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Abstract 

Background  This study aims to introduce the concept of habitat subregions and construct an accurate prediction 
model by analyzing refined medical images, to predict lymph node metastasis (LNM) in patients with intrahepatic 
cholangiocarcinoma (ICC) before surgery, and to provide personalized support for clinical decision-making.

Methods  Clinical, radiological, and pathological data from ICC patients were retrospectively collected. Using infor-
mation from the arterial and venous phases of multisequence CT images, tumor habitat subregions were delineated 
through the K-means clustering algorithm. Radiomic features were extracted and screened, and prediction models 
based on different subregions were constructed and compared with traditional intratumoral models. Finally, a lymph 
node metastasis prediction model was established by integrating the features of several subregional models, and its 
performance was evaluated.

Results  A total of 164 ICC patients were included in this study, 103 of whom underwent lymph node dissection. The 
patients were divided into LNM- and LNM + groups on the basis of lymph node status, and significant differences 
in white blood cell indicators were found between the two groups. Survival analysis revealed that patients with posi-
tive lymph nodes had significantly worse prognoses. Through cluster analysis, the optimal number of habitat subre-
gions was determined to be 5, and prediction models based on different subregions were constructed. A comparison 
of the performance of each model revealed that the Habitat1 and Habitat5 models had excellent performance. 
The optimal model obtained by fusing the features of the Habitat1 and Habitat5 models had AUC values of 0.923 
and 0.913 in the training set and validation set, respectively, demonstrating good predictive ability. Calibration curves 
and decision curve analysis further validated the superiority and clinical application value of the model.

Conclusions  This study successfully constructed an accurate prediction model based on habitat subregions that can 
effectively predict the lymph node metastasis of ICC patients preoperatively. This model is expected to provide per-
sonalized decision support to clinicians and help to optimize treatment plans and improve patient outcomes.
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Background
Intrahepatic cholangiocarcinoma (ICC), the second most 
common primary malignant tumor of the liver, accounts 
for approximately 15%−20% of primary liver cancers. 
Recently, its incidence has increased yearly, garnering 
increasing attention from the medical community [1, 2]. 
However, the invasiveness, recurrence and metastasis of 
ICC often lead to a poor prognosis [3]. Numerous stud-
ies have indicated that lymph node metastasis (LNM) is 
a critical factor affecting the long-term prognosis of ICC 
patients after surgery [4, 5]. Lymph node dissection is 
recommended as an important part of the surgical treat-
ment of intrahepatic cholangiocarcinoma [6, 7]. This 
not only aids in determining the disease stage but also 
facilitates the development of more precise and personal-
ized treatment strategies. Furthermore, with advances in 
medical technology, the application of neoadjuvant ther-
apy and conversion therapy in ICC patients has gradually 
increased [8–10]. There may be a correlation between 
lymph node metastasis status and the efficacy of these 
treatments. Therefore, accurate preoperative assessment 
of lymph node metastasis status is crucial for improv-
ing patient survival rates. However, in previous clinical 
practice, we reported that many patients with intrahe-
patic cholangiocarcinoma do not undergo lymph node 
dissection, undoubtedly limiting doctors’ comprehen-
sive understanding and precise treatment of the patient’s 
condition.

Tumor subregions refer to local areas within a tumor 
that exhibit distinct tissue structures and functional char-
acteristics [11]. The formation of these subregions often 
stems from tumor heterogeneity, differences in vascular 
distribution, diversity in metabolic states, and complex-
ity in gene expression patterns during tumor growth [12, 
13]. In the field of medical imaging, for example, in the 
interpretation of computed tomography (CT) images, 
significant differences in density, morphology, or tex-
ture can be observed among tumor subregions [14, 15]. 
These differences are not merely imaging artifacts but 
reflect the biological characteristics of the tumor, such 
as necrotic areas, hemorrhagic foci, calcifications, and 
regions with varying cell proliferation activities. Lymph 
nodes, an important part of the human immune sys-
tem, play crucial roles in the development and metasta-
sis of tumors [16]. Therefore, exploring the relationships 
between imaging features of tumor subregions and 
lymph node metastasis is highly important for improving 
the accuracy of tumor diagnosis, optimizing treatment 
strategies, and enhancing prognostic evaluation.

Radiomics, with its profound ability to analyze medi-
cal imaging data, successfully extracts complex features 
that are difficult to capture with the naked eye and uti-
lizes these features to construct precise models [17, 18]. 

