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Abstract
Background Accurately predicting the malignant risk of ground-glass nodules (GGOs) is crucial for precise treatment 
planning. This study aims to utilize convolutional neural networks based on dual-time-point 18F-FDG PET/CT to 
predict the malignant risk of GGOs.

Methods Retrospectively analyzing 311 patients with 397 GGOs, this study identified 118 low-risk GGOs and 279 
high-risk GGOs through pathology and follow-up according to the new WHO classification. The dataset was randomly 
divided into a training set comprising 239 patients (318 lesions) and a testing set comprising 72 patients (79 lesions), 
we employed a self-configuring 3D nnU-net convolutional neural network with majority voting method to segment 
GGOs and predict malignant risk of GGOs. Three independent segmentation prediction models were developed 
based on thin-section lung CT, early-phase 18F-FDG PET/CT, and dual-time-point 18F-FDG PET/CT, respectively. 
Simultaneously, the results of the dual-time-point 18F-FDG PET/CT model on the testing set were compared with the 
diagnostic of nuclear medicine physicians.

Results The dual-time-point 18F-FDG PET/CT model achieving a Dice coefficient of 0.84 ± 0.02 for GGOs 
segmentation and demonstrating high accuracy (84.81%), specificity (84.62%), sensitivity (84.91%), and AUC (0.85) 
in predicting malignant risk. The accuracy of the thin-section CT model is 73.42%, and the accuracy of the early-
phase 18F-FDG PET/CT model is 78.48%, both of which are lower than the accuracy of the dual-time-point 18F-FDG 
PET/CT model. The diagnostic accuracy for resident, junior and expert physicians were 67.09%, 74.68%, and 78.48%, 
respectively. The accuracy (84.81%) of the dual-time-point 18F-FDG PET/CT model was significantly higher than that of 
nuclear medicine physicians.

Conclusions Based on dual-time-point 18F-FDG PET/CT images, the 3D nnU-net with a majority voting method, 
demonstrates excellent performance in predicting the malignant risk of GGOs. This methodology serves as a valuable 
adjunct for physicians in the risk prediction and assessment of GGOs.
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Background
Lung cancer stands as a predominant cause of cancer-
related mortality worldwide, accounting for 18% of all 
cancer-related deaths [1]. Medical imaging plays an 
important role in the early diagnosis of the lung cancer. 
Especially, with the widespread adoption of low-dose 
lung computed tomography in lung cancer screening 
in recent years, the detection rate of subsolid nodules 
has significantly increased [2]. Subsolid nodules, also 
known as ground-glass nodules (GGOs), represent one 
of the most common manifestations found in lung cancer 
screening [3]. GGOs comprise pure ground-glass nod-
ules (pGGO) and mixed ground-glass nodules (mGGO) 
with both ground-glass and solid densities [4, 5]. GGOs 
encompass a spectrum of lesions, including benign nod-
ules, atypical adenomatoid hyperplasia (AAH), adeno-
carcinoma in situ (AIS), microinvasive adenocarcinoma 
(MIA) and invasive adenocarcinoma (IA) [6]. According 
to latest guideline published by the World Health Orga-
nization (WHO) in 2021, based on molecular genetic 
characteristics, pulmonary lesions were categorized into 
benign tumors, precursor glandular lesions, and pul-
monary adenocarcinomas. Precursor glandular lesions 
encompass AAH and AIS, while pulmonary adenocar-
cinomas include MIA and IA [7]. Lung adenocarcinoma 
excludes AIS from the malignant category, categorizing 
it as AAH in the new classification [7]. This revised clas-
sification introduces challenges in diagnosing and cat-
egorizing precursor lesions and microinvasive cancers. 
Moreover, for GGOs suspected to be AIS, immediate 
surgical removal is not recommended. Instead, priority 
is given to follow-up observation until there is evident 
malignant transformation before considering surgical 
intervention in the 2023 NCCN lung cancer surveillance 
guidelines [8]. Therefore, accurate diagnosis and risk pre-
diction of GGOs hold paramount clinical significance for 
decision-making according to the new WHO classifica-
tion [9, 10].

