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Abstract
Background  Accurate identification and evaluation of lymph nodes (LNs) in prostate cancer (PCa) patients is 
crucial for effective staging but can be time-consuming. We utilized a 3D V-Net model to improve the efficiency and 
accuracy of LN detection and segmentation.

Methods  Utilizing pelvic diffusion-weighted imaging (DWI) scans, the 3D V-Net framework underwent training on 
a dataset comprising data from a hospital with 1,151 patients, encompassing 32,507 annotated LNs, following data 
augmentation procedures. Subsequently, external validation was conducted on data from 401 patients across three 
additional hospitals, encompassing 7,707 LNs. The segmentation performance was evaluated using the Dice similarity 
coefficient (DSC). The comparison between automated and manual segmentation regarding the short diameter and 
volume of LNs was conducted using Bland–Altman plots and correlation analysis. The performance for suspicious 
metastatic LN detection (short diameter > 8 mm) was evaluated using sensitivity, positive predictive value (PPV), and 
per-patient false-positive rate (FP/vol) at the LN level and sensitivity, specificity, and PPV at the patient level.

Results  In the external validation test dataset, the model achieved a DSC of 0.77–0.82 for all, suspicious, and largest 
LNs. The model achieved a sensitivity, PPV, and FP/vol of 60.1% (95% confidence interval (CI), 57.6-62.6%), 79.2% (95% 
CI, 76.6-81.5%), and 0.56 at the LN level, respectively. At the patient level, the model achieved a sensitivity, specificity, 
and PPV of 81.1% (95% CI, 76.5-85.0%), 75.6% (95% CI, 65.1-83.8%), and 93.2% (95% CI, 89.7-95.6%), respectively. 
The model achieved a strong correlation and good consistency between the short diameter and volume of the 
automatically segmented and manually annotated LNs.

Conclusion  This 3D V-Net model can segment LNs effectively based on pelvic DWI images for PCa and holds great 
potential for facilitating N-staging in clinical practice.
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Introduction
Pelvic lymph nodes (LNs) are the most common location 
for prostate cancer (PCa) dissemination. LN invasion was 
confirmed in up to 15% of patients undergoing pelvic LN 
dissection (PLND) [1]. It is critical for clinical decision-
making to accurately identify the number and location 
of LNs and assess the nodal metastatic burden before 
treatment. Negative pretreatment reporting would mean 
that surgery or radiation therapy may be limited to the 
prostate and not necessary for PLND, while positive pre-
treatment reporting would indicate the presence of other 
options, such as extended radiation therapy, PLND, or 
androgen deprivation therapy [1, 2, 3, 4].

However, the ideal imaging method does not yet exist. 
Although some functional MR imaging and targeted 
PET/CT imaging improve the N-staging of PCa, they 
are not currently a substitute for PLND [5]. MpMRI has 
been recognized as the first choice for PCa screening, 
local staging, and image-guided biopsy. DWI images with 
high b-values have strong diffusion effects and can sup-
press the signal of the background tissue. Thus, the pelvic 
LNs can be displayed and easily identified. Reporting N 
staging is a routine task in interpreting prostate mpMRI. 
Based on traditional size and shape assessment, mpMRI 
can detect LN metastasis with high specificity but low 
and heterogeneous sensitivity in the range of 40-60% [6]. 
Radiologists often use a short diameter of 8  mm as the 
threshold for suspected metastatic LNs and highlight 
them in the MR report [7], but false positive (FP) results 
can result when LNs are enlarged from conditions other 
than metastasis (such as hyperplasia). In addition, even 
LNs with a short diameter of less than 8 mm may harbor 
microscopic metastasis [8, 9], suggesting that small LNs 
should not be ignored. Thus, the identification of all LNs 
in the scan area is a preliminary step for further analysis 
of metastasis.

