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Abstract
Background  Immunotherapy has revolutionized the treatment landscape for head and neck squamous cell 
carcinoma (HNSCC) and PD-L1 combined positivity score (CPS) scoring is recommended as a biomarker for 
immunotherapy. Therefore, this study aimed to develop an MRI-based deep learning score (DLS) to non-invasively 
assess PD-L1 expression status in HNSCC patients and evaluate its potential effeciency in predicting prognostic 
stratification following treatment with immune checkpoint inhibitors (ICI).

Methods  In this study, we collected data from four patient cohorts comprising a total of 610 HNSCC patients from 
two separate institutions. We developed deep learning models based on the ResNet-101 convolutional neural 
network to analyze three MRI sequences (T1WI, T2WI, and contrast-enhanced T1WI). Tumor regions were manually 
segmented, and features extracted from different MRI sequences were fused using a transformer-based model 
incorporating attention mechanisms. The model’s performance in predicting PD-L1 expression was evaluated using 
the area under the curve (AUC), sensitivity, specificity, and calibration metrics. Survival analyses were conducted using 
Kaplan-Meier survival curves and log-rank tests to evaluate the prognostic significance of the DLS.

Results  The DLS demonstrated high predictive accuracy for PD-L1 expression, achieving an AUC of 0.981, 0.860 
and 0.803 in the training, internal and external validation cohort. Patients with higher DLS scores demonstrated 
significantly improved progression-free survival (PFS) in both the internal validation cohort (hazard ratio: 0.491; 95% 
CI, 0.270–0.892; P = 0.005) and the external validation cohort (hazard ratio: 0.617; 95% CI, 0.391–0.973; P = 0.040). In the 
ICI-treated cohort, the DLS achieved an AUC of 0.739 for predicting durable clinical benefit (DCB).

Conclusions  The proposed DLS offered a non-invasive and accurate approach for assessing PD-L1 expression in 
patients with HNSCC and effectively stratified HNSCC patients to benefit from immunotherapy based on PFS.
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Background
Head and neck squamous cell carcinoma (HNSCC) 
ranks as the sixth most common cancer worldwide, with 
approximately 900,000 new cases and 500,000 deaths 
annually [1, 2]. Moreover, most patients with HNSCC are 
diagnosed at advanced stages [3]. Traditional treatments, 
including surgery, radiation, and chemotherapy, gener-
ally exhibit limited efficacy and are often accompanied 
by severe toxic side effects [4]. Consequently, the treat-
ment landscape for HNSCC has been revolutionized by 
immunotherapy in recent years [5]. Pembrolizumab is 
recommended as a category IA treatment for combined 
positivity score (CPS)-positive HNSCC patients by both 
the National Comprehensive Cancer Network (NCCN) 
and the European Society for Medical Oncology (ESMO) 
guidelines [6]. However, only 20–30% of patients receiv-
ing immune checkpoint inhibitors (ICIs) derive clini-
cal benefit [7, 8]. According to the American Society of 
Clinical Oncology (ASCO) guidelines, PD-L1 CPS scor-
ing is recommended as a biomarker for immunotherapy 
in HNSCC patients [9]. Therefore, accurate assessment of 
PD-L1 expression status before treatment is essential for 
guiding personalized treatment plans.

Accurately predicting PD-L1 expression prior to treat-
ment continues to pose challenges. Currently, PD-L1 
expression is predominantly assessed via immunohisto-
chemistry (IHC), which necessitates surgical or biopsy 
procedures [10]. This invasive method is not only time-
consuming but also challenging for dynamic assessments 
[11]. Moreover, the reliability of this method is hindered 
by tumor heterogeneity, variability in antibody staining, 
and subjective result interpretation, all of which add to 
diagnostic complexity and uncertainty [12]. Given these 
limitations, there is a pressing need for non-invasive, 
reliable biomarkers to facilitate the effective selection of 
patients who may benefit from immunotherapy.