Due to the heterogeneity, low density, and uneven den-
sity within GGOs tissue, the success rate of pathological 
biopsy is compromised [11, 12]. Qualitative diagnosis of 
GGOs through clinical biopsy is challenging [5]. GGOs 
may exhibit indolent growth, and current clinical prac-
tice involves periodic follow-up for diagnosis. Prolonged 
undiagnosed follow-up imposes substantial psychologi-
cal burden and stress on patients. Achieving precise diag-
nosis of GGOs through imaging techniques is a current 
research focus. Positron emission tomography-computed 
tomography (PET/CT) with 18F-FDG, integrating PET 
and CT imaging, provides both anatomical and molecular 

information in a single scan, offering a crucial method for 
predicting malignant risk in pulmonary nodules [13, 14]. 
However, 18F-FDG PET/CT with visual analysis com-
bined with semi-quantitative indicators still has some 
limitations in early diagnosis of GGOs [15].

Artificial intelligence has garnered significant atten-
tion for its crucial potential in diagnosing GGOs [16–
18]. Most previous studies have been conducted based 
on CT images [19–21], and there is currently a lack of 
research on artificial intelligence methods for predict-
ing the malignant risk of GGOs based on 18F-FDG PET/
CT images, specifically in the context of the new WHO 
classification for GGOs. The 3D nnU-net, an automatic 
segmentation method based on convolutional neural 
networks, exhibits excellent generalization capabilities, 
adapting its architecture to different tasks and outper-
forming many existing methods in medical image pro-
cessing in terms of accuracy, reliability, and efficiency 
[22–24]. Herein, we employed the 3D nnU-net with a 
majority voting method to predict the malignant risk of 
GGOs according to the new WHO classification based 
on dual-time-point 18F-FDG PET/CT images.

Methods
Patient selection
In this retrospective single-center study, we recruited 
316 patients with GGOs who underwent dual-phase 18F 
PET/CT imaging at the department of nuclear medicine 
in the First Affiliated Hospital of China Medical Univer-
sity between June 1, 2015, and July 20, 2023. The study 
focused on patients exhibiting CT imaging characteris-
tics indicative of GGOs. This research received approval 
from the institutional ethics committee for retrospective 
analysis and did not require informed consent. Inclusion 
criteria were as follows: (1) Stage I lung adenocarcinoma; 
(2) Pulmonary nodules presenting as GGOs; (3) Lesion 
diameter within the range of [5 mm, 30 mm]; (4) Avail-
ability of postoperative pathological diagnosis, and the 
time interval between PET/CT examination and pathol-
ogy sample acquisition was less than 90 days, or patients 
with a clinical follow-up with CT exceeding 3 years. 
Exclusion criteria were: (1) Antitumor therapy (including 
neoadjuvant chemotherapy); (2) Incomplete clinical or 
imaging data.

Datasets
A preliminary cohort study was conducted on 311 
patients with GGOs who underwent 18F-FDG PET/CT 
scans using Siemens Biograph MCT. The scans were per-
formed 60 min after intravenous injection of 5.5 MBq/kg 
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18F-FDG. Each bed position acquired 18F-FDG PET/CT 
data over a 90-second interval. Thin-section CT images 
of the lungs were obtained without contrast. A delayed 
scan was conducted 120  min after the initial scan. The 
voxel size for dual-phase PET was set at 4 mm × 4 mm 
× 4  mm, and CT voxel size was 0.68  mm × 0.68  mm × 
0.7  mm. All scans were supervised by an experienced 
nuclear medicine technologist with 20 years of chest 
imaging expertise. The DICOM files were processed 
using LIFEX software (https://www.lifexsoft.org/) for 
delineation of GGOs in both dual-phase PET and CT 
images. For PET images, a semi-automatic delineation 
was performed using the Threshold 41% tool. For CT 
images, manual delineation was carried out on lung win-
dow settings (window level: -450, window width: 1500) 
using the pencil 2D tool for layer-by-layer delineation.

Based on follow-up and pathological data, the collected 
data were divided into two groups: the low-risk nodule 
group (precursor glandular lesion, follow up remains 
unchanged) and the high-risk nodule group (MIA, 
IA). Following the initial 18F-FDG PET/CT examina-
tion, patients underwent regular lung CT scans during 
a 3-year follow-up period. For pulmonary GGOs within 
this follow-up, if there were no changes in the nodule 
diameter and composition, the nodule was classified as 
low risk. The final study included a total of 397 GGOs, 
comprising 118 in the low-risk group and 279 in the 
high-risk group. The specific number of nodules for each 
category is detailed in Fig. 1.