Previous studies exploring the prediction of tumor lymph 
node metastasis have shown that the application of radi-
omics can significantly increase diagnostic accuracy [19]. 
Through precise analysis, doctors can gain a more com-
prehensive understanding of tumor growth and lymph 
node metastasis, thereby enhancing their knowledge of 
the patient’s condition.

Therefore, we have innovatively introduced the concept 
of using tumor microenvironment subregions to conduct 
a deep and refined analysis of medical imaging data. On 
this basis, we constructed a precise model for predicting 
lymph node metastasis in ICC patients before surgery. 
This model aims to guide clinicians in comprehensively 
evaluating the risk of lymph node metastasis in patients 
in the preoperative stage and provides more personalized 
clinical decision support.

Methods
Patients
We retrospectively collected detailed laboratory, imag-
ing, and pathological data from ICC patients who were 
treated at Henan Provincial People’s Hospital and Henan 
Cancer Hospital from January 2018 to June 2023. Preop-
erative laboratory tests included routine blood tests, liver 
function tests, renal function tests, coagulation func-
tion tests, and hepatic virology tests to ensure a compre-
hensive assessment of the patients’ physical condition. 
Imaging data focused on enhanced CT provide crucial 
information for subsequent radiomic analysis.

The patients included in this study met the follow-
ing criteria. First, they were diagnosed with intrahepatic 
cholangiocarcinoma confirmed by postoperative his-
topathological examination. Second, patients under-
went enhanced CT examination, and the imaging data, 
including critical information such as arterial and venous 
phases, were clear and complete. Finally, for patients who 
underwent lymph node dissection, the diagnosis of their 
lymph nodes was based on histopathological examina-
tion results.

However, the following were exclusion criteria: poor-
quality imaging data, which may affect the accuracy of 
radiomic analysis; concurrent diagnosis of other types of 
malignancies to prevent interference with the assessment 
of lymph node metastasis in intrahepatic cholangiocar-
cinoma; preoperative antitumor treatment, which may 
alter the imaging appearance of the tumor; and severe 
comorbidities that may affect surgical procedures and 
postoperative recovery.

After rigorous screening, a total of 164 patients were 
included in this study. Among them, 103 patients under-
went intraoperative lymph node dissection, whereas 61 
patients did not. The lymph node dissection rate was 
62.8%. In the lymph node dissection group, there were 
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51 LNM- patients and 52 LNM + patients. We divided 
the dataset into training and testing sets at a 6:4 ratio and 
employed random cross-validation to construct the pre-
diction model, aiming to increase the stability and accu-
racy of the model.

Overall survival (OS) was calculated as the interval 
between the date of surgery and the date of death or the 
last follow-up. Follow-up was conducted through vari-
ous methods, including phone calls, outpatient visits, and 
hospital re-examinations, until July 2022. The OS data for 
99 patients were obtained through follow-up, including 
67 patients in the lymph node dissection group and 32 
patients in the nondissection group.

This study strictly adhered to the principles of the Dec-
laration of Helsinki and was approved by the Ethics Com-
mittees of Henan University People’s Hospital and Henan 
Cancer Hospital (approval numbers Ref No. 2023–012 
and Ref No. 2023–203). The entire study process is illus-
trated in Fig. 1.

Image preprocessing
In multisequence CT images, the arterial and venous 
phases were selected, with an image slice thickness of 
1  mm or 1.25  mm. More scan details are provided in 
Supplementary material 1. To eliminate the influence of 
patient differences on image quality, window width and 
window level standardization were applied to the CT 
images, setting a window width and window level suit-
able for abdominal observation (50/350 HU). This also 
ensured that the target tissues could be displayed clearly 
and accurately. Voxels in CT images can vary in size due 
to differences in scanning conditions or patient body 
types. However, voxels of different sizes are not condu-
cive to model training and can affect the accuracy of sub-
sequent image processing and analysis. By resampling 
the images to 1*1*1mm3, the voxel sizes were normal-
ized to the same size, making subsequent analysis more 
accurate and reliable. To spatially align two images of the 
same subject acquired at different times for comparison, 
we used the “registration moving image layer” function in 
ITK-SNAP software. With the venous phase image as a 
reference, we performed a combination of automatic and 
manual registration on the arterial phase image. By pre-
cisely adjusting parameters such as the spatial position, 
rotation, and scaling of the image layers, we found the 
best match between the two images to ensure that they 
were spatially aligned.

