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In diagnostic radiology, the definition of AI remains 
somewhat ambiguous, encompassing a vast spectrum 
of domains such as machine learning (ML), deep learn-
ing (DL), neural networks (NNs), artificial neural net-
works (ANNs), convolutional neural networks (CNNs), 
recurrent neural networks (RNNs), natural language 
processing (NLPs) [2], radiomics [3] (Fig.  1), and radi-
ogenomics [4] (Table 1). Each approach or combination 
thereof offers distinct benefits and limitations. Generally, 
more advanced techniques enhance diagnostic accuracy 
and adaptability but necessitate larger curated datasets 
and longer development and training times. In practice, 
the primary objective of these diverse AI methodologies 
in diagnostic radiology is to develop algorithms that sup-
port radiologists in effectively conveying imaging find-
ings and ultimately improving patient care [5, 6].

In cancer imaging, AI has been studied in three main 
clinical domains: tumor detection, characterization, 
and monitoring. Specifically, within the realm of kidney 

Introduction
Artificial intelligence (AI) has recently emerged as a pow-
erful tool in cancer research with exceptional capability 
in identifying complex patterns and extracting quantifi-
able information from large datasets. This allows for the 
transition of data interpretation from a subjective, quali-
tative process to one that is objective and reproducible. 
Furthermore, it facilitates the integration of diverse data 
sources, such as radiologic images, genomics, pathology, 
electronic health records, and social networks, into com-
prehensive diagnostic systems, ultimately assisting physi-
cians in evidence-based clinical decision making [1].
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Abstract
Background  Research has helped to better understand renal cell carcinoma and enhance management of patients 
with locally advanced and metastatic disease. More recently, artificial intelligence has emerged as a powerful tool in 
cancer research, particularly in oncologic imaging.

Body  Despite promising results of artificial intelligence in renal cell carcinoma research, most investigations have 
focused on localized disease, while relatively fewer studies have targeted advanced and metastatic disease. This paper 
summarizes major artificial intelligence advances focusing mostly on their potential clinical value from initial staging 
and identification of high-risk features to predicting response to treatment in advanced renal cell carcinoma, while 
addressing major limitations in the development of some models and highlighting new avenues for future research.

Conclusion  Artificial intelligence-enabled models have a great potential in improving clinical practice in 
the diagnosis and management of advanced renal cell carcinoma, particularly when developed from both 
clinicopathologic and radiologic data.
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cancer imaging, AI algorithms are commonly designed 
to non-invasively address four key questions: the type 
of renal cancer, its stage, its grade, and the likelihood of 
metastatic disease. In recent decades, there has been a 
significant increase in renal mass detection and a con-
temporaneous rise in AI as a powerful tool in cancer 
imaging research. Therefore, it is not surprising that most 
available studies in the literature primarily focus on the 

diagnosis and grading of renal tumors. Beyond renal cell 
carcinoma (RCC) subtype, stage and grade, there are 
opportunities to use imaging to optimize risk stratifica-
tion and clinical decision making over the care contin-
uum [7].

Locally advanced RCC is characterized by at least one 
of the following features: spread into peri-renal or peri-
pelvic fat, extension into major veins, invasion of the 

Table 1  This table defines multiple AI categories along with their key applications
Category Description Key applications
Machine Learning 
(ML)

Predicts patterns in data using mathematical algorithms. Includes methods like 
deep learning, logistic regression, and neural network architecture.

Automates cancer detection and diagnosis.

Deep Learning (DL) Utilizes multilayer neural networks inspired by the brain. Extracts features, 
analyzes large datasets, and enhances cancer diagnosis and treatment.

Early cancer detection, diagnosis, grading, 
molecular characterization, predicting out-
comes, personalized treatment, clinical trials, 
and drug discovery.

Neural Networks 
(NNs)

Complex ML systems including ANN, MLP, RNN, and CNN, designed to process 
intricate datasets and improve over time through adaptive learning.

Diagnosis, treatment, and outcome predic-
tion in complex clinical scenarios.

Artificial Neural 
Networks (ANNs)

Computational systems modeled after the human nervous system, capable of 
adaptive learning and analyzing relationships among clinical, biological, and 
pathological variables.

Widely used in cancer diagnosis and predic-
tive modeling.

Convolutional Neural 
Networks (CNNs)

Specialized in processing large image datasets and extracting features using 
convolutional filters. Adapted for non-image data like genomic vectors.

Cancer imaging analysis, genomic data 
processing, and feature extraction.

Recurrent Neural 
Networks (RNNs)

Processes sequential data by leveraging hidden state vectors for context-based 
predictions.

Analysis of time-series data in healthcare.