Method
The workflow of the model is depicted in Fig. 2 and com-
prises two primary components: data preprocessing, 
segmentation GGOs and prediction of malignant risk 
for GGOs. All experiments were conducted on a single 
Nvidia GeForce RTX 3090. The model was constructed 
using PyTorch 1.4.3 and Python 3.8.

Data preprocessing
In the data preprocessing phase, several key steps were 
undertaken to ensure uniformity and relevance across 
18F-FDG-PET, delayed-phases PET, and thin-section 
CT images. The 18F-FDG-PET, delayed-phases PET, and 
thin-section CT scans were resampled to achieve con-
sistency in voxel dimensions. The resampling method 
employed was trilinear interpolation, a technique com-
monly used to estimate voxel values at non-grid posi-
tions based on surrounding grid points. This ensured 
alignment and uniformity across the different imaging 
modalities. The central points of the GGOs were identi-
fied, and three-dimensional blocks (32 × 32 × 32) were 
extracted from 18F-FDG-PET, delayed-phases PET, and 
CT images centered around these points. This block size 
was chosen to focus on the GGOs, removing irrelevant 
areas outside the region of interest. The CT images were 
subjected to windowing with a window width of 1500 
and a window level of -450. This specific setting was cho-
sen to enhance the visualization of pulmonary details 
within the CT images, ensuring clarity and highlight-
ing relevant anatomical structures. The entire dataset, 
encompassing 18F-FDG-PET, delayed-phases PET, and 
CT images, underwent a z-score standardization process. 

Fig. 1 A flowchart of the patients included and excluded, a grouping diagram of different types of GGOs in this study
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This involved subtracting the mean voxel value from 
each voxel and then dividing by the standard deviation. 
The z-score standardization ensured that each modality 
had a mean of 0 and a standard deviation of 1, facilitat-
ing model convergence during subsequent training and 
analysis.

Architecture of model
The classification network for the GGOs is depicted in 
Fig.  3. The input consists of the 3-channel ROI of the 
dual-phase 18F-FDG PET images and thin-section lung 
CT images, which were extracted in the previous step. 
The output of the network provides the GGOs segmen-
tation (voxel-wise predicted labels of invasive GGOs 
and inert GGOs with the same imaging resolution as the 
input images). The primary architecture of the network 
is a 3D U-net [25], which belongs to the 3D nnU-net 
framework [26]. The 3D nnU-net is widely recognized for 
its high performance on 23 public datasets. It is a deep 
learning-based segmentation technique that has been 

extensively employed for medical imaging segmentation 
tasks and has demonstrated superiority over numerous 
existing approaches without requiring manual interven-
tion. The network is composed of an encoder-decoder 
structure with skip connections linking the two path-
ways. The encoder includes 5 levels of convolutional lay-
ers with strided convolution of the same down-sampling 
rate. The decoder follows the same design that incorpo-
rates transpose convolution up-sampling on the concat-
enated up-sampled features from the lower level and the 
skip features from the encoder branch at the same level. 
After every convolution operation, Leaky ReLU with 
a slope of 0.01 [27] and batch normalization [28] were 
applied after every convolution operation. The result of 
the 3D nnU-net is input into the majority voting mod-
ule, a straightforward yet effective classification algo-
rithm. High-risk GGOs component prediction voxels 
exceeding 50% of total voxels indicate malignancy, with 
values below 50% classifying the lesion as low risk. The 

Fig. 3 The architectural framework of the 3D nnU-Net comprises an encoder and a decoder intricately linked through skip connections

 

Fig. 2 The workflow of the model for segmenting GGOs and predicting malignant risk
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assessment of malignancy risk in the testing set (high-
risk GGOs or low-risk GGOs) is further determined.