Identifying all pelvic LNs, especially tiny LNs, from 
numerous medical images is a time-consuming and 
experience-dependent process in a radiologist’s daily 
workflow. Therefore, there is a growing need for auto-
matic pelvic LN identification. Convolutional neural 
networks (CNNs) have emerged as promising tools for 
automatic diagnosis and quantitative evaluation based 
on deep learning methods. V-Net [10], a fully CNN origi-
nally developed for prostate segmentation, has been suc-
cessfully applied to various medical image segmentation 
tasks due to its stable and robust performance [11, 12]. 
However, the efficiency of applying the V-Net framework 
for LN segmentation is still unknown.

In this work, we attempt to develop an automated LN 
segmentation model on pelvic DWI images using the 
V-Net framework, and then we validate it on external 
datasets from multiple vendors and multiple centers.

Materials and methods
The retrospective study herein was approved by Com-
mittee for Medical Ethics, Peking University First Hos-
pital, with the requirement for written informed consent 
waived. The study protocol was assigned number 
2021(060).

Study subjects
A dataset of patients suspected of having PCa between 
February 2014 and March 2022 was obtained from 
Peking University First Hospital for model development. 
The inclusion criteria were as follows: (1) patients with 
biopsy-confirmed PCa or biopsy-negative patients who 
did not show underlying PCa within one year of clini-
cal follow-up; (2) patients whose high b-value (≥ 800  s/
mm2) DWI images were available; and (3) patients with-
out a history of surgery, radiation, or adjuvant therapy for 
PCa before mpMRI. DWI images with ineligible quality 
were excluded. A total of 1151 patients with 1309 high 
b-value DWI images were finally recruited for model 
development.

An external dataset was included from three other hos-
pitals (Second Affiliated Hospital of Dalian Medical Uni-
versity, Fujian Medical University Union Hospital, and 
Jiaxing Hospital) between June 2017 and August 2018 
following the same inclusion and exclusion criteria. A 
total of 401 patients with 401 high b-value DWI images 
were finally enrolled for external validation. Figure  1 
shows the flowchart of patient enrollment. All data were 
deidentified before enrollment, and clinical information, 
such as age and PSA level, was recorded for each enrolled 
patient.

MRI protocol
The mpMRI data used for model development were 
obtained with seven 3.0-Tesla scanners and two 1.5-Tesla 
scanners. The mpMRI data used for external validation 
were obtained using six 3.0 Tesla scanners and three 1.5 
Tesla scanners. Details of the DWI image protocols at 
each hospital are summarized in Supplementary Material 
Table S1.

Annotations and reference standard
The format of DWI images was converted from DICOM 
to NIFTI. The annotation platform is the open-source 
software ITK-SNAP (version 3.6 2015; available at www.
itksnap.org). All discernible LNs were annotated by the 
junior radiologist (5 years of experience) as Mask (1) 
The expert urogenital radiologist (35 years of experi-
ence) subsequently modified the annotations as Mask (2) 
Mask 2 was regarded as the reference standard for model 
development and external segmentation assessment. LNs 
with a short diameter > 8  mm are considered suspicious 
for metastasis, and the annotations of these LNs are used 

http://www.itksnap.org
http://www.itksnap.org
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as the reference standard for assessing LN level detec-
tion. If a patient contains at least one LN suspicious for 
metastasis, the patient is considered a suspicious patient 
(known as N1) and is used as the reference standard for 
assessing patient-level detection.

Preprocessing
B-spline interpolation to the third order was employed 
for all MR image interpolation tasks. All input images 
were cropped to 32 × 256 × 256 (z, y, x). The region of 
interest was then normalized into the range of [0, 1]. His-
togram equalization is used to enhance image contrast.

Data augmentation
Skewing (angel: 0–5), rotating (angel: 0–10), shearing 
(angel: 0–5), translation (scale: -0.1, 0.1), and adding 
noise to the images were exploited for data augmentation.