Natural Language 
Processing (NLP)

Transforms unstructured text into structured data for analysis by applying tech-
niques like named entity recognition and relationship extraction.

Clinical data organization, extracting key in-
formation, and building structured databases.

Radiomics Extracts a large number of quantitative features from medical images using 
advanced computational algorithms.

Tumor characterization, prediction of treat-
ment response, patient outcomes, and guid-
ing precision oncology.

Radiogenomics Integrates imaging features with genomic data to uncover relationships be-
tween radiologic phenotypes and genetic markers.

Understanding tumor biology, predicting 
therapeutic responses, and enabling person-
alized treatment strategies.

Fig. 1  Schematic pipeline of Radiomics workflow. Following image acquisition and tumor segmentation, the radiomic features are extracted. The fea-
tures selected are those that most effectively represent variability in the data or optimize a specific predictive model. High-level statistical modeling 
including machine learning and deep learning techniques are then employed for disease classification, patient grouping and tailored risk assessment
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adrenal gland, spread to adjacent retroperitoneal nodes 
or penetration of Gerota’s fascia [7, 8]. With locally 
advanced features carrying prognostic and therapeu-
tic implications, particularly venous wall invasion, renal 
and the inferior vena cava tumor thrombi, early detec-
tion of these features is essential [7]. High risk features 
of RCC identified include tumor stage 2 with nuclear 
grade 4 or sarcomatoid differentiation, tumor stage 3 or 
higher, regional node metastases, or oligometastatic RCC 
resected to no evidence of disease [9]. Recent AI stud-
ies address some unmet clinical needs, in identifying 
locally advanced disease pre-operatively, predicting high 
risk features or distant metastatic disease, and assessing 
tumor response to treatment [7].

In this review paper, we provide a multidisciplinary 
assessment of various applications of AI in locally 
advanced and metastatic renal cancer, focusing mainly on 
the current performance of imaging-based AI solutions.

Initial RCC staging and high-risk features
The TNM system for renal cell carcinoma was most 
recently described in the 8th edition of the American 
Joint Committee on Cancer (AJCC) staging manual. 
Tumor size and local extension of the primary tumor 
determine the T category, involvement of local (retro-
peritoneal) lymph nodes determines the N category and 
the presence of distant metastases determines the M cat-
egory [9, 10]. Renal biopsy, previously underutilized due 
to concerns about safety and sampling errors, is increas-
ingly being recognized as a valuable tool in the diagno-
sis and management of renal masses. Advances in biopsy 
techniques and pathological interpretation have not only 
expanded its applications, including diagnosing inde-
terminate masses, evaluating candidates for active sur-
veillance, and guiding targeted therapies for metastatic 

disease but also decreased rates of complications (0.3–
5.3%), and minimized risks, such as biopsy tract seeding. 
Nonetheless, its accuracy remains highly variable ranging 
from 38 to 100%, which could add an additional layer of 
complexity in the accurate diagnosis, staging and treat-
ment of RCC [10].

While surgery remains the mainstay treatment option 
for localized RCC, up to 30% of patients develop recur-
rent or advanced disease post-nephrectomy [11]. Fea-
tures of locally advanced disease have been associated 
with increased risk of recurrence and poor prognosis 
[12]. Several clinical trials have examined the feasibility 
of neoadjuvant [13–16] and adjuvant [17–20] therapies 
in locally advanced and high-risk patients, respectively. 
High risk patients may benefit from neoadjuvant or adju-
vant treatment, while low- and intermediate-risk patients 
with non-metastatic RCC likely do not need it and should 
not be subjected to the associated risks [21], highlight-
ing the need for refined risk stratification and optimized 
staging.

Prediction of locally advanced RCC
Radiologic identification of tumor invasion of critical 
anatomic structures such as renal sinus fat, perineph-
ric fat, and venous system can be challenging, which 
may lead to potential understaging preoperatively [22] 
(Figs.  2 and 3). There is suboptimal CT sensitivity (59–
88%) and specificity (71–93%) for Stage T3a disease, and 
pre-operative detection of T3a disease could influence 
the surgical approach [23]. Recently, several AI-based 
models have been developed for the prediction of locally 
advanced RCC using preoperative imaging. Yang et al. 
developed a radiomics model for the prediction of renal 
capsule invasion using preoperative computed tomog-
raphy (CT) with different phases: unenhanced phases 