Recently, advancements in computer vision technol-
ogy have enabled precise assessments of histological 
biomarkers using standard clinical imaging techniques, 
such as CT and MRI [13]. Previous studies have utilized 
tumor-based quantitative radiomics to extract features 
from CT images to predict PD-L1 expression status, 
achieving AUC values of 0.834 and 0.807 in the valida-
tion sets [14, 15]. Radiomics involves extracting hand-
crafted image features from tumors and selecting key 
features to train machine learning models. However, 
handcrafted radiomic methods require time-consuming 
tumor boundary delineation and only detect generalized 
features, which may lack reproducibility and repeatability 
[16, 17]. Deep learning integrates feature extraction and 

model construction within a unified convolutional neu-
ral network framework, allowing the automatic learning 
of more effective tumor image features by modifying the 
network architecture [18, 19]. Although previous stud-
ies have predicted PD-L1 status, their ability to forecast 
immunotherapy efficacy and provide prognostic stratifi-
cation based on PD-L1 expression remains unconfirmed.

In this study, a deep learning score (DLS) based on MRI 
was developed to non-invasively assess PD-L1 expression 
status. Furthermore, the utility of the DLS in predicting 
progression-free survival (PFS) and durable clinical ben-
efit (DCB) in patients treated with immune checkpoint 
inhibitors was investigated, aiming to provide more pre-
cise guidance for clinical decision-making.

Materials and methods
Study population
This retrospective study received approval from the insti-
tutional review board (NCT06100497), and the require-
ment for written informed consent was waived. Four 
patient cohorts were collected from two institutions 
for this two-center retrospective study. Detailed inclu-
sion and exclusion criteria are provided in Supplemental 
Methods S1. Among these, patients from institution 1 
were divided randomly into training (N = 267) and inter-
nal validation (N = 115) cohorts at a 7:3 ratio, and the 
external validation cohort was composed of 134 patients 
from institution 2. Additionally, an ICI-treated retrospec-
tive cohort (N = 94) from institution 1 was used to evalu-
ate the utility of the DLS in predicting DCB (Fig. 1).

Progression criteria for the ICI-treated cohort used to 
investigate the correlation between the DLS and durable 
clinical benefit (defined as PFS > 6 months) were based 
on the Response Evaluation Criteria in Solid Tumors 
(RECIST v1.1) [20]. PFS was defined as the duration from 
treatment initiation to the occurrence of disease progres-
sion, which included tumor growth, metastasis of the pri-
mary tumor, emergence of a new lesion, or patient death.

PD-L1 detection and classification of expression
An experienced pathologist, blinded to imaging results 
and clinical data, analyzed histopathologic samples 
obtained from pretherapeutic biopsies of the primary 
tumor. During biopsy sampling, care was taken to avoid 
inflammation and ulceration on the surface of the tumor, 
and multiple biopsies were performed to ensure adequate 
tumor tissue for analysis. PD-L1 expression was retro-
spectively assessed using the VENTANA PD-L1 SP263 
IHC assay, which is approved by the US Food and Drug 
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Administration for the assessment of PD-L1 expression 
[21].

The PD-L1 combined positive score (CPS) was calcu-
lated using the formula:

CPS = [(number of PD−L1 positive staining tumor cells 
+ PD−L1 positive staining tumor−associated immune 
cells) / total tumor cells] × 100.

All calculations were performed at a magnification of 
40-fold. PD-L1 high-expression status was defined as a 
CPS of 20 or higher [22].

Image data acquisition
The imaging protocol included axial fast spin-echo 
T1-weighted (T1WI), T2-weighted (T2WI), and fat-
saturated contrast-enhanced T1-weighted (CE-T1WI) 
sequences. The CE-T1WI images were captured after 
administering a 0.1 mL/kg intravenous bolus of gadopen-
tetate dimeglumine. Detailed acquisition parameters are 
available in Supplementary Table S2.

Image segmentation and preprocessing
Tumor regions of interest (ROIs) were manually delin-
eated slice-by-slice on contrast-enhanced T1-weighted 
images (CE-T1WI) using ITK-SNAP software (v3.8.0). 
Radiologists A and B with 3 and 5 years of experi-
ence in head and neck MRI, respectively, conducted 

the segmentations. These ROIs were then registered to 
T1-weighted and T2-weighted images using the same 
software. Any discrepancies were resolved by senior 
Radiologist C, who has 25 years of experience in this 
field. All radiologists were blinded to clinical and histo-
pathological data. The segmented images were aligned 
with their respective T1-weighted and T2-weighted 
images, resampled to a voxel size of 1 × 1 × 1 mm³ using 
B-spline interpolation, and normalized on a 0–1 scale via 
min-max normalization.

