed a model combining deep learn-
ing features and radiomic features to successfully predict 
occult lymph node metastasis in patients with early-
stage oral and oropharyngeal squamous cell carcinoma. 
The best AUC obtained in the external validation set was 
0.834. Yu et al. [29] pointed out that AI models incorpo-
rating multimodal data help reveal the heterogeneity of 
the tumor microenvironment and significantly enhance 
risk stratification in breast cancer. These studies suggest 
that the predictive power of traditional radiomics meth-
ods can be further enhanced by incorporating additional 
effective feature analysis.

Notably, studies have shown that features of the peri-
tumor region can reflect subtle changes in the tumor 
microenvironment and provide additional information 

about tumor biological heterogeneity [30–32]. How-
ever, no study has yet combined features from different 
regions (particularly peri-tumor regions) to predict the 
response to EGFR-TKIs or ICIs in lung cancer patients. 
Radiomics analysis based on multiregional features may 
offer a new direction for developing more accurate and 
robust prediction models-an idea further validated in this 
study.

Specifically, the multiregional radiomics-clinical model 
proposed in this study outperformed the single-modal-
ity feature model in prediction performance. Across all 
prediction scenarios, the AUCs of the combined model 
showed improvements of 0.132 to 0.176 (EGFR muta-
tion), 0.117 to 0.179 (19Del mutation), 0.097 to 0.153 
(L858R mutation), 0.084 to 0.154 (T790M mutation), and 
0.114 to 0.177 (PD-1/PD-L1 expression). These findings 
suggest combining multiregional features can effectively 
mine critical information within and around the tumor.

Compared to recent related studies, the present study 
demonstrated a significant advantage in its predictive 
ability to distinguish three EGFR mutation subtypes 
and one immunophenotype. For instance, in predict-
ing the 19Del mutation and L858R mutation, the AUCs 
reported by Li et al. [33] and Liu et al. [34] using tumor 
region-based radiomics models were 0.792 and 0.775, 
and 0.867 and 0.704, respectively. In contrast, the pres-
ent study achieved AUCs of 0.894 and 0.881. Similarly, 
for the EGFR-T790M mutation, Fan et al. [35] and Tang 
et al. [24] reported AUCs of 0.800 and 0.760, respectively, 
while the present study reached an AUC of 0.900. More-
over, in predicting PD-1/PD-L1 expression, the AUC 
of the present study was 8.93, surpassing the results of 
previous studies [36, 37]. These findings highlight the 
effectiveness and innovation of the multi-region charac-
terization-based approach employed in this study.

Fig. 6  Radiomics biomarkers as potential guides for the treatment of NSCLC with EGFR-TKIs or ICIs. Abbreviations NCCN, National Comprehensive Cancer 
Network
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Furthermore, this study demonstrated innovation by 
evaluating treatment responses to EGFR-TKIs and ICIs 
while ensuring patient data privacy. However, it is impor-
tant to consider the potential impact of image encryption 
on radiomics analysis. On the one hand, while the AES 
algorithm provides lossless encryption, is easily imple-
mented in hardware, and offers high security due to its 
large key length, striking a balance between security and 
efficiency remains a challenge. As shown in Table S9, the 
average time required for decryption and feature extrac-
tion per patient ranges from 1.93 to 2.09 s and 10.62 to 
14.00 s for 2D, 3D, and peri-tumor regions, respectively. 
This underscores the need to develop more efficient 
and lightweight encryption schemes to protect patient 
privacy and data security better. On the other hand, 
although this study represents a step forward, its reli-
ance on decrypting encrypted datasets limits the broader 
applicability of the proposed method. Consequently, con-
ducting radiomics studies in an encrypted environment, 
without the need to decrypt medical images, may be a 
promising direction for future research.