Fig. 2  (A): Contrast-enhanced axial (A) and coronal CT images (B) of the abdomen at the level of the left kidney show an endophytic, circumscribed 
renal mass. While renal sinus invasion can be subtle and often challenging to detect on CT scan (such as in this case), pathology results are essential for 
accurate diagnosis and staging. Pathology results in that case were positive for clear cell RCC with renal sinus involvement, representing pT3a disease
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(UP), corticomedullary phases (CMP) and nephrographic 
phases (NP). The areas under the curves (AUCs) from the 
receiver operating characteristics (ROC) curve analysis 
were used to analyze the performance of the built mod-
els. The performance of the models on CMP exhibited 
the highest AUC (AUC = 0.81) compared to UP and NP, 
mostly because of the tumor morphologic characteristics 
exhibited on CMP [24]. Similarly, Liu et al. developed a 
radiomics model using contrast-enhanced CT scans for 
preoperative prediction of perinephric fat invasion on 
imaging. All patients had biopsy-proven evidence of 

locally advanced disease. Of the 8 built models, recorded 
AUCs ranged between 0.783 and 0.926, with one outper-
forming radiologists [25]. Moreover, Zhao et al. devel-
oped a combined ML and radiomics based model for the 
prediction of venous wall invasion using preoperative CT 
enhanced images. Their model was able to detect venous 
wall invasion with AUC of 0.853 [26]. If locally advanced 
RCC features could be reliably predicted pre-operatively, 
this could enhance the potential role of neoadjuvant 
treatment options and interventions (stereotactic body 
radiotherapy or systemic therapies), which could improve 
outcomes.

Prediction of synchronous distant metastases and 
cytoreductive nephrectomy considerations
It is estimated that up to 30% of RCC patients present 
with synchronous distant metastases (SDM) i.e., dis-
tant metastatic disease at the time of initial diagnosis. 
Although metastatic renal cell carcinoma (mRCC) is 
associated with a poor prognosis, early identification of 
SDM and strategic treatment-planning based on the vol-
ume and distribution of disease may improve patients’ 
survival [27–29]. Tumor size has long served as a strong 
predictor of SDM; tumors greater than 3  cm in diam-
eter have been associated with a higher risk for SDM 
compared to smaller ones [30–32]. There is increasing 
awareness that small RCCs are often indolent and may 
not need surgical management. While metastatic disease 
from small RCCs is exceedingly rare, it would be helpful 
to better risk-stratify these masses [33, 34]. The availabil-
ity of more sophisticated imaging techniques has contrib-
uted to increased detection of SDM. However, the chance 
of missing or misdiagnosis of SDM still exists, partly 
because of small lesion size and/or atypical radiologic 
appearance [35–37].

Recent studies have used radiomics to build models for 
the prediction of SDM (Table  2) [38–40]. Bai et al. are 
among the first to construct a multiparametric magnetic 

Table 2  This table summarizes the models developed for the prediction of SDM, their inputs and performance
Model Input Performance Limitations

Bai et al. MRI radiomics-based 
nomogram for the 
prediction of SDM

Radiomic-score and SDM-related 
clinic-radiologic characteristics in 201 
patients

-Training: 0.914
-Internal validation: 0.854
-External validation: 0.816

-Retrospective study
-Some SDM not pathologically proven
-normogram developed using 3T, 
contrast-enhanced MRI
- No real-world validation

Wen et 
al.

Radiomics model for 
preoperative predic-
tion of SDM in ccRCC 
patients.

Quantitative extraction of shape, size 
and texture-based features in contrast-
enhanced CT scan imaging of 172 
subjects from The Cancer Imaging 
Archive (TCIA)

-Training: 0.890
-Internal validation: 0.830
-External validation: -

- Retrospective study
- No external validation cohort
- No real-world validation

Yu et al. Radiomics model for 
the prediction of SDM 
in ccRCC

Contrast-enhanced CT scan imaging &
clinicopathologic data in 242 patients

-Training: 0.882
-Internal validation: 0.916
-External validation: 0.925

- Retrospective study
- Imbalance between study cohorts
-CT acquisition parameters inconsistent
-Some SDM not pathologically proven
- No real-world validation