DL model construction and DL feature extraction
The study design is illustrated in Fig. 2. The ResNet-101 
convolutional neural network was adopted as the primary 
architecture for the deep learning model. To enhance 
training effectiveness with limited data, transfer learn-
ing techniques were employed. The models were pre-
trained on the ImageNet dataset to acquire initial weight 
values. This study utilized maximum orthogonal slices—
axial, sagittal, and coronal planes with the largest tumor 
area—as 2.5D inputs for modeling. Before training, all 
inputs were resized to 224 × 224 pixels and underwent 
z-score normalization to ensure pixel value consistency. 
Additionally, we applied real-time data augmentation 
techniques, including random horizontal flipping and 

Fig. 1  Study design and inclusion and exclusion diagram
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cropping. A focal loss function was utilized to address 
issues of class imbalance.

To enhance the interpretability of our model, Gradient-
weighted Class Activation Mapping (Grad-CAM) was 
employed for visualization purposes. The class activation 
maps were produced by using gradient information from 
the final convolutional layer of the Convolutional Neural 

Networks (CNN) [23]. Additionally, the DL features 
extracted from these layers were then reduced to 128 
dimensions using Principal Component Analysis (PCA), 
mitigating overfitting risks and boosting the model’s 
generalizability.

Fig. 2  The schematic workflow of model development and validation
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Feature fusion and DLS construction
To integrate features from multiple MRI sequences, a 
transformer-based model was developed comprising 
eight attention heads and three encoder layers. Features 
from T1WI, T2WI, and CE-T1WI sequences, extracted 
using ResNet-101, were concatenated along the channel 
dimension. The concatenated features were segmented 
into fixed-size patches, with a multi-head self-attention 
mechanism applied to enhance representation by focus-
ing on interdependencies and positional information. The 
refined feature maps were subjected to pooling opera-
tions and decoded by a multilayer perceptron (MLP) that 
outputs the DLS via a softmax function. Model parame-
ters were updated using the Stochastic Gradient Descent 
(SGD) optimizer with an initial learning rate of 0.01 and a 
batch size of 32. To prevent overfitting, an early stopping 
strategy and Dropout technology were employed. The 
entire model was implemented in the PyTorch frame-
work and trained efficiently on a system equipped with 
an NVIDIA GeForce RTX 4080 GPU.

Statistical analysis
All statistical analyses and graphical outputs were gen-
erated using SPSS (version 25), R (version 4.1.2), and 
Python (version 3.8.5). Continuous variables between 
training and validation groups were analyzed using the 

Mann-Whitney U test or Student’s t-test, while categori-
cal variables were assessed with the chi-square test or 
Fisher’s exact test as appropriate. Model performance 
was evaluated by calculating the AUC with a 95% con-
fidence interval (CI), along with sensitivity, specificity, 
positive predictive value (PPV), negative predictive value 
(NPV), and accuracy. The DeLong test was employed for 
comparative analysis of AUCs. Probabilistic prediction 
accuracy was gauged using the Brier score (range from 
zero to one, with lower scores indicating better calibra-
tion) and calibration curves. The performance of DLS 
to predict DCB is evaluated by calculating the AUC. 
According to the Youden index from the training cohort, 
the patients were categorized into high DLS and low DLS 
groups. The Kaplan-Meier method and log-rank tests 
were employed to conduct survival analyses and compare 
PFS among patient groups stratified by the DLS. Statisti-
cal significance was established at a two-tailed P-value of 
less than 0.05.

Results
Patients characteristics
Table  1 presents the clinical characteristics of patients 
used for training and validating non-invasive PD-L1 sta-
tus measurements. PD-L1 high expression prevalence, as 
determined by IHC in the training, internal validation, 

Table 1  Clinical and pathologic characteristics of patients with HNSCC in the training, Internal validation, and external validation 
cohorts
Clinical Characteristics Training Cohort 

(n = 267)
Internal validation 
cohort (n = 115)

External validation 
cohort (n = 134)

P 
value

Age (mean ± SD, years)  61.70 ± 8.50  59.85 ± 8.16  58.76 ± 8.63 0.003
Histological differentiation 0.505

Well 31 (11.61%) 11 (9.57%) 14 (10.45%)
Moderately 115 (43.07%) 48 (41.74%) 47 (35.07%)
Poorly 121(45.32%) 56 (48.69%) 73 (54.48%)

T stage 0.043
2 89 (33.33%) 30 (26.09%) 46 (34.33%)
3 120 (44.94%) 46 (40.00%) 46 (34.33%)
4 58 (21.73%) 39 (33.91%) 42 (31.34%)