Training model
The 3D V-Net [10] serves as the foundational architec-
ture for pelvic LN segmentation on DWI images (Fig. 2). 
This model was an application of a pre-existing frame-
work originally proposed for prostate segmentation tasks. 
Inspired by the U-Net architecture [13] and the capabili-
ties of fully convolutional neural networks, this network 
is tailored for processing MRI volumes with end-to-end 
training. V-Net, which serves as the baseline model, 
features four levels comprising encoding and decoding 
paths, as well as skip connections that operate within and 

across the paths. Unlike conventional methods that pro-
cess input volumes slice by slice, the 3D V-Net employs 
volumetric convolutions for enhanced accuracy. The 
1309 DWI images were randomly divided into the train-
ing set (n = 1033), validation set (n = 135), and testing set 
(n = 141). The network was trained with DWI images and 
their corresponding manual annotations on an Ubuntu 
16.04 computer with GPU NVIDIA Tesla P100 16G, with 
32 GB available in RAM. The software and packages used 
included Python 3.6, Opencv 3.4.0.12, Pytorch 0.4.1, Sim-
pleITK 1.2.0, and Numpy 1.16.2. Using the Adam opti-
mizer, the training of layers was conducted by stochastic 
gradient descent in a fixed batch size of three images. The 
learning rate was set as 0.0001. The network was trained 
for 400 epochs until the validation loss function was no 
longer decreasing.

LN measurement and radiology report production
The contiguous voxel cluster predicted by this model was 
defined as an independent LN. Based on the segmen-
tation results, the volume and short diameter of each 
segmented LN were automatically calculated by sum-
ming the pixel volumes and using the minimum-volume 
bounding box algorithm, respectively. Next, a struc-
tured radiology report (Fig.  2) was automatically filled 
in containing information on the number of LNs with a 
short diameter exceeding 8 mm (suspicious LNs), along 
with the short diameter and volume of the largest LN. 
When the model detected at least one suspicious LN, the 

Fig. 1  Flowchart of patient enrollment. Hospital1 refers to Peking University First Hospital. Hospital2 refers to the Second Affiliated Hospital of Dalian 
Medical University. Hospital3 refers to Fujian Medical University Union Hospital. Hospital4 refers to Jiaxing Hospital
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radiology report was automatically filled as N1. Alterna-
tively, if no suspicious LN was detected, the N-staging 
was automatically filled as N0.

Evaluation criteria for LN segmentation
Model segmentation results were quantitatively com-
pared with manual segmentation using the Dice simi-
larity coefficient (DCS). For a further quantitative 
estimation of the 3D V-Net segmentation effectiveness, 
we calculated and compared the mean short diameter 
and volume of LNs in the reference standard and auto-
matic segmentation. The segmentation performance of 
the model was evaluated in both internal test and exter-
nal validation datasets at the levels of all LNs, suspicious 
LNs, and largest LNs.

Evaluation criteria for LN detection
According to the guidelines, suspicious LNs with a short 
diameter greater than 8  mm must be reported [7]. A 
detection approach for suspicious LNs and suspicious 
patients was defined based on automatic segmenta-
tion [14]. We assessed the performance of the model in 
detecting suspicious LNs at both the LN and patient lev-
els. At the LN level, we calculated the sensitivity, positive 
predictive value (PPV), and per-patient false-positive rate 
(FP/vol) to evaluate the model’s ability to detect suspi-
cious LNs. At the patient level, we calculated the sensitiv-
ity, specificity, and PPV to evaluate the model’s ability to 
correctly identify patients with the N1 stage.

Statistical analysis
Statistical analysis was performed using GraphPad Prism 
8 (GraphPad Prism Software Inc., San Diego, CA) and 
SPSS (version 24.0, IBM Corp., Armonk, NY, USA). Nor-
malized variables are presented as the mean ± standard 
deviation, and nonnormalized variables are presented as 
the median [Q1, Q3]. Categorical variables are presented 
as numbers (percentages). We used a one-way analysis of 
variance to compare the segmentation performance of 
the algorithm, i.e., DSC, and patient characteristics (age, 
tPSA level, LN volume, and short diameter). Post hoc 
multiple comparisons were conducted using the least sig-
nificant difference. We conducted Wilcoxon signed-rank, 
Pearson correlation, and Bland‒Altman analyses to com-
pare manual and automated segmentation of the short 
diameter and volume of LNs. All statistical tests were 
two-tailed with a 5% level of significance.