Finally, we imported the processed images into ITK-
SNAP software and invited two experienced radiologists 
to use the brush tool for layer-by-layer fine delineation, 
accurately defining the regions of interest (ROIs). Reader 
1 (clinical experience: 13  years) labeled the tumor, and 
Reader 2 (clinical experience: 22  years) reviewed the 

delineation boundaries. Furthermore, mass-forming 
intrahepatic cholangiocarcinoma with well-defined 
boundaries was intentionally chosen to minimize the 
margin of error in delineating tumor boundaries. This 
step provided a solid data foundation for subsequent 
analysis, ensuring the accuracy and reliability of the 
study.

Delineation of habitat subregions
On the basis of the grayscale information in the arterial 
and venous phases in the CT images, we used a K-means 
clustering algorithm to segment the tumor region into 
different parts. The goal of clustering was to identify dif-
ferent subregions within the extent of the tumor region 
[20, 21]. First, the gray level information of the tumor 
region was extracted from the CT image and converted 
into a gray value matrix. In such a matrix, each small 
square, which we call a voxel, corresponds to a unique 
gray value. Next, these grayscale values are clustered. To 
determine the optimal number of clusters (K value), we 
adopted the Calinski–Harabasz index (CH index) as the 
evaluation criterion. This index considers both the close-
ness within clusters and the separation between clusters 
to help find the most appropriate value of K. Using the 
selected best K value and the feature matrix, the center 
of the cluster is updated by iteration, and each voxel is 
assigned to the nearest cluster. We subsequently analyzed 
the clustering results of the K-means algorithm to ensure 
that each cluster was reasonable and distinguishable 
within the gray value space. Finally, we used visualization 
tools to superpose the clustering results onto the origi-
nal CT images. In this way, we were able to visualize the 
distributions and properties of the different subregions 
more intuitively. Additional information on habitat sub-
regional division is provided in Supplementary material 
2.

Feature extraction
Following the Image Biomarker Standardization Ini-
tiative, this process uses the PyRadiomics package to 
efficiently extract many imaging features that describe 
tumor characteristics from medical images. Since venous 
phase images have higher image quality, the contrast 
between tumor tissue and normal tissue is greater. There-
fore, feature extraction in this study was based on venous 
sequences. The extracted features include first-order gra-
dient features, shape features, and texture features. To 
enable a more comprehensive understanding of image 
content and attributes and to provide strong support 
for subsequent analysis and decision-making, we also 
included features extracted after various image filtering 
transformations, such as Gaussian‒Laplacian transfor-
mation, wavelet transformation, and square root filtering.
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Feature selection and model construction
To eliminate the scale differences between high-dimen-
sional radiomic features, we used the z score method to 
normalize the features before performing feature selec-
tion. For features with high repetitiveness, we calculated 
the correlation between features using Spearman’s rank 
correlation coefficient. When the correlation coefficient 

between a feature and other features was greater than 0.9, 
only that feature was retained. To maximize the descrip-
tive ability of the features, a greedy recursive deletion 
strategy was adopted for feature selection, which involved 
deleting the feature with the highest redundancy in the 
current set each time. After that, we applied LASSO to 
further reduce the dimensionality of the features. On the 

Fig. 1  A Work flow chart. B Model construction flow chart
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basis of the regularization weight λ, LASSO shrank some 
regression coefficients to zero, effectively eliminating 
irrelevant features and retaining those with nonzero coef-
ficients in the regression model. Finally, these features 
were combined into a radiomic signature, and a radiomic 
score was calculated for each patient from a linear com-
bination of the retained features.

Statistics and methods
Statistical analysis was performed using SPSS 26.0 and 
Python 3.11 software. The chi-square test was used to 
analyze the risk factors for lymph node metastasis. Fac-
tors with significant differences in univariate analysis 
were included in multivariate analysis, for which binary 
logistic regression models were used. Kaplan‒Meier 
curves were used for survival analysis, and the log-rank 
test was used to compare the differences between the two 
groups of Kaplan‒Meier curves to test whether the dif-
ferences in survival rates between the groups were sig-
nificant. LASSO analysis reduced the complexity of the 
model and achieved feature selection by introducing L1 
regularization. The classification performance of the 
model was evaluated by plotting ROC curves and calcu-
lating area under the curve (AUC) values. Decision curve 
analysis (DCA) was used to evaluate the clinical utility 
of the prediction model. Calibration plots were used to 
assess the agreement between the predicted values from 
the prediction model and the observed values.