N stage 0.321
0 85 (31.84%) 34 (29.57%) 33 (24.63%)
1 83 (31.09%) 31 (26.96%) 40 (29.85%)
2 92 (34.46%) 42 (36.52%) 53 (39.55%)
3 7 (2.61%) 8 (6.95%) 8 (5.97%)

Smoking 0.519
No 72 (27.00%) 29 (25.22%) 42 (31.34%)
Yes 195 (73.00%) 86 (74.78%) 92 (68.66%)

Drink 0.758
No 185(85.5%) 79 (68.70%) 88 (65.67%)
Yes 82 (14.5%) 36 (31.30%) 46 (34.33%)

Sex 0.196
Male 238 (89.14%) 109 (76.20%) 123 (91.79%)
Female 29(10.86%) 6 (23.80%) 11 (8.21%)

P value < 0.05 is considered as a significant difference.SD, standard deviation
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and external validation cohorts, was 32.2%, 32.2%, and 
48.5%. Supplementary Table S2 details the clinical char-
acteristics of patients assessed for the clinical utility of 
the DLS. The retrospective cohort1, treated with ICIs, 
comprised 94 patients, of whom 23.4% experienced a 
DCB.

Deep learning model construction, comparison, and 
evaluation
Models were developed using T1WI, T2WI, and CE-
T1WI sequences, both as individual and combined 
sequence models. To assess the impact of different 
sequences on model performance and identify the opti-
mal predictive model, these models were evaluated 
in both the training and validation cohorts. The DLS 

achieved superior performance, with an AUC of 0.981, 
sensitivity of 0.826, and specificity of 0.978 (Table  2; 
Fig. 3a). In line with training results, DLS outperformed 
single-sequence models in the validation cohorts, achiev-
ing an AUC of 0.860, sensitivity of 0.811, and specificity 
of 0.756 (Table  2; Fig.  3d). The DeLong test confirmed 
statistically significant performance differences between 
the DLS and T1WI, T2WI, and CE-T1WI models in the 
internal validation cohort, with no significant difference 
compared to CE-T1WI (DLS vs. CE-T1WI, P = 0.149).

To further evaluate the diagnostic accuracy of the DLS, 
we applied decision curve analysis (DCA), which showed 
that the DLS offered the highest net benefit (Fig. 3b and 
e). Furthermore, the classification accuracy of DLS, evi-
denced by superior Brier scores and calibration curves 

Table 2  Diagnostic performance of models constructed by Resnet-50 on the training and validation cohorts
Group Models AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV
Training set T1WI 0.804 (0.756–0.851) 0.764 0.419 0.928 0.735 0.771

T2WI 0.817 (0.770–0.863) 0.760 0.419 0.923 0.720 0.770
CE-T1WI 0.845 (0.802–0.889) 0.790 0.558 0.901 0.727 0.811
DLS 0.981 (0.965–0.997) 0.929 0.826 0.978 0.947 0.922

Internal validation set T1WI 0.705 (0.621–0.755) 0.626 0.865 0.513 0.457 0.889
T2WI 0.741 (0.661–0.821) 0.565 0.865 0.423 0.416 0.868
CE-T1WI 0.769 (0.692–0.846) 0.696 0.757 0.667 0.519 0.853
combined 0.860 (0.797–0.924) 0.774 0.811 0.756 0.612 0.894

External validation set T1WI 0.689 (0.611–0.768) 0.619 0.800 0.449 0.578 0.705
T2WI 0.747 (0.674–0.821) 0.702 0.846 0.565 0.647 0.796
CE-T1WI 0.734 (0.659–0.809) 0.642 0.600 0.681 0.639 0.644
combined 0.803 (0.735–0.870) 0.754 0.708 0.797 0.767 0.743

AUC, area under the curve; CI, confidence interval; DL, deep learning; NPV, negative predictive value; PPV, positive predictive value

Fig. 3  ROC curves, decision curve analysis, and calibration curves of different DL models in training cohort (a-c) and internal validation cohort (d-f)
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(Fig. 3c and f ), outperformed other models in the internal 
validation cohort. Figure 4 illustrates the feature activa-
tion maps identified by our deep convolutional neural 
networks, specifically focusing on PD-L1.