Results
Patient characteristics
Table  1 displays the characteristics of the included 
patients. In the model development dataset, we anno-
tated a total of 32,887 visible LNs, with 25,659 in the 
training set (24.8 per patient on average), 3,632 in the 
validation set (25.8 per patient on average), and 3,596 in 
the testing set (26.6 per patient on average). Additionally, 
we annotated 7,707 visible LNs in the external validation 
dataset, consisting of 401 patients, including 282 PCa 
patients and 119 non-PCa patients. Figure 3 presents the 
results of the statistical analysis of the short diameter and 

Fig. 2  Model architecture based on 3D V-Net and result output
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volume of the LNs in both the internal test dataset and 
external validation dataset.

Segmentation performance of the model
We evaluated the segmentation results of the LNs on 
both the internal test dataset and the external validation 
dataset. Table  2 shows that the DSC values of all LNs 
were significantly lower than those of the suspicious and 
largest LNs in both datasets (all with P < 0.05). The larg-
est LNs had the highest DSC value of 0.90 [0.75, 0.93] in 
the internal test dataset, indicating optimal segmenta-
tion performance. In contrast, there was no significant 
difference in the DSC values between the suspicious and 
largest LNs in the external validation dataset (0.82 [0.59, 
0.92] vs. 0.82 [0.49, 0.92], P = 0.330). Figure  4 illustrates 
the distribution of DSC values among LNs with differ-
ent short diameters and volumes in both the internal test 
dataset and external validation dataset.

Quantitative evaluation of segmentation performance
Table 3 summarizes the median short diameter and vol-
ume measurements for all LNs, suspicious LNs, and the 
largest LNs. Figure 5 presents a quantitative comparison 
of the LNs’ short diameter and volume between auto-
mated and manual segmentation. We found a strong 
correlation between the short diameter (R = 0.731–
0.815) and volume (R = 0.832–0.891) of the automati-
cally segmented LNs and the manually annotated LNs. 
Our Bland–Altman analysis showed good consistency 
between the automated segmentation and manual anno-
tation of all LNs, suspicious LNs, and largest LNs, with 
most values falling within the consistency interval.

LN detection based on segmentation
Table 4 presents the detection results for suspicious LNs 
and patients (based on the largest LNs) in both the inter-
nal test and external validation datasets. In the internal 
test dataset, our model demonstrated good performance 
in detecting suspicious LNs, achieving a positive predic-
tive value (PPV) of 79.8% (95% confidence interval (CI), 
76.5-82.8%), a sensitivity of 66.6% (95% CI, 63.1-69.9%), 
and a false positive/volume (FP/vol) of 1.07. Our model 
also achieved good performance in detecting suspicious 
patients, with a PPV of 98.0% (95% CI, 92.9-99.4%), sen-
sitivity of 89.0% (95% CI, 81.7-93.6%), and specificity of 
71.4% (95% CI, 35.9-91.8%). In the external validation 
dataset, our model also demonstrated good performance 
in detecting suspicious LNs, with a PPV of 79.2% (95% 
CI, 76.6-81.5%), sensitivity of 60.1% (95% CI, 57.6-62.6%), 
and a lower false positive rate of 0.56. Additionally, our 
model achieved good performance in detecting suspi-
cious patients, with a PPV of 93.2% (95% CI, 89.7-95.6%), 
sensitivity of 81.1% (95% CI, 76.5-85.0%), and specificity 
of 75.6% (95% CI, 65.1-83.8%). Figure 6 shows examples 
of the LN detection results obtained with the model. FPs 
typically occur due to high-intensity structures such as 
nerve tissue (Fig. 6a), hip joint (Fig. 6b), spermatic cord 
(Fig.  6c), and bone metastasis (Fig.  6d), as well as rec-
tum lesions (Fig. 6e), among others. False negative (FN) 
predictions may result from the misattribution of small 
lesions or insufficient contrast compared to the back-
ground. In cases of diffuse PCa, perirectal and peripros-
tatic LNs are commonly missed, resulting in FNs (Fig. 6f 
and g). Additionally, obvious swelling and necrosis of 
LNs can also be easily overlooked (Fig. 6h).