Results
Patient characteristics and outcomes
In this study, 103 patients with primary ICC who under-
went surgical lymph node dissection were divided into a 
node-negative group and a node-positive group accord-
ing to the degree of lymph node metastasis. Seventy-four 
of the patients (71.8%) were HBsAg negative. Twenty-
nine patients (28.2%) had abnormal alpha-fetoprotein 
(AFP) levels. Seventy-seven of the patients (74.8%) had 
abnormal carbohydrate antigen 199 (CA199) levels. After 
a detailed comparative analysis of the preoperative labo-
ratory test results, we found a significant difference in the 
white blood cell count between the node-negative and 
node-positive groups (Table 1). The clinical data of the 61 
patients who did not undergo lymph node dissection are 
shown in Supplementary Table 1.

To explore the relationship between lymph node status 
and survival rates in ICC patients, we used the Kaplan‒
Meier survival analysis method to evaluate the overall 
survival rates of the two groups and drew survival curves 
accordingly. Through statistical verification using the log-
rank test, we observed a significant correlation between 
lymph node status and survival time in ICC patients, 
with a statistically significant p value of 0.01. Specifically, 

ICC patients with positive lymph nodes had significantly 
worse prognoses than those with negative lymph nodes. 
This was visually reflected in the survival curves, which 
showed a clear trend of separation (Fig. 2). Further analy-
sis of the median survival time revealed that the median 
survival time for patients in the LNM-negative group 
was 17 ± 2.99  months, whereas that for patients in the 
LNM-positive group was 9 ± 3.45 months, and the overall 
median survival time was 12 ± 0.94 months.

Optimal partitioning of habitat regions
To accurately partition habitat subregions and explore 
their predictive value for lymph node status in ICC 
patients, a clustering analysis method was employed to 

Table 1  The clinical data of lymph node metastasis negative 
group and lymph node metastasis positive group were 
compared

HBsAg Hepatitis B Surface Antigen, AFP Alpha-Fetoprotein, 
CEA Carcinoembryonic Antigen, CA199 Carbohydrate Antigen 199, GGT​ Gamma-
Glutamyl Transferase, ALP Alkaline Phosphatase, INR International Normalized 
Ratio, APTT Activated Partial Thromboplastin Time, WBC White blood cell count, 
NC Neutrophil count, LC Lymphocyte count, PLT Platelet count

Variable LNM (-) LNM ( +) Chi-square P-value

HBsAg - 36(48.6) 38(51.4) 0.004 0.95

+  15(51.7) 14(48.3)

AFP < 7 ng/ml 39(52.7) 35(47.3) 0.664 0.41

> = 7 ng/ml 12(41.4) 17(58.6)

CEA < 5 ng/ml 36(55.4) 29(44.6) 1.834 0.18

> = 5 ng/ml 15(39.5) 23(60.5)

CA199 < 27 ng/ml 17(65.4) 9(34.6) 2.706 0.10

> = 27 ng/ml 34(44.2) 43(55.8)

albumin < 43.2 g/l 28(42.4) 38(57.6) 2.948 0.09

> = 43.2 g/l 23(62.2) 14(37.8)

GGT​ < 97.9 u/l 30(55.6) 24(44.4) 1.188 0.28

> = 97.9 u/l 21(42.9) 28(57.1)

ALP < 208.2 u/l 46(54.1) 39(45.9) 3.136 0.08

> = 208.2 u/l 5(27.8) 13(72.2)

INR < 1.025 30(44.1) 38(55.9) 1.740 0.19

> = 1.025 21(60.0) 14(40.0)

APTT < 29.1 s 28(56.0) 22(44.0) 1.170 0.28

> = 29.1 s 23(43.4) 30(56.6)

WBC < 6.7 10*9/l 17(37.0) 29(63.0) 4.376 0.04

> = 6.7 10*9/l 34(59.6) 23(40.3)

NC < 4.2 10*9/l 21(42.9) 28(57.1) 1.188 0.28

> = 4.2 10*9/l 30(55.6) 24(44.4)