External validation and survival analysis
To evaluate the robustness of the DLS, an external valida-
tion cohort of 197 patients was utilized. In the external 
validation cohort, the DLS showed stable performance, 
achieving an AUC of 0.803, with a sensitivity of 0.708 
and a specificity of 0.797 (Fig.  5a). DCA indicated that 
the DLS provided the greatest net benefit (Fig. 5b). Fur-
thermore, Brier scores and calibration curves clearly 
indicated that the classification accuracy of the DLS sur-
passed that of other single-sequence models in the exter-
nal validation cohort (Fig. 5c).

To further assess the prognostic value of the deep 
learning model for HNSCC patients, Kaplan-Meier sur-
vival curves were generated for both the internal and 
external validation cohorts. As of July 2024, the median 
follow-up times were 22.80 months (IQR, 14.68–27.03 
months) for the internal validation cohort and 18.28 
months (IQR, 9.16–24.98 months) for the external vali-
dation cohort.

Using the Youden index from the training cohort, 
patients were categorized into high DLS and low DLS 
groups. Figure  5d and e show that the high DLS and 
low DLS groups displayed significant differences in 
both internal (hazard ratio 0.491; 95% CI, 0.270–0.892; 
P = 0.005) and external validation cohorts (hazard ratio 
0.617; 95% CI, 0.391–0.973; P = 0.040). In the ICI-treated 
cohort, patients with DCB had significantly higher DLS 

Fig. 5  ROC curves, decision curve analysis, and calibration curves of different DL models in external validation cohort (a-c); Kaplan-Meier survival curves 
for the DLS in the internal validation cohort (d), and external validation cohort (e). ROC curve of DLS for identifying DCB in the ICI-treated cohort (f)

 

Fig. 4  Grad-CAM heatmaps of head and neck squamous carcinoma patients with high PD-L1 expression and low PD-L1 expression in T1WI, T2WI, and 
CE-T1WI
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scores, achieving an AUC of 0.739 for identifying DCB 
(95% CI: 0.639–0.824) (Fig. 5f ).

Discussion
According to NCCN guidelines, IHC assessment of 
PD-L1 expression serves as a decision-support tool for 
HNSCC patients considering checkpoint inhibitor ther-
apy. In this study, the proposed DLS based on MRI to 
non-invasively assess PD-L1 status achieved high predic-
tive accuracy, with area under the curve (AUC) values of 
0.981 in the training cohort, 0.860 in the internal valida-
tion cohort, and 0.803 in the external validation cohort. 
Furthermore, higher DLS were significantly correlated 
with improved PFS, effectively stratifying patient progno-
sis. Additionally, the DLS identified patients likely to ben-
efit from immunotherapy, achieving an AUC of 0.739 for 
predicting DCB in the immunotherapy cohort, which is 
crucial for developing personalized treatment strategies.

The administration of the PD-1/PD-L1 inhibitor pem-
brolizumab in HNSCC patients mainly depends on 
their PD-L1 expression levels. Studies have shown that 
patients with high PD-L1 expression (CPS ≥ 20) tend 
to respond better to pembrolizumab, while those with 
CPS below 20 are generally advised to receive pembro-
lizumab in combination with chemotherapy [7]. Artifi-
cial intelligence techniques, particularly radiomics and 
deep learning, are becoming increasingly prevalent in 
oncology research for medical imaging, including evalua-
tions of head and neck tumors [24–26]. Although several 
studies have investigated non-invasive PD-L1 expres-
sion prediction using CT-based radiomics, their findings 
have been limited by small sample sizes and the radiation 
risks associated with CT imaging [14, 15]. In contrast, 
MRI poses no radiation risk and offers multiparamet-
ric imaging capabilities, thereby providing richer tumor 
information [27]. Previous research has demonstrated 
that multiparametric MRI radiomic features combined 
with deep learning methods outperform single-modality 
approaches [17, 28]. The American Journal of Roentgen-
ology (AJR) recommends T1WI, T2WI, and CE-T1WI as 
standard imaging sequences for head and neck cancer, 
revealing tumors’ internal characteristics and blood sup-
ply [29]. Compared to radiomic models, deep learning 
minimizes the subjectivity and time involved in manual 
feature selection and utilizes a hierarchical structure of 
nonlinear features to more effectively model complex 
data patterns [30]. The DLS developed in this study dem-
onstrated superior performance in predicting PD-L1 
expression, with AUC values of 0.860 and 0.803 in the 
internal and external validation cohort. Furthermore, 
our analysis demonstrated that the DLS effectively strati-
fies patient prognosis, as patients with higher DLS scores 
experienced improved oncological outcomes and greater 

clinical benefits. These findings suggest that our DLS can 
guide personalized treatment decisions for HNSCC.