Fig. 3  Axial 3D MR post contrast images show an extensive, heteroge-
neous right renal mass infiltrating the renal sinus, with tumor thrombus 
involvement of the renal vein (RV) and inferior vena cava (IVC). Pathology 
results were positive for high-grade chromophobe RCC subtype, negative 
surgical margins and renal vein tumor thrombus extending into the IVC
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resonance imaging (MRI) radiomic- based model com-
bining multiple clinicoradiologic parameters for the pre-
diction of SDM in patients with clear cell RCC (ccRCC). 
The model was able to predict SDM in the training 
and validation cohorts with an area under the curve 
(AUC) > 0.800. Moreover, the developed nomogram was 
able to equally predict SDM in relatively smaller tumors 
(< 4  cm) with an AUC = 0.875 and in larger tumors 
(size > 10 cm) with an AUC = 0.881 [38]. Wen et al. have 
designed a CT radiomic model instead for individual-
ized prediction of SDM in patients with ccRCC. Their 
radiomic model was able to achieve similar results as 
Bai et al. in both training and validation cohorts with 
an AUC > 0.800 [39]. In another report, Yu et al. high-
lighted the importance of incorporating both CT-derived 
radiomic features with clinical parameters for enhanced 
detection of SDM. They developed a novel CT radiomic 
nomogram combining radiomics signature with clinical 
parameters and compared the performance of the CT 
radiomic nomogram to the individual performance of 
the radiomic signature and clinical-derived models sepa-
rately. The CT radiomic model (combining both radiomic 
and clinical data) outperformed both radiomic signature 
and clinical models with AUC > 0.900 in both internal and 
external validation cohorts [40]. AI has the potential to 
enhance the detection of SDM using traditional imaging 
techniques, and risk-based imaging protocols could be 
explored to detect the presence of SDM most accurately.

If a patient is diagnosed with renal cell carcinoma and 
SDM, cytoreductive nephrectomy (CN) remains a treat-
ment option. CN refers to surgical removal of the kidney 
and primary tumor in a patient with metastases. It can be 
used to delay systemic therapy for patients who may be 
otherwise appropriate for active surveillance, a common 
management strategy for patients with indolent mRCC. 
CN can also be used as an adjunct to systemic therapy 
[41]. Recently, neoadjuvant immune-checkpoint based 
therapies were shown to enhance pathologic necrosis 
and systemic disease control as well as decrease tumor 
size prior to deferred cytoreductive nephrectomy, though 
surgical and survival outcomes were not altered [42]. 
It is hypothesized that CN may cause alterations in the 
humoral interaction between the primary tumor and dis-
tant metastases leading to a decrease in the tumor resis-
tance and metastatic potential through the excision of 
the primary tumor [41]. However, role of cytoreductive 
nephrectomy in the immunotherapy era remains incom-
pletely defined.

Prognostic prediction models have recently gained 
popularity to risk-stratify patients for specific treat-
ment strategies including CN and systemic therapy. 
Machine learning-based models can screen patients and 
identify those who may respond well or poorly to a par-
ticular treatment by integrating complex connections 

between clinical features and patients’ outcomes. For 
instance, Yang et al. developed a ML-based prognostic 
model for patients undergoing CN and systemic therapy 
using seven clinical features including pathologic grade, 
T stage, N stage, number of metastatic sites, the pres-
ence/absence of brain or liver metastases, and whether 
patients’ have undergone metastasectomy as input. In 
a large population of greater than 900 subjects, patients 
with lower tumor grade, earlier tumor stage, no lymph 
node metastases, fewer metastatic sites, and those who 
underwent metastasectomy exhibited better prognosis 
after CN and systemic therapy. Conversely, the developed 
model identified roughly 15% of patients with metastatic 
ccRCC with poor 5-year survival after CN and systemic 
therapy, thus creating the potential for individualized 
treatment planning in this context [43].

Prediction of recurrent and metastatic disease after 
resection of RCC
Surgical resection remains the gold standard treatment 
for localized RCC. Despite surgical resection, up to 30% 
of patients eventually develop recurrent or metastatic 
disease post-nephrectomy. Clinical nomograms have 
been created to identify high-risk patients for recurrence 
(tumor stage 2 with nuclear grade 4 or sarcomatoid dif-
ferentiation, tumor stage 3 or higher, regional lymph 
node metastasis, or stage M1 with no evidence of dis-
ease) to help guide management decisions for adjuvant 
therapy, which has recently been shown to improve out-
comes in high-risk patients [9] (Fig. 4).