LC < 1.8 10*9/l 34(44.2) 43(55.8) 2.706 0.10

> = 1.8 10*9/l 17(65.4) 9(34.6)

PLT < 280.5 10*9/l 44(54.3) 37(45.7) 2.662 0.10

> = 280.5 10*9/l 7(31.8) 15(68.2)

creatinine < 51.5 umol/l 8(33.3) 16(66.6) 2.488 0.11

> = 51.5 umol/l 43(54.4) 36(45.6)
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determine the optimal number of subregions. In the clus-
tering process, a total of 30,222,209 voxels were extracted 
from the arterial phase and venous phase CT images, 
and different clustering schemes with different numbers 
of subregions were tested. Comparative analysis showed 
that the CH index reached its maximum value when the 
number of clusters was 5 (Fig.  3A). This suggests that 
dividing the habitat into 5 subregions can best preserve 
the intrinsic structure and information of the data while 
reducing noise and redundancy. To visualize the cluster-
ing results more intuitively, the sample_ratio parameter 
was used for downsampling visualization, retaining 1% 
of the original data for display (Fig.  3B). Visualization 
clearly revealed that these voxels could be effectively 
divided into 5 distinct subregions, each with unique 

characteristics and distribution patterns. These subre-
gions not only reflect the heterogeneity within the tumor 
but also provide an important foundation for subsequent 
feature extraction and model building.

Comparison of intratumor model performance 
with models based on habitat subregions
To achieve accurate prediction of lymph node status 
in ICC patients, we designed and implemented multi-
ple predictive models. These models encompassed an 
intratumor model based on the entire tumor region 
(INTRA-MODEL) and models based on different habi-
tat subregions (Habitat1, Habitat2, Habitat3, Habitat4, 
Habitat5-MODEL). During model construction, we 
fully considered the heterogeneity within the tumor and 

Fig. 2  Association between lymph node status and overall survival in patients with intrahepatic cholangiocarcinoma. Group 0: negative for lymph 
node metastasis; Group 1: positive for lymph node metastasis

Fig. 3  Optimal division of habitat areas. A The optimal number of habitats was determined on the basis of the maximum value of the CH index. 
B Visualization of the clustering results
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attempted to extract features from different subregions to 
improve the prediction accuracy. To evaluate the perfor-
mance of the models, we employed a rigorous cross-vali-
dation method, ensuring that the models exhibited stable 
predictive capabilities across different datasets to further 
increase their generalizability. The experimental results 
(Table  2) demonstrated that the models based on habi-
tat subregions presented significant advantages in terms 
of prediction accuracy. Among them, the H1 and H5 
models had good performance in terms of the AUC value 
and accuracy in both the training and test sets. To visual-
ize the predictive performance of different models more 
intuitively, we also plotted corresponding predictive per-
formance comparison charts (Fig.  4). When the Delong 
test was applied to compare the prediction performance 
of the INTRA-MODEL model with that of different 
habitat subregion models, we obtained detailed results, 
as detailed in Supplementary Table  2. Notably, the dif-
ference in prediction performance between the INTRA-
MODEL and the H5 model was statistically significant 
(P = 0.011), indicating a clear difference in prediction 
ability between the two models. However, the results of 
the Delong test revealed no statistically significant dif-
ference between the INTRA-MODEL and H1 model 
(P = 0.598). Although the H1 model itself showed good 
prediction performance, its advantage over the INTRA-
MODEL was not obvious, and the prediction accuracies 
of the two models tended to be similar.

Optimal model and its clinical application value
After comparative analysis, we integrated the features 
of Habitat1 and Habitat5, aiming to further improve 
the prediction accuracy. Through a rigorous feature 
selection process, we identified 25 features, including 
10 from Habitat1 and 15 from Habitat5. To evaluate the 

model performance, we divided the patient data into a 
6:4 ratio for model training and validation. By conduct-
ing 100 cross-validations, we obtained a stable model 
with excellent performance. The ROC curves of the 
model on the training and validation sets are shown in 
Fig. 5A, with AUC values of 0.923 (95% CI 0.858–0.989) 
and 0.913 (95% CI 0.825–1.000), respectively, indicat-
ing the model’s good predictive ability. Additionally, 
we analyzed the model’s calibration curve (Fig. 5B) and 
decision curve (Fig. 5C). The calibration curve fit well, 
suggesting a high degree of consistency between the 
model’s predictions and the actual results. The results 
of the Hosmer–Lemeshow test in the training group 
and the test group were 0.852 and 0.398, respectively. 
The decision curve demonstrated significant positive 
benefits during the prediction process, further validat-
ing the model’s superiority.