Table 1  Clinical characteristics of the patients
Parameter Model development dataset External validation dataset P

Training Validation Test Overall P Hospi-
tal 2

Hospi-
tal 3

Hospi-
tal 4

Overall P

No. of patients 919 (79.8) 116 (10.1) 116 (10.1) 1151 - 237 (59.1) 66 (16.5) 98 (24.4) 401 - -
No. of PCa patients 820 (79.5) 104 (10.1) 107 (10.4) 1031 - 164 (58.2) 52 (18.4) 66 (23.4) 282 - -
No. of non-PCa patients 99 (82.5) 12 (10.0) 9 (7.5) 120 - 73 (61.3) 14 (11.8) 32 (26.9) 119 - -
No. of DWI images 1033 (78.9) 135 (10.3) 141 (10.8) 1309 - 237 (59.1) 66 (16.5) 98 (24.4) 401 - -
Age (years) 70.0 ± 8.3 68.5 ± 9.6 69.1 ± 8.5 69.7 ± 8.5 0.971 71.33 ± 7.4 70.7 ± 7.2 72.1 ± 8.5 71.4 ± 7.6 0.394 0.000
tPSA (ng/ml) 16.7 [9.0, 

56.4]
16.5 [8.4, 
44.7]

11.3 [7.4, 
43.2]

16.1 [8.8, 
51.2]

0.262 19.1 [9.8, 
63.9]

21.6 [8.4, 
100.0]

16.9 [8.5, 
61.4]

18.9 [9.3, 
67.5]

0.734 0.161

No. of annotated LNs 25,335 3612 3560 32,507 - 4683 1118 1905 7707 - -
No. of suspicious LNs 4821 725 751 6297 - 818 171 438 1427 - -
Average LNs per patient 24.8 ± 9.3 25.8 ± 8.6 26.6 ± 9.3 25.1 ± 9.3 0.075 19.9 ± 8.2 16.7 ± 8.2 20.5 ± 8.0 19.5 ± 8.2 0.019 0.000
Short diameter of largest 
LNs (cm)

7.8 [6.0, 
9.5]

8.7 [6.6, 10.3] 8.2 [6.4, 
10.2]

7.9 [6.1, 
9.7]

0.002 9.9 [8.4, 
11.4]

9.9 [7.2, 
13.2]

10.6 [9.2, 
13.3]

10.0 [8.4, 
12.1]

0.003 0.000

Volume of largest LNs 
(cm3)

5.8 [3.7, 
11.3]

6.5 [4.0, 13.1] 6.0 [4.2, 
15.2]

5.9 [3.8, 
11.5]

0.064 0.8 [0.5, 
1.3]

0.8 [0.5, 
1.0]

0.7 [0.4, 
1.2]

0.8 [0.5, 
1.3]

0.120 0.000

tPSA = total prostate-specific antigen, LN = lymph node

The categorical variables are given as numbers (percentages). Quantitative variables were given as the median [Q1, Q3] for nonnormalized data
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Fig. 3  The distribution of lymph node short diameters (a) and volumes (b)
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Discussion
N-staging is a critical factor in determining treatment 
options and predicting patient outcomes. The initial 
step in this process is identifying all LNs, which can be a 
tedious and time-consuming task. Our study introduces a 
deep learning model that enables the accurate detection 
and segmentation of all pelvis LNs on DWI images. Fur-
thermore, we validated the model’s performance on an 
external dataset.

A comprehensive evaluation of size, morphological fea-
tures, signal intensity, and other imaging parameters is 
essential in the interpretation of pelvis LNs in the context 
of PCa N staging. The PIRADS guidelines [7] recommend 
reporting a short diameter greater than 8 mm as a thresh-
old for suspected metastatic LNs. This approach over-
simplifies the complex nature of LN metastasis. Of note, 
LNs with short diameters greater than 8 mm can exhibit 
benign characteristics, while those with short diameters 
less than 8  mm may still harbor metastatic cells [8, 9]. 