Resected patients undergo imaging surveillance for 
recurrent or metastatic disease, which often occurs early 
(within 5 years post-nephrectomy) but can occur late 
(after 5 years post-nephrectomy). At present, the Amer-
ican Urologic Association, National Comprehensive 
Cancer Network, and European Association of Urology 
do not recommend imaging follow-up beyond 5 years. 
Nonetheless, up to one quarter of recurring patients 
exhibit late recurrence [44]. Risk-stratification of RCC 
patients has the potential to optimize clinical and imag-
ing follow-up in those at highest risk for recurrent dis-
ease, to enhance detection of late recurrences while these 
may be amenable to local treatments. Kim et al. have 
developed one of the first ML-based models for the pre-
diction of late recurrence post-nephrectomy using clini-
copathologic data such as operation time and method, 
pathologic tumor and nodal stage, histology subtype and 
lymphovascular invasion [45]. Imaging-based datapoints 
were not incorporated. The highest performing model 
was able to successfully predict late recurrences with 
AUC = 0.740. Kim et al. demonstrated that operation type 
and method, node stage, and tumor size were significant 
variables in the prediction of late recurrence [45].
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Imaging features have recently been incorporated into 
RCC recurrence prediction models [46, 47]. Denifell et 
al. have developed a radiomic-based model using post-
operative clinico-pathological variables such as patients’ 
age, tumor size and grade with and without radiomics-
derived data from pre-operative CT scans for the pre-
diction of disease-free survival in patients with localized 
RCC. Decision curve analysis revealed better perfor-
mance of the combined model vs. the clinical model 
for prediction of post-operative recurrence and subse-
quent need for adjuvant therapy. For instance, adopt-
ing ≥ 25% chance of disease recurrence within 5 years, 
the combined model would predict recurrence in 9 addi-
tional patients (per 1000) who would have been missed 
by the clinical model [46]. Zhao et al. have developed a 
radiomics metastasis score (RMS) for the prediction of 
metastasis in ccRCC linking pre-operative CT-derived 
radiomic features to major biological pathways involved 
in the pathogenesis of mRCC via RNA seq transcrip-
tomics, including ECM-receptor interaction, focal 
adhesion, and PI3K-Akt pathways [47]. This study was 
among the first radiomic studies in ccRCC to examine 

biologically active processes, as opposed to individual 
underlying genetic mutations, of CT radiomics features 
associated with metastatic disease and outcomes.

More recently, Yang et al. developed a ML-based model 
that integrates multimodal data, including clinical, radio-
logical (CT and ultrasound), and pathological param-
eters, to predict the risk of metastasis in ccRCC. Clinical 
inputs included demographic data (age, sex) and tumor-
related factors such as TNM staging, histological grade, 
and the presence of comorbidities. Radiological features 
were extracted from both contrast-enhanced CT scans 
and ultrasound images, which provided tumor size, loca-
tion, shape, and echogenicity, along with radiomic fea-
tures like texture patterns (e.g., gray-level co-occurrence 
matrix, run-length matrix), shape descriptors (e.g., vol-
ume, sphericity), and first-order statistical features (e.g., 
mean intensity, skewness). Using this multimodal data-
set, machine learning algorithms were applied to train 
and validate a predictive model on separate cohorts. The 
results showed that the model achieved high predic-
tive performance, with AUC exceeding 0.85 in both the 
training and validation sets, indicating that multimodal 

Fig. 4  Contrast-enhanced axial (A) and coronal CT images (B) of the abdomen at the level of the left kidney show a large heterogeneous mass with 
extensive sarcomatoid differentiation invading the left kidney, left adrenal gland, distal pancreas and spleen. (C) Post-operative contrast-enhanced axial 
CT of the abdomen at the level of the left kidney shows local recurrence in the surgical bed
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integration significantly enhanced prediction accuracy 
compared to single-modality models. The study con-
cluded that this multimodal machine learning model 
could serve as a valuable tool for personalized patient 
management, aiding in risk stratification and informing 
treatment decisions in ccRCC [48].

Systemic therapy considerations and response 
assessment
Multiple therapeutic options exist for mRCC patients, 
including surgery for oligometastatic disease, locore-
gional therapies such as ablation and stereotactic body 
radiotherapy in certain circumstances and a host of sys-
temic treatments. Treatment selection is empirical but 
informed by multiple factors such as the volume and dis-
tribution of disease, and the histologic subtype of RCC. 
In systemic treatment, immune check point inhibitors 
(ICI) now constitute the backbone of frontline treat-
ment in metastatic ccRCC. In fact, ICIs, in combination 
with either a second immunomodulating antibody or a 
Vascular Endothelial Growth Factor (VEGF) targeted 

therapy, have become the treatment of choice for most 
treatment-naïve patients [49]. Patients typically continue 
a treatment until limiting toxicities develop or disease 
progression is confirmed using conventional response 
assessment (RECIST v1.1), and patients subsequently 
switch to an alternative treatment. There is limited AI 
data to predict the effectiveness of systemic therapies 
prior to treatment and during treatment, predominantly 
in small cohorts (Table 3).