Training and testing details
A loss function in machine learning and deep learning 
estimates the disparity between predicted and actual 
values. It quantifies predictive accuracy during model 
training, guiding parameter optimization for enhanced 
performance. Given the use of the 3D nnU-net model for 
segmenting nodule volumes in this study, the loss func-
tion combines Dice loss and cross-entropy loss. Loss 
computation spans the entire tumor region, yielding the 
Dice coefficient to assess segmentation outcomes. The 
3D nnU-net employs stochastic gradient descent with an 
initial learning rate of 0.01 and Nesterov momentum of 
0.99. Training consists of 1000 epochs, with each epoch’s 
sample size equal to the total training set samples. Data 
augmentation is applied to each patch during train-
ing. The optimal model, determined post-convergence 
of training loss, is applied to the testing set, generating 
segmentation results for high-risk and low-risk GGOs 
components.

Statistical analysis
For the high risk GGOs and low risk GGOs groups, sig-
nificant differences were assessed by the chi-square test 
for categorical variables and the t-test for continuous 
variables. To assess the performance of the model across 
various modalities, three models were trained: a thin-
section lung CT model, an early-phase 18F-FDG PET/CT 
model, and a dual-time-point 18F-FDG PET/CT model, 
all validated on the testing set. All models adopted the 
same 3D nnU-net architecture, with adjustments made 
to the input and layer structures based on the number 
of modalities in the input images. Simultaneously, to 
assess the clinical applicability of the models, we com-
pared the results with those of three nuclear medicine 
diagnostic physicians. These physicians (resident, junior 
and expert), possessed over 2, 5, and 10 years of PET/
CT interpretation experience, respectively. After anony-
mizing the imaging data, the diagnostic physicians inde-
pendently interpreted the nature of pulmonary nodules 
in thin-section lung CT, early-phase PET, and delayed-
phase PET images. They subsequently integrated the 
findings from all three modalities for a comprehensive 
qualitative assessment of pulmonary nodules. The final 
qualitative results were compared with the predictions of 
the dual-time-point 18F-FDG PET/CT model on the test-
ing set. Performance metrics, including accuracy, speci-
ficity, sensitivity, positive predictive value (PPV), negative 
predictive value (NPV), F1 score, and the area under the 
ROC curve, were employed to evaluate model efficacy. 
All statistical analyses were performed using Python 
(version 3.8).

Results
Characteristics of patients with GGOs
This study enrolled a total of 311 patients with 397 nod-
ules. Clinical data and nodule characteristics were sub-
jected to analysis, encompassing variables such as gender, 
age, smoking history, family history of lung cancer, nod-
ule size, nodule location, maximum standardized uptake 
value (SUVmax) in the early and delayed phases. The base-
line clinical features of each patient group are presented 
in Table 1. Among the patients, 198 were female, consti-
tuting 63.7% of the cohort; 247 were non-smokers, rep-
resenting 79.4%; and 255 had no family history of lung 
cancer, accounting for 82%. The mean age of the patients 
was 60.46 years. There were 279 instances of high-risk 
GGOs, including 74 MIA cases and 205 IA cases, and 
118 instances of low-risk GGOs, comprising 31 AAH 
cases, 13 AIS cases, and 74 cases with unchanged fol-
low-up lesions. The dataset was randomly divided into 
a training set comprising 239 patients (318 lesions) and 
a testing set comprising 72 patients (79 lesions), Clinical 
characteristics of patients in both sets are summarized in 
Table 1. Statistical comparisons between the training set 

Table 1 Clinical characteristics for training and testing sets
Training 
set
(n = 239, 
m = 318)

Testing 
set
(n = 72, 
m = 798)

p

Gender, n Male 84 29
Female 155 43 0.56

Age (years, mean) 60.87 59.07 0.17
Smoking history, n Yes 48 16

No 191 56 0.82
Lung cancer family his-
tory, n

Yes 41 15

No 198 57 0.59
GGOs risk Stratification High risk 226 53

Low risk 92 26 0.58
GGOs Position Left upper 

lobe
84 18

Left lower 
lobe

41 6

Right upper 
lobe

110 29

Right middle 
lobe

26 7

Right lower 
lobe

57 19 0.53

Early-phase PET
SUVmax
(kBq/ml/MBq/kg)

2.42 1.99 0.13

Delayed-phase PET SUVmax
(kBq/ml/MBq/kg)

3.03 2.46 0.17

GGOs diameter 17.88 16.67 0.20



Page 6 of 11Liu et al. Cancer Imaging           (2025) 25:17 

and testing set involved the chi-square test for categori-
cal variables and the t-test for continuous variables. The 
obtained P-values for each clinical feature in both sets 
were all above 0.05, indicating an absence of statistically 
significant differences in the distribution of clinical char-
acteristics between the two sets.