Table 2  Segmentation result of the model
DSC All LNs Suspicious LNs Largest LNs P value

All vs. Suspicious All vs. Largest Suspicious vs. Largest
Internal test dataset 0.78 [0.51, 0.93] 0.82 [0.63, 0.91] 0.90 [0.75, 0.93] < 0.001 < 0.001 0.015
External validation dataset 0.77 [0.37, 0.90] 0.82 [0.59, 0.92] 0.82 [0.49, 0.92] < 0.001 < 0.001 0. 330
Suspicious LNs indicates the LNs larger than 0.8 cm in the shortest diameter

LNs lymph nodes

Quantitative variables were given as the median [Q1, Q3] for nonnormalized data

Table 3  Quantitative measurements between automated segmentation and manual annotation
Quantitative metrics All LNs Suspicious LNs Largest LNs

Automated 
segmentation

Manual 
annotation

P Automated 
segmentation

Manual 
annotation

P 
value

Automated 
segmentation

Manual 
annotation

P 
value

Internal test dataset
Volume (mm3) 172.3 [71.1, 

390.3]
197.9 [83.0, 
449.2]

0.002 623.0 [374.3, 
1123.1]

785.1 [517.9, 
1389.3]

0.000 10.3 [8.7, 13.8] 10.8 [9.4, 15.1] 0.000

Short diameter (mm) 5.4 [3.9,7.3] 5.7 [4.0,7.7] 0.000 9.1 [7.7, 11.2] 9.7 [8.7, 11.9] 0.000 752.3 [466.4, 
1548.5]

886.2 [530.8, 
1787.2]

0.000

External validation 
dataset
Volume (mm3) 103.3 [45.9, 

244.90]
130.3 [61.2, 
304.2]

0.000 428.6 [244.9, 
688.8]

551.0 [382.7, 
870.9]

0.000 212.2 [95.1, 
382.6]

266.0 [134.7, 
463.2]

0.000

Short diameter (mm) 4.8 [3.4, 6.9] 5.1 [3.6, 7.5] 0.000 8.7 [7.4, 10.1] 9.4 [8.6, 10.7] 0.000 6.3 [4.7, 8.1] 6.8 [5.0, 8.6] 0.000
LNs lymph nodes

Fig. 4  Dice similarity coefficient distribution of lymph nodes with different short diameters (a) and volumes (b) in internal and external validation data-
sets. DSC Dice similarity coefficient
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Our study developed a model capable of segmenting all 
visible LNs on DWI images, whether they are healthy or 
metastatic. Furthermore, we exploited a cutoff threshold 
for LNs with a short diameter of more than 8 mm, allow-
ing us to assess the performance of our model in detect-
ing suspicious metastatic LNs. In the external validation 
test dataset, the model achieved a DSC of 0.77 for all 
LNs and 0.82 for suspicious LNs. The model achieved 
a sensitivity of 60.1%, PPV of 79.2%, and FP/vol of 0.56 
for detecting suspicious LNs at the LN level. The results 
from our external validation dataset confirmed the fea-
sibility of this method, which could aid in LN staging, 

quantitative measurements of tumor burden, and image-
guided treatment of patients with PCa.

In clinical practice, radiologists commonly focus on 
measuring and recording the short diameter and vol-
ume of the largest LN as it correlates with the N stage of 
the patient. Therefore, we took this factor into consider-
ation in our study to ensure its practicality. We assessed 
the model’s ability to detect and segment the largest LNs 
to enhance the clinical relevance of our analysis. In the 
external validation test dataset, the model demonstrated 
a DSC of 0.82 for the largest LNs. At the patient level, 
the model exhibited a sensitivity of 81.1%, specificity of 
75.6%, and positive predictive value (PPV) of 93.2% in 
detecting patients with suspicious LNs. Furthermore, we 
leveraged quantitative measurements of the largest LN’s 
short diameter and volume to automatically generate 
N-staging, which was then automatically included in the 
structured report on PCa.