Prediction of patients; response of immune check point 
inhibitors
Texture analysis, an imaging processing method used to 
quantitatively analyze imaging-based spatial composition 
of lesions that may not be perceptible to the human eye, 
has been explored as a method for predicting response to 
therapy and outcomes in mRCC. Multiple studies have 
identified radiomic parameters for assessing patients’ 
response to systemic treatment. For instance, Rossi et 
al. studied CT- based radiomic features correlating with 
progression as the best response to ICI therapy in mRCC 

Table 3  This table summarizes the models developed for the prediction of patients’ response to treatment, their inputs and 
performance

Model Input Performance/Findings Limitations
Rossi et al. CT-based ra-

diomic analysis
Radiomic features from CT 
scans of 53 mRCC patients

Correlated radiomic features with progres-
sion as the best response to ICI therapy

- Small sample size
-Retrospective study
- No validation cohorts

Park et al. Clinical-CT tex-
ture models

Baseline and follow-up CT 
texture data combined 
with clinical data in 129 
patients

Combined model predicted overall survival 
(C-index 0.7) and progression-free survival 
(C-index 0.63), outperforming clinical data 
alone

- Small sample size
-Retrospective study
- No validation cohorts
-ROI determined by only one radiologist

Khene et al. Texture analysis 
for survival 
prediction

Pre-treatment CT texture 
features in 48 patients

Identified predictors of overall and progres-
sion-free survival in mRCC patients treated 
with nivolumab.

- Small sample size
-Retrospective study
- No validation cohorts
-Manual ROIs
-Variable CT techniques

Neutrophil 
to Lympho-
cyte Ratio 
Studies

Biomarker 
analysis

Neutrophil to lymphocyte 
ratio

Low splenic volume 3 months after ICI treat-
ment linked to improved overall survival

-Retrospective study
- No validation cohorts

Splenic 
Volume 
Studies

Automated 
splenic 
segmentation

Splenic volume change 
measured using AI tools

Significant survival improvement associated 
with low splenic volume

- Small cohorts
- Mixed treatment regimens
- No validation cohorts

Negreros-
Osuna et al.

CT-based 
radiomic model 
for TKI response 
prediction

Texture analysis of primary 
tumors and clinical data in 
62 patients

Combined radiomic and clinical model out-
performed models using radiomic or clinical 
data alone.

- Small sample size
-Retrospective study
- No validation cohorts

Chen et al. CT-based 
radiomic model 
for short-term 
lesion response 
prediction

Radiomic features from 
baseline arterial phase 
(AP) and non-contrast 
(NC) CT scans in 36 
patients with recurrent or 
mRCC

Delta feature-based model effectively 
predicted short-term lesion response to 
first-line TKIs in a small cohort. 0.940 (95% CI, 
0.890‒0.990) in the training cohort and 0.916 
(95% CI, 0.828‒1.000) in the validation cohort

-Small sample size
-Retrospective study

Udayaku-
mar et al.

Radiogenomic 
model using 
DCE-MRI

DCE-MRI, histopathology, 
and transcriptome correla-
tives in 49 ccRCC patients

High arterial spin labeling MRI correlated 
with favorable response to antiangiogenic 
regimens

-Small sample size
- Cohort included mostly small tumors
-Colocalization between presurgical im-
aging and postsurgical histologic analysis
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patients [50]. If confirmed in larger validation cohorts, 
such information could be used to help select or dese-
lect patients for particular therapy. Park et al. developed 
clinical-CT texture models for the prediction of overall 
survival and progression-free survival of mRCC patients 
treated with ICI. CT-texture analysis was performed on 
both pre-treatment and first follow-up scans. Baseline 
and post treatment texture models could distinguish lon-
ger and shorter term overall survival, and the combined 
texture and clinical data model was able to better pre-
dict the overall survival (C-index, 0.7 vs. 0.63) and pro-
gression-free survival (C-index, 0.63 vs. 0.55) compared 
to the one using clinical data only [51]. Khene et al. also 
identified texture predictors of overall and progression-
free survival in mRCC patients treated with nivolumab 
on pre-treatment CT [52].

In view of the absence of validated biomarkers for the 
prediction of patients’ response to immunotherapy in 
the setting of advanced RCC, researchers have stud-
ied the potential role of neutrophil to lymphocyte ratio 
as prognostic biomarker [53, 54]. More recently, change 
in splenic volume has been investigated as a surrogate 
marker for assessment of treatment response. Duwe et 
al. evaluated changes in spleen volume using automated 
splenic segmentation in patients with advanced RCC and 
urothelial cancer. In this small cohort, low splenic volume 
(lower 50% by median) three months after initiation of 
ICI treatment was associated with a significant improve-
ment in overall survival. The study was limited by the ret-
rospective nature and small cohort treated with multiple 
different agents [55].