GGOs segmentation and prediction malignant risk
The Dice score for the dual-time-point 18F-FDG PET/
CT model was 0.84 ± 0.02, indicating a close alignment 
between the model’s segmentation results and the labels. 
The model ultimately provides segmentation results for 
GGOs on thin-section lung CT, divided into two compo-
nents: one for the segmentation results of low-risk areas 
within the nodules and the other for the segmentation 
results of high-risk areas within the nodules. The seg-
mentation efficacy of the dual-time-point 18F-FDG PET/

CT model is illustrated in Fig. 4. In Low risk 1 and 2, the 
proportion of model-segmented high-risk areas does not 
exceed the cutoff value, hence predicting these nodules as 
low-risk. Conversely, in High risk 1 and 2, the proportion 
of model-segmented high-risk areas surpasses the cutoff 
value, leading to their prediction as high-risk nodules. 
After employing a majority voting method on the seg-
mentation results output, among the testing set samples, 
49 were predicted as high-risk nodules with a proportion 
exceeding the cutoff value, while 30 were classified as 
low-risk nodules falling below the cutoff value.

Performance of the multi-modal model
A combination of various imaging modalities resulted in 
the construction of three models: the thin-section lung 
CT model, early-phase 18F-FDG PET/CT model, and 
dual-time-point 18F-FDG PET/CT model. The diagnostic 

Fig. 4 Segmentation Results of High-Risk and Low-Risk GGOs High risk1 and High risk2 represent high-risk nodules, while Low risk1 and Low risk2 depict 
low-risk nodules. “Segment In CT-Lung” displays the segmentation results overlaid on thin-section lung CT images, and “3D Segment” provides a three-
dimensional visualization of the segmented regions. In the visualizations, the green areas represent the low-risk regions segmented by the model, while 
the yellow areas indicate the high-risk regions segmented by the model
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performance indicators and ROC curves for each model 
on the testing set are presented in Table 2; Fig. 5. Com-
paring these models with the thin-section lung CT 
model, it is evident that, with the addition of PET-E and 
PET-D images, the performance of each model sequen-
tially improves. The accuracy and area under the ROC 
curve for the thin-section lung CT model are 73.42% 
and 0.77, respectively. The early-phase 18F-FDG PET/
CT model demonstrates an accuracy of 78.48% and an 
area under the ROC curve of 0.78. Notably, the dual-
time-point 18F-FDG PET/CT model achieves the highest 
performance metrics, with an accuracy of 84.81% and an 
area under the ROC curve reaching 0.85.

Comparison of assessment results with clinical doctors
Comparison of the interpretation results from three 
nuclear medicine diagnostic physicians with the predic-
tive outcomes of the dual-time-point 18F-FDG PET/CT 
model for the testing set is presented in Table 3. The diag-
nostic accuracy of the dual-time-point 18F-FDG PET/
CT model was 84.81%. In comparison, the accuracy for 
resident physician, junior physician, and expert physician 
was 67.09%, 74.68%, and 78.48%, respectively. The diag-
nostic accuracy of the dual-time-point 18F-FDG PET/CT 
model significantly surpassed that of the nuclear medi-
cine diagnostic physicians. The diagnostic sensitivity of 
the dual-time-point 18F-FDG PET/CT model was 84.91%, 

Table 2 The performance of the thin-section lung CT model, the early-phase 18F-FDG PET/CT model and the dual-time-point 18F-FDG 
PET/CT model was assessed using 3D nnu-net within the testing set

Accuracy Specificity Sensitivity PPV NPV F1 score AUC
Thin-section
lung CT

73.42% 73.08% 73.58% 84.78% 57.57% 0.79 0.77

Early-phase 18F-FDG PET/CT 78.48% 76.92% 79.25% 87.50% 64.52% 0.83 0.78
Dual-time-point 18F-FDG PET/CT 84.81% 84.62% 84.91% 91.84% 73.33% 0.88 0.85