This study demonstrates that radiomics imaging bio-
markers effectively identify NSCLC patients responsive 
to EGFR-TKIs, ICIs, and combination therapies. Further 
correlation analysis revealed a negative or non-significant 
association between PD-1/PD-L1 expression and EGFR 
wild-type status, in contrast to a significant positive cor-
relation in EGFR-mutant NSCLC. These findings align 
with multiple preclinical studies [38, 39], indicating that 
NSCLC patients with EGFR mutation exhibit higher 
PD-L1 positivity rates than those with EGFR wild-type 
status. This phenomenon may be attributed to the role 
of intracellular EGFR signaling in directly or indirectly 
upregulating PD-L1 expression in tumor cells, thereby 
facilitating T-cell apoptosis and promoting immune 
evasion.

The observed modest correlation between PD-1/PD-L1 
expression and the 19Del and L858R mutations sug-
gests that these two common EGFR mutation subtypes 
may lead to EGFR activation and induce PD-L1 expres-
sion, as the downstream pathways of EGFR activation 
can be influenced by tumor suppressor genes and cyto-
kines produced by the inflammatory microenvironment. 
In contrast, a negative or non-significant correlation 
was identified between the drug-resistant T790M muta-
tion and PD-1/PD-L1 expression, suggesting that strong 
PD-L1 expression may be more prevalent in T790M-
negative NSCLC patients than in their T790M-positive 
counterparts. These findings are consistent with the 
results reported by Inomata et al. [40].

These association results suggest that the response to 
EGFR-TKI and ICI therapies may not depend on a sin-
gle tumor characteristic or a specific tumor cell type. 
However, it is important to note that the underlying 

explanations for these associations and their spe-
cific molecular mechanisms have not been fully eluci-
dated, and further studies are required to gain a deeper 
understanding.

Another important observation from the findings is 
that the training set data should be heterogeneous. A 
large but overly homogeneous sample can impair the 
ability to discern responses to EGFR-TKIs and ICIs, as 
the derived algorithms require diverse training to iden-
tify patients with atypical characteristics effectively. For 
example, the radiomics-clinical model failed to identify 
two cases in an independent test set. One patient exhib-
ited a 19Del mutation alongside a primary T790M muta-
tion, while the other presented with a common L858R 
mutation in exon 21, along with MET amplification. The 
inability of the radiomics-clinical model to accurately 
categorize these cases may be attributed to the absence of 
these less common genetic alterations in the training set.

There are several limitations to our work. First, all 
study samples were retrospectively collected from dif-
ferent institutions, which may introduce selection 
bias during patient recruitment, potentially affecting 
the unbiased nature of the prediction model. Second, 
although radiomics analysis incorporating multi-region 
features enhances the robustness of the model, it is still 
limited by the manual extraction of radiomic features. 
Deep learning techniques are expected to improve medi-
cal image analysis further. Third, the radiomics imaging 
biomarkers identified in this study lacked an in-depth 
assessment of the underlying molecular mechanisms, 
which could be further explored by integrating genom-
ics and proteomics in future studies. Fourth, the clinical 
utility of the developed predictive models in predicting 
treatment responses to EGFR-TKIs and ICIs requires 
further validation in larger and more heterogeneous 
prospective cohorts. Finally, novel automated segmen-
tation algorithms need to be developed to simplify the 
radiomics process and better meet the demands of real-
world clinical scenarios.

Conclusion
In conclusion, this study demonstrates that radiomics-
clinical model integrates multiregional features and clini-
cal factors and is a non-invasive and efficient method for 
assessing the response of NSCLC patients to EGFR-TKIs 
and ICIs therapies. The model has potential in precision 
medicine and may become an important complementary 
tool for molecular biology analysis after further prospec-
tive validation. Moreover, the method’s potential is fur-
ther enhanced by balancing protecting patient privacy 
and improving predictive accuracy. The developed imag-
ing biomarkers for radiomics revealed potential asso-
ciations between EGFR-TKIs therapy, ICI therapy, and 
their combination therapy. However, further molecular 
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mechanism analysis still needs to validate and thoroughly 
investigate these findings.
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