After the model was constructed, we applied it to 
clinical scenarios for ICC patients who did not undergo 
lymph node dissection during surgery. Through the 
model, we successfully predicted the lymph node sta-
tus of these patients. To ensure the reliability of the 
model predictions, we conducted in-depth validation 
using survival follow-up data from some patients. Spe-
cifically, we divided the patients into two groups: those 
predicted to have positive metastasis and those pre-
dicted to have negative metastasis. A detailed survival 
analysis was performed. The results revealed that the 
median survival time for patients in the LNM- group 
was 10 ± 4.83  months, whereas it was 8 ± 2.19  months 
for patients in the positive group, and the overall 
median survival time was 9 ± 2.204  months. As illus-
trated by the Kaplan‒Meier curve in Fig. 6, we observed 
some differences in survival time between the two 
groups.

Table 2  Comparison of intra-tumor model performance with models based on habitat subregions

AUC​ Area Under the Curve, PPV Positive Predictive Value, NPV Negative Predictive Value

Model-name Group AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

Intra-model train 0.795(0.676–0.915) 0.770 0.844 0.690 0.750 0.800

test 0.784(0.645–0.923) 0.738 0.600 0.864 0.800 0.704

Habitat1-model train 0.842(0.739–0.945) 0.803 0.800 0.806 0.800 0.806

test 0.792(0.634–0.950) 0.805 0.864 0.737 0.792 0.824

Habitat2-model train 0.744(0.621–0.868) 0.683 0.687 0.679 0.710 0.655

test 0.737(0.582–0.892) 0.675 0.895 0.476 0.607 0.833

Habitat3-model train 0.839(0.721–0.956) 0.818 0.867 0.760 0.812 0.826

test 0.515(0.320–0.710) 0.541 0.765 0.350 0.500 0.636

Habitat4-model train 0.908(0.840–0.977) 0.800 0.656 0.964 0.955 0.711

test 0.737(0.582–0.892) 0.683 0.526 0.818 0.714 0.667

Habitat5-model train 0.915(0.836–0.994) 0.869 0.943 0.769 0.846 0.909

test 0.889(0.794–0.985) 0.786 0.941 0.680 0.667 0.944
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Fig. 4  Comparison of the intratumoral models with the five habitat subregional models. The top graph shows the receiver operating characteristic 
curve (ROC) of the corresponding model, and the bottom graph shows the decision curve analysis (DCA)
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Fig. 5  Performance evaluation of the final model. A Receiver operating characteristic (ROC) curve. B Calibration curve. CDecision curve
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Discussion
This study conducted an in-depth exploration of the 
lymph node status in patients with mass-forming intra-
hepatic cholangiocarcinoma. We not only analyzed the 
relationship between lymph node status and patient sur-
vival from a clinical perspective but also constructed an 
innovative prediction model using optimal habitat region 
segmentation to achieve accurate prediction of lymph 
node status in ICC patients.

Through group comparisons of ICC patients who 
underwent intraoperative lymph node dissection, we 
found a significant difference in overall survival between 
the LNM- group and the LNM + group. This finding not 
only further confirms the important role of lymph node 
status in the prognostic evaluation of ICC patients but 
also reveals the increased risk of death faced by patients 
with positive lymph nodes, which is consistent with pre-
vious findings in the medical field [22, 23].

The significant difference in white blood cell counts 
between the LNM- and LNM + groups is noteworthy. 
White blood cells, as important immune cells in the 
human body, can reflect the immune status and inflam-
matory response of the body through changes in their 
number, which may be related to tumor invasion and 
metastasis [24, 25]. Considering that previous studies 
have established prediction models on the basis of clini-
cal data, this new discovery provides a clinical basis for 
further improving future models [26–28].

In terms of optimal habitat region segmentation, this 
study used cluster analysis to segment CT images at the 
voxel level during the arteriovenous phase. After care-
ful comparison and evaluation of different clustering 

schemes, we found that subdividing the habitat regions 
into five subregions optimally maintained data integrity 
and internal structure. By comparing the original CT 
images with these finely segmented habitat regions, we 
observed that the Habitat1 and Habitat5 subregions were 
mainly concentrated around the necrotic areas of the 
tumor. This important discovery opens a new research 
perspective for exploring tumor heterogeneity.