Fig. 5 Performance of 3D nnU-net in the prediction of high risk and low risk. AUCs for the thin-section lung CT model (orange curve), the early-phase 
18F-FDG PET/CT model (green curve) and the dual-time-point 18F-FDG PET/CT model (blue curve) were 0.77, 0.78, and 0.85, respectively
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whereas the sensitivity for resident physician, junior phy-
sician, and expert physician was 58.49%, 73.58%, and 
75.47%, respectively. Notably, the diagnostic sensitivity of 
the dual-time-point 18F-FDG PET/CT model was mark-
edly higher than that of the nuclear medicine diagnostic 
physicians.

Discussion
In this study, we employed the 3D nnU-net with a major-
ity voting method to predict the malignant risk of GGOs 
according to the new WHO classification based on dual-
time-point 18F-FDG PET/CT images. The 3D nnU-net 
architecture, initially proposed by Isensee et al. [26], is a 
deep learning segmentation method that automatically 
configures itself, covering preprocessing, network archi-
tecture, model training, and post-processing to address 
any new task. Several studies have also employed the 3D 
nnU-net for classification tasks. Yin et al. [22] utilized 
it to differentiate pelvic and sacral osteosarcoma from 
Ewing’s sarcoma, Cheng et al. [23] used it for predicting 
the molecular subtypes of posterior fossa ependymomas, 
and Cai et al. [24] applied it to classify extramural vascu-
lar invasion status. In each case, they achieved excellent 
performance. our study employs the 3D nnU-net in con-
junction with a majority voting approach to predict the 
malignant risk of nodules. This involves the automated 
segmentation of GGOs on dual-time-point 18F-FDG 
PET/CT images, followed by classification via majority 
voting without manual intervention, forming an end-
to-end process. Considering that deep learning mod-
els typically require large datasets, this voxel prediction 
method based on the majority principle greatly optimizes 
the accuracy of this classification task, enhancing model 
stability and efficiency [29]. With this model, the auto-
matic discrimination of GGOs malignant risk is achieved 
by inputting raw images without manual delineation or 
any intervention. Furthermore, it can extract contextual 
information from consecutive slices, better capturing 
spatial features in lung nodules [30]. Additionally, the 
multi-scale feature extraction of 3D nnU-net enables it to 
adapt to nodules of different sizes, eliminating the disad-
vantages of conventional models in predicting small lung 
nodules [31]. Finally, 3D nnU-net reduces overfitting and 
training time through weight fine-tuning via transfer 

learning, improving algorithm efficiency and achieving 
high model accuracy with a smaller sample size.

In terms of GGOs segmentation, the obtained Dice 
coefficient of 0.84 surpasses previously reported DICE 
coefficients for GGOs segmentation using CT (Dice 
scores ranging from 0.73 to 0.82) [32, 33], underscoring 
the clinical potential of the model in GGOs segmenta-
tion. The interpretation of the segmentation results 
reveals that the model delineates the 3D morphology of 
lung nodules, indicating the location and proportion of 
high-risk and low-risk regions. The high-risk areas are 
concentrated in the solid density, lobulation, spicula-
tion, and pleural traction areas of lung nodules, showing 
increased FDG uptake and delayed-phases PET imaging 
uptake (as shown in Fig. 4). This matches the malignant 
characteristics judged in clinical practice [34, 35], provid-
ing support for the improved efficacy of the model.

Regarding model predictive performance, the dual-
time-point 18F-FDG PET/CT model in this study 
achieved an accuracy, sensitivity, specificity, and AUC 
of 84.81%, 84.91%, 84.62%, and 0.85, respectively. Com-
pared to the early-phase 18F-FDG PET/CT model and 
thin-section lung CT model, it outperformed in all met-
rics, and with the addition of delayed-phases PET, the 
model performance sequentially increased. Particularly, 
the inclusion of delayed-phases PET demonstrated the 
greatest enhancement in model performance, indicat-
ing its value in predicting GGOs malignant risk. Addi-
tionally, when comparing our dual-timepoint PET/CT 
model with existing CT-based methods for GGO malig-
nant risk assessment (AAH and AIS vs. MIA and IA) 
reported by Xu et al. [36] (accuracy: 82.2%, AUC: 0.831) 
and Wang et al. [37] (accuracy: 73.4%, AUC: 0.813), our 
approach demonstrated increased accuracy and AUC. 
This gain may be related to the upregulation of glucose 
consumption by malignant cells to obtain more prolif-
erative energy, leading to the concentration of 18F-FDG 
in delayed-phases PET [38, 39]. In contrast to other con-
volutional neural networks, the diagnostic performance 
of the dual-time-point 18F-FDG PET/CT model is more 
balanced, with other convolutional neural networks 
exhibiting lower overall specificity, indicating limited effi-
cacy in predicting low-risk GGOs. Furthermore, when 
compared with nuclear medicine diagnostic physicians, 