Among neural network structures, fully convolutional 
networks (FCNs) [15], U-Net [13], 3D U-Ne t [16], and 
V-Net [10] are the most widely used architectures. The 
FCN [15], which adopts an end-to-end convolutional 
neural network and deconvolution for up-sampling, was 
the first to pioneer image segmentation and deep learn-
ing techniques. However, its low sensitivity to image 
details and tendency to cause partial information loss 
result in low segmentation accuracy for small structures. 
Ronneberger et al. proposed the U-Net [13] method, 
based on FCN [15], which applies a fully convolutional 
network to medical image segmentation. Unfortunately, 
FCN [15] and U-Net [13] can only be used for the iden-
tification and segmentation of two-dimensional images, 
whereas 3D U-Net [13] and V-Net [10] can process three-
dimensional images. Of the two, V-Net [10] training has 

Table 4  Detection results of suspicious lymph nodes and 
patients

Internal test dataset External validation 
dataset

Suscipi-
ous LNs

Suscipious 
Patients

Suscipious LNs Suscipious 
Patients

No. of TP 491 97 858 262
No. of FP 124 2 226 19
No. of FN 246 12 569 61
No. of TN NA 5 NA 59
PPV (95%CI) 79.8% 

(76.5%, 
82.8%)

98.0% (92.9%, 
99.4%)

79.2% (76.6%, 
81.5%)

93.2% 
(89.7%, 
95.6%)

Sensitivity 
(95% CI)

66.6% 
(63.1%, 
69.9%)

89.0% (81.7%, 
93.6%)

60.1% (57.6%, 
62.6%)

81.1% 
(76.5%, 
85.0%)

Specificity 
(95% CI)

NA 71.4% (35.9%, 
91.8%)

NA 75.6% 
(65.1%, 
83.8%)

FP/vol 1.07 - 0.56 -
LNs lymph nodes, TP true positive, FP false positive, FN false negative, PPV 
positive predictive value, CI Confidence Interval, FP/vol per-patient false-
positive rate

Fig. 5  Quantitative comparison of the short diameter and volume of the lymph nodes. Correlation and Bland–Altman plots of lymph node short diam-
eter and volume between automated segmentation and manual segmentation for the internal test dataset (a–d) and external validation dataset (e–h). 
LN lymph node
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become the primary method of medical image segmen-
tation due to its high speed and short completion time. 
In this study, even with significant individual variation in 
size, pose, shape, and sparsely distributed location of pel-
vic LNs, we demonstrate that V-Net’s outstanding per-
formance can be extended to the challenging task of LN 
segmentation by utilizing an ensemble strategy.

Liu et al. [14] developed a 3D U-Net model that can 
detect and segment all pelvic LNs on DWI images. The 
model achieved a high recall value of 0.98 for identifying 
suspicious LNs. However, their research data are lim-
ited and lack external validation. In a similar vein, Zhao 
et al. [17] presented an innovative autoLNDS model to 
detect and segment LNs with a short diameter greater 
than 3  mm on MR examination (T2-weighted imaging 
and DWI). Their external testing showed that the model 
achieved a sensitivity, PPV, and FP/vol of 62.6%, 64.5%, 
and 8.2, respectively, which is comparable to our results. 
However, their dataset size (293 patients) was smaller 
than the natural detection task dataset. Their training 
and internal testing datasets were generated by the same 
MR vendor from one medical center, which limits the 
variability of the dataset. In contrast, our model develop-
ment dataset was generated by eight MR scanners from a 
single hospital, including 1,151 patients, while the exter-
nal validation dataset included 401 patients generated by 
seven scanners from four hospitals. This dataset is large 
and heterogeneous compared to other studies of its kind, 
which enhances the robustness and generalizability of 
our model.