The ResNet network introduces residual learning, 
allowing for deeper network structures that efficiently 
retain and transmit gradient information during training, 
effectively capturing local image features [31]. Conse-
quently, we employed the ResNet architecture to extract 
deep learning features from T1WI, T2WI, and CE-T1WI 
sequences, and utilized an attention mechanism to fuse 
these features. The attention mechanism simulates 
human selective attention, enhancing the model’s ability 
to capture essential information while reducing interfer-
ence from irrelevant data [32]. Additionally, Grad-CAM 
heatmaps were employed for visual interpretation, clari-
fying the relationship between deep features and PD-L1 
expression. This analysis revealed that certain salient 
features originate from tumor-adjacent areas, which 
is consistent with the findings of Austin et al. Austin et 
al.‘s research demonstrated that 83% of PD-L1 expres-
sion in HNSCC tumors is peripheral, with this staining 
pattern suggesting an induced response associated with 
inflammation, potentially the most sensitive to anti-PD-1 
therapy [33]. These findings highlight the advantages of 
deep learning models in capturing features of tumors 
and their microenvironment, thereby enhancing clinical 
interpretability and addressing the opaque nature of deep 
learning.

However, the DLS faces several challenges in practical 
applications. Although previous studies have demon-
strated the potential of automated segmentation tech-
niques in HNSCC [34–36], the complexity of the head 
and neck region, coupled with the high heterogeneity in 
the size, shape, and location of HNSCC tumors, makes 
automated segmentation difficult when detecting small 
lesions or precisely delineating tumor boundaries—espe-
cially when the boundaries between the tumor and sur-
rounding tissues are unclear [37]. Therefore, we opted 
for manual segmentation to achieve more accurate delin-
eation of the tumor. However, manual segmentation is 
typically time-consuming, and discrepancies between 
experts may impact the accuracy of the model. Conse-
quently, further development of an end-to-end model is 
crucial to promote its broader clinical application. Fur-
thermore, while the DLS demonstrated high diagnostic 
efficacy in predicting PD-L1 expression, its AUC for pre-
dicting DCB is relatively modest. The possible reason for 
this is the inclusion of both PD-L1 high and low expres-
sion patients in the ICI treatment cohort of this study. 
Several studies have shown that a small subset of PD-
L1-negative or low-expression patients can also benefit 
from ICI treatment [38, 39]. Therefore, future research 
should focus on identifying those patients who are likely 
to benefit from immunotherapy, particularly PD-L1-neg-
ative or low-expression patients. Lastly, while DLS holds 
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potential in predicting PD-L1 expression in HNSCC 
patients, especially in assessing the efficacy of ICI treat-
ment, IHC testing remains the primary method for guid-
ing clinical decision-making. Therefore, future studies 
should explore the integration of DLS with IHC testing 
to provide a more comprehensive evaluation tool, helping 
to early identify patients who may benefit from immuno-
therapy, thereby enabling more precise and personalized 
treatment decisions.

Several limitations were identified in this study. First, 
this study retrospectively included patients from two 
centers, resulting in a limited sample size and potential 
selection bias. Therefore, future validation of the model 
should be performed using multi-center data and pro-
spective cohorts. Secondly, only IHC, as recommended 
by the NCCN Clinical Practice Guidelines, was uti-
lized to assess PD-L1 levels, while other methods such 
as immunofluorescence and flow cytometry were not 
employed. Future research should compare these detec-
tion methods, although all require biopsy. Thirdly, MRI 
was used in this study to assess PD-L1 expression and the 
efficacy of immunotherapy; however, this method may 
not be widely applicable in all clinical settings. Although 
MRI has the advantages of no radiation exposure and 
multiparametric imaging, CT is more commonly used in 
clinical practice and is widely employed for the diagno-
sis and monitoring of HNSCC. Therefore, future studies 
should further explore deep learning models based on 
CT to assess PD-L1 expression and the efficacy of immu-
notherapy in HNSCC, which could improve its applica-
bility in clinical settings.

Conclusions
In conclusion, DLS demonstrated satisfactory predictive 
performance in external cohorts and may serve as a prog-
nostic biomarker to guide immunotherapy. These find-
ings suggest that DLS could be used to identify patients 
likely to benefit from immunotherapy prior to.
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