Table 3 Comparison of the performance between nuclear medicine physicians’ assessments and the dual-time-point 18F-FDG PET/CT 
model

Accuracy Specificity Sensitivity PPV NPV F1 score AUC
Resident
physician

67.09% 84.62% 58.49% 88.57% 86.67% 0.70 0.72

Junior
physician

74.68% 76.92% 73.58% 86.67% 58.82% 0.80 0.75

Expert
physician

78.48% 84.62% 75.47% 90.91% 62.86% 0.82 0.80

Dual-time-point 18F-FDG PET/CT 84.81% 84.62% 84.91% 91.84% 73.33% 0.88 0.85



Page 9 of 11Liu et al. Cancer Imaging           (2025) 25:17 

the dual-time-point 18F-FDG PET/CT model achieved 
higher diagnostic efficacy, especially surpassing more 
experienced physicians, confirming its clinical applica-
tion value. Previous studies using radiomics and deep 
learning methods for GGOs classification under early-
phase 18F-FDG PET/CT achieved an accuracy of around 
80% [40, 41]. However, these models showed significant 
variations in sensitivity and specificity, and their results 
were not validated against the diagnostic efficacy of clini-
cal physicians [42, 43].

Clinically, the interpretation of PET/CT images for pul-
monary GGOs relies on subjective judgment supported 
by the experience of diagnostic physicians. Comparing 
the model with manual readings, significant differences 
in diagnostic efficacy were observed between low-expe-
rience physicians, high-experience physicians, and the 
model. Moreover, the majority of GGOs exhibits charac-
teristics of indolent growth, with approximately 20% of 
pure GGOs and 40% of mixed GGOs gradually increas-
ing or adding solid components over time, while the 
majority remains unchanged for several years. For dis-
tinguishing between growing and non-growing GGOs, a 
reasonable benchmark is a volume doubling time (VDT) 
of approximately 600 to 900 days for pure GGOs and 300 
to 450 days for mixed GGOs during a 3-year follow-up 
observation [44]. The specific time intervals and fre-
quency of follow-up in clinical practice vary among indi-
viduals, requiring physicians to perform comparative 
analyses of nodules at different time points to determine 
their nature.

In lung cancer screening, the occurrence of multifocal 
GGOs is highly prevalent [45]. For cases involving mul-
tiple GGOs that necessitate clinical intervention, guide-
lines recommend a preference for surgical procedures. 
The principle is to prioritize the treatment of primary 
lesions while addressing secondary lesions [46]. But per-
forming pathological evaluation on every lesion is neither 
feasible nor resource-efficient. Furthermore, the presence 
of multiple lesions within a single patient may introduce 
a “clustering effect,” potentially leading to overfitting to 
patient-specific characteristics in predictive models [47]. 
Clarifying these issues through future research could 
refine risk stratification and guide more nuanced clinical 
decision-making for multifocal GGO management.

However, it is essential to acknowledge certain limi-
tations in this study. The use of a retrospective single-
center dataset resulted in a relatively small sample size. 
Further extensive prospective multicenter research is 
necessary to evaluate the generalizability of the estab-
lished model in clinical practice.

Conclusions
In conclusion, our study revealed the effectiveness of uti-
lizing dual-time-point 18F-FDG PET/CT images along 
with the 3D nnU-net and a majority voting method for 
predicting the malignant risk of GGOs based on the new 
WHO classification. This methodology serves as a valu-
able adjunct for physicians in the risk prediction and 
assessment of GGOs.
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