When comparing the performance of different pre-
diction models, we found that models based on habitat 
subregions had significant advantages in terms of pre-
diction accuracy. The results of the Habitat1 and Habi-
tat5 models in predicting the lymph node status of ICC 
patients were satisfactory. This advantage may stem from 
the superior ability of these models to capture tumor het-
erogeneity and the potential biological characteristics 
of lymph node metastasis. We combined the features of 
the Habitat1 and Habitat5 models to construct a stable 
and high-performing prediction model. By applying the 
model to clinical scenarios, we successfully provided 
lymph node status predictions for ICC patients who 
did not undergo lymph node dissection during surgery. 
Survival analysis revealed that the median survival time 
of patients who did not undergo lymph node dissection 
was significantly shorter than that of patients who did. 
In addition, the prognosis of the LNM + group was poor, 
regardless of whether lymph node dissection was per-
formed. However, despite our initial success in applying 
the model to predict ICC patients without lymph node 
dissection and observing certain trends in survival analy-
sis, these differences did not reach statistical significance 
owing to limitations in follow-up data. This suggests that 

Fig. 6  Association between predicted lymph node status and overall survival in patients with intrahepatic cholangiocarcinoma (patients 
without lymph node dissection). Group0: negative for lymph node metastasis; Group1: positive for lymph node metastasis
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we need to expand the sample size and conduct longer 
follow-up to fully validate the model’s predictive effec-
tiveness and clinical application potential.

In previous studies, Ji et  al. [29] extracted image fea-
tures from arterial phase CT images, whereas Xu et  al. 
[30] extracted features from T1-weighted enhanced 
MR images. Both studies effectively combined radiomic 
features with various risk factors to develop models for 
predicting lymph node metastasis, achieving remarkable 
results. However, Zhang et  al. [31] constructed a fusion 
model of CT features by integrating radiomic features 
from multisequence CT images, and the performance 
of this fusion model was significantly better than that of 
radiomics models based only on single-phase CT images. 
On the basis of these previous studies, to construct a 
more robust model, we specifically selected patients 
with mass-forming intrahepatic cholangiocarcinoma 
as our study subjects. These tumors have clear bounda-
ries, which can significantly reduce interobserver vari-
ability. Compared with traditional radiomic studies, the 
method of this study represented significant innovations. 
Through meticulous data processing and model valida-
tion, the obtained model showed a positive trend. This 
innovative exploration provides new ideas for radiom-
ics research and a basis for the subsequent application of 
industrial models. Therefore, we expect this method to 
inject new vitality into radiomics research and promote 
the development of increased efficiency and accuracy.

In this study, a cross-validation strategy was imple-
mented to partition the dataset scientifically, ensur-
ing the randomness and balance of data partitioning. 
Although this approach comes with a high risk of over-
fitting, these trade-offs are necessary to pursue the high 
generalizability of the model. After screening, models 
with superior performance were identified, and their 
predictions were satisfactory. Nonetheless, this study 
has certain limitations. First, owing to the limited fol-
low-up time, the survival data of some patients may not 
have reached a steady state, which may have affected the 
results of the survival analysis. In the future, we will con-
tinue to refine and extend follow-up. Second, although 
the model performs well on existing datasets, further 
validation is needed to assess its performance when gen-
eralized to larger and more diverse patient populations. 
Third, although the tumors in this study were mass-form-
ing and were delineated and reviewed by two radiolo-
gists, manual delineation of the ROI inevitably involves 
some error and subjectivity. In the future, we will train 
an automatic segmentation model on a large sample size 
to identify tumor regions more accurately. Fourth, this 
study focused mainly on the quantitative features of radi-
omics and some clinical quantitative features, but there 
was a relative lack of attention given to some clinical 

qualitative features. Finally, this study focused mainly on 
the prediction of lymph node status, and future research 
can further explore the application value of this model 
in predicting other clinical indicators, such as distant 
metastasis.

Conclusions
In summary, this study successfully constructed a predic-
tion model based on the radiomic features of habitat sub-
regions through deep exploration of imaging data from 
ICC patients, with the aim of accurately determining the 
lymph node status of patients. This achievement provides 
not only a new perspective and method for the clinical 
diagnosis and treatment of ICC but also an important 
reference and inspiration for future research.
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