Radiomics technology holds promise in predicting pel-
vic LN metastasis in various malignancies, including PCa 
[18, 19, 20, 21]. Radiomics-based pelvic LN metastasis 
prediction models typically undergo a multistep process, 
including segmentation of the region of interest (ROI), 
extraction of quantitative features, feature selection, and 
model building. Within the field, researchers have multi-
ple choices when selecting an ROI to study, including the 
prostate glands, PCa foci, or LNs. Among these options, 
LNs emerge as the most frequently investigated ROI. A 
fundamental premise of these studies is to initially seg-
ment all LNs, and our study represents an initial step 
towards this goal, providing an automated method for 
delineating the ROI of LNs, thus addressing the current 
limitation of relying on manual delineation at this stage.

While the model achieved acceptable accuracy for 
the detection of suspicious metastases patients, fur-
ther improvements are needed to increase its sensitiv-
ity at the individual LN level. False positives and false 
negatives are still common. Lymphadenopathies in the 
pelvis exhibit great heterogeneity in terms of shape and 
size, which makes it difficult to accurately distinguish 
true LN regions from other regions. Furthermore, the 
relatively small size of LN lesions in comparison to the 
background volume creates an imbalance that further 
complicates segmentation. This imbalance also results in 
a large number of FPs with no specificity for high-inten-
sity mimics, which ultimately lowers the overall specific-
ity of the segmentation process. While larger LNs tend 
to produce better segmentation results [17], there is a 

Fig. 6  Examples of the segmentation results of the model based on 3D V-Net for the lymph nodes. The reference standard of the manual annotation is 
represented by the red area, while the predicted region of the model is indicated in green. The area of overlap is shown in green as well. False positive 
segmentation results are circled in yellow boxes (a-e), while false negative segmentation results are circled in blue boxes (f-h)
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risk of FN detection due to obvious swelling and necro-
sis. This can be especially problematic in cases of diffuse 
PCa that occupy most of the pelvic cavity. To address the 
issue of imbalanced data, we utilized the Dice coefficient 
as the loss function in the 3D V-Net al.gorithm. We also 
manually annotated all visible LNs to capture as many 
specific voxel details as possible. In analyzing the results, 
we discovered instances where the model made accu-
rate predictions, despite the reference standard failing to 
annotate them. In the annotation process of the reference 
standard, the junior radiologist provided a fresh perspec-
tive and attention to detail, while the expert radiologist 
provided valuable insights and corrections. Despite the 
limitations of manual annotation, which can vary both 
within and between operations, it remains the most reli-
able method for accurate image segmentation, and there 
is currently no viable substitute. Our findings suggest 
that V-Net can be an effective tool for LN segmentation 
despite the challenges posed by the complex nature of 
these lesions.

Several limitations of our study should be acknowl-
edged. First, our study lacked one-to-one MR-surgical 
pathological LN confirmation. This challenge arises due 
to the selective use of PLND in clinical practice, particu-
larly for patients with low-risk PCa or metastatic disease 
where PLND may not be routinely recommended. This 
does not diminish the validity of our current findings. 
Future studies may benefit from incorporating histopath-
ologically confirmed metastatic lymph nodes for further 
analysis of model performance. Second, while our refer-
ence standards were established by a senior radiologist, 
inviting reputable senior radiologists from well-known 
clinical centers could enhance the credibility of our study 
by establishing a more robust ground reference. Third, 
we focused on the feasibility of multi-device image seg-
mentation of pelvic LNs. However, there was a failure 
to address the relative intensity problem with MRI and 
to perform any corrections aimed at minimizing dis-
crepancies between different scanners at different mag-
nets. Incorporating these measures in future studies may 
enhance the reliability of the model results.

Conclusion
In conclusion, we developed a 3D V-Net model and 
evaluated its performance on both internal and external 
validation datasets, demonstrating its feasibility for auto-
mated detection and segmentation of pelvic LNs on DWI 
images. This presents a promising step toward a clini-
cally useful deep learning-based tool that can provide an 
objective and comprehensive assessment of tumor bur-
den in patients with PCa.
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