Prediction of patients’ response to tyrosine kinase 
inhibitors
CT texture analysis has also been explored in mRCC 
cohorts treated with tyrosine kinase inhibitors (TKI). 
Negreros-Osuna et al. developed CT- based radiomic 
models to predict response to tyrosine kinase inhibi-
tors in mRCC patients using texture analysis of the pri-
mary tumors and clinical data. The model combing both 
radiomic and clinical data outperformed models devel-
oped from either radiomic or clinical data separately [56]. 
Chen et al. developed CT-based radiomic models to pre-
dict short-term lesion level response to TKIs in a small 
cohort of patients treated with first line targeted therapy. 
Radiomic features on baseline scans were extracted on 
arterial phase (AP) and non-contrast (NC) series, and the 
model based on delta features was concluded to predict 
short term response [57].

Udayakumar et al. have proposed a vertically integrated 
colocalization radiogenomic model using dynamic con-
trast-enhanced MRI (DCE-MRI) in the prediction of both 
tumoral angiogenic and inflammatory pathways while 
using histopathologic and transcriptome correlatives. 

The study included 49 patients with ccRCC (19 patients 
with mRCC on antiangiogenic or ICI first line treatment) 
who underwent DCI-MRI prior to nephrectomy. They 
have further corroborated that tumors with high baseline 
arterial spin labeled MRI, a technique that estimates tis-
sue perfusion in ccRCC, often correlates with favorable 
response to antiangiogenic regimens in patients with 
mRCC [58]. Similar results were reported by Singla et al. 
in the assessment of contrast-enhancement in pancreatic 
metastases secondary to RCC, whereby these metastases 
exhibited intense contrast-enhancement and a favorable 
response to treatment to antiangiogenic treatment but 
refractoriness to ICI [59].

Current challenges and limitations
The integration of AI in kidney cancer diagnosis offers 
significant potential but is hindered by numerous chal-
lenges related to data availability, quality, privacy, and 
algorithmic performance. High-quality and diverse data-
sets, such as multiphase CT and MRI images, are essen-
tial for building reliable AI models. However, insufficient 
data can result in underfitting or overfitting, where the 
model fails to generalize well to new data. Privacy regula-
tions and ethical concerns further restrict access to sen-
sitive medical data, limiting the development of robust 
AI systems [60]. On the other hand, new AI tools should 
be applied and rigorously tested in different populations 
for performance prior to clinical implementation, likely 
requiring industry and academic collaboration to fully 
develop.

The complexity of kidney cancer data—spanning imag-
ing, genetic profiles, and clinical records—demands 
advanced algorithms capable of handling noise and 
extracting meaningful patterns. Differentiating between 
cancer subtypes is particularly challenging due to subtle 
variations in imaging and genomic data. Moreover, algo-
rithms trained on specific datasets may fail to generalize 
across varying clinical settings, limiting their applicability 
in real-world scenarios, making it difficult for healthcare 
professionals to trust and implement new advances [60]. 
Reproducibility studies are needed for external valida-
tion. Models should be incorporated into large prospec-
tive clinical trials where possible.

Concerns over privacy and security create signifi-
cant barriers. The sensitive nature of medical data raises 
risks of breaches and cyberattacks, potentially exposing 
patients’ private information and fueling discrimination. 
Robust cybersecurity measures, transparent data gov-
ernance, and improved de-identification techniques are 
essential. Empowering patients and ensuring ethical han-
dling of data will be critical to building trust and maxi-
mizing the potential of AI in kidney cancer diagnosis and 
management. Only by navigating these obstacles can AI 
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achieve accurate and equitable diagnostic solutions while 
safeguarding patient privacy [60].

Future directions
In general, this review has highlighted the potential 
role of AI in the complex care in patients with locally 
advanced and metastatic RCC. It has also shed light on 
the importance of combining clinicopathological, molec-
ular and multiphasic imaging data to develop and vali-
date AI-based solutions in the realm of advanced RCC.

AI models can move beyond the realm of research to 
clinical implementation, to aid in management decisions 
by analyzing patients’ clinicopathological and radiologi-
cal data, as models combining both datasets have dem-
onstrated superior performance compared to those 
relying solely on one of the two. While the implementa-
tion of these models into clinical practice is often a mul-
tistep process requiring a holistic approach addressing 
technical, workflow, and organizational challenges, the 
adoption of AI models into oncologic care, including 
radiology, is inevitable. A fundamental first step is the 
integration of formal AI education and workshops into 
clinical training and radiology faculty development. This 
ensures that healthcare providers acquire the necessary 
skills to critically evaluate AI models and validate their 
outcomes, paving the way for more informed and effec-
tive clinical implementation. While AI is poised to sig-
nificantly enhance the clinical management of advanced 
RCC in several key areas, future studies should compare 
the performance of radiologists vs. their performance 
when provided with these models. Assuming a significant 
increase in their performance (higher accuracy and turn-
over time), implementing AI algorithms in RCC preop-
erative staging can assist radiologists accurately identify 
risk features, often associated with poorer prognosis and 
essential for determining optimal management strategies.

Multiphase CT and MRI are essential tools in renal 
tumor imaging, significantly shaping AI model develop-
ment and clinical applications. While CMP remains vital 
for CT imaging of renal masses, multiparametric MRI 
provides additional benefits, particularly in identifying 
microscopic fat and subtle enhancement. Thus, the selec-
tion of disease-specific imaging protocols directly affects 
tumor visualization, characterization and data consis-
tency, decreasing variability while improving accuracy of 
models. Future AI models should strive to improve their 
ability to characterize RCC on non-dedicated protocols, 
such as single-phase CT. While this endeavor is techni-
cally challenging, it holds significant clinical value since 
many tumors are incidentally detected on single phases 
studies, often necessitating re-scanning patients. Devel-
oping AI models capable of reliably interpreting such 
images would broaden their clinical applicability and 
enhance diagnostic accuracy in less-than-ideal scenarios 

but also decrease patients’ radiation exposure. AI may 
also be helpful identifying the most aggressive renal 
masses meriting biopsy or resection.

Approximately 30% of patients diagnosed with RCC 
will develop metachronous distant metastases (MDM) 
i.e., distant metastases after initial diagnosis, later in the 
course of the disease [61]. RCC metastases commonly 
affect the lungs, bones, liver, and adrenal glands, with 
site-specific prognostic differences [62]. AI has shown 
promise in predicting metastases in high-risk sites to 
enable earlier interventions. For example, machine learn-
ing (ML) models by Xu et al. [63] and Ji et al. [64] out-
performed traditional nomograms in predicting bone 
involvement, with AUC values exceeding 0.85. To predict 
brain involvement, Kim et al. developed an ML model 
predicting brain metastases with moderate success 
(AUC = 0.716), limited by small sample size [65]. For liver 
metastases, Wang et al.’s XGB-based ML model achieved 
high accuracy (AUC = 0.947 [66]. However, these mod-
els are primarily based on clinical data, and integration 
of radiologic findings into future studies could enhance 
prediction accuracy and clinical application. Future stud-
ies incorporating radiologic data have the potential to 
enhance modeling to better predict MDM to various 
sites.

Traditional models like the MSKCC and IMDC (Heng 
score) stratify mRCC patients by risk groups, inform-
ing treatment plans. However, advancements in AI have 
introduced more precise prediction tools, aligning with 
National Comprehensive Cancer Network’s (NCCN) 
2024 guidelines, which suggest that follow-up may be 
individualized based on surgical status, treatment sched-
ules, side effects, comorbidities, and symptoms, thereby 
tailoring follow-up recommendations to each patient’s 
unique risk profile [67]. For instance, Buchner et al.‘s 
ANN demonstrated 95% accuracy in predicting overall 
survival, outperforming traditional models [68]. Simi-
larly, Barken et al.‘s AI-based model surpassed MSKCC 
and IMDC for predicting 3- and 5-year survival, with 
high clinical utility [69]. These tools, however, require 
further validation, as they were developed retrospectively 
using limited clinical datasets. Furthermore, AI has sig-
nificant potential to revolutionize RCC systemic treat-
ment approach through leveraging imaging to assess the 
entire tumor burden non-invasively. RCC is well known 
for its pronounced tumor heterogeneity, both between 
primary and metastatic sites and among different metas-
tases within the same patient. This variability compli-
cates treatment selection, as different tumor regions 
may exhibit distinct molecular profiles and therapeutic 
responses [10]. By integrating AI with radiomics and 
deep learning models, clinicians may gain deeper insights 
into treatment resistance patterns and optimize therapy 
selection without the need for repeated invasive biopsies. 
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However, this application remains in its early stages, as 
AI-based decision support for systemic therapy in RCC 
requires extensive validation through prospective studies. 
Given the complexity of RCC management, a multidisci-
plinary collaboration between radiologists, oncologists, 
data scientists, and pathologists will be essential to refine 
AI applications and align them with the most pressing 
clinical needs.

AI has the potential to play a pivotal role in the man-
agement of advanced and metastatic RCC. Models built 
using both clinicopathological and radiological data have 
demonstrated superior performance compared to those 
relying solely on one of the two. In time, such models 
can move beyond the realm of research to clinical imple-
mentation, to aid in management decisions over the care 
continuum, from the time of diagnosis, to post treatment 
surveillance and ultimately to therapy selection to opti-
mize the care of patients with advanced or metastatic 
RCC.
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