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Abstract 

Background Hepatocellular carcinoma (HCC) is often diagnosed using gadoxetate disodium‑enhanced magnetic 
resonance imaging (EOB‑MRI). Standardized reporting according to the Liver Imaging Reporting and Data System 
(LI‑RADS) can improve Gd‑MRI interpretation but is rather complex and time‑consuming. These limitations could 
potentially be alleviated using recent deep learning‑based segmentation and classification methods such as nnU‑Net. 
The study aims to create and evaluate an automatic segmentation model for HCC risk assessment, according to LI‑
RADS v2018 using nnU‑Net.

Methods For this single‑center retrospective study, 602 patients at risk for HCC were included, who had dynamic 
EOB‑MRI examinations between 05/2005 and 09/2022, containing ≥ LR‑3 lesion(s). Manual lesion segmentations 
in semantic segmentation masks as LR‑3, LR‑4, LR‑5 or LR‑M served as ground truth. A set of U‑Net models with 14 
input channels was trained using the nnU‑Net framework for automatic segmentation. Lesion detection, LI‑RADS clas‑
sification, and instance segmentation metrics were calculated by post‑processing the semantic segmentation outputs 
of the final model ensemble. For the external evaluation, a modified version of the LiverHccSeg dataset was used.

Results The final training/internal test/external test cohorts included 383/219/16 patients. In the three cohorts, 
LI‑RADS lesions (≥ LR‑3 and LR‑M) ≥ 10 mm were detected with sensitivities of 0.41–0.85/0.40–0.90/0.83 (LR‑5: 
0.85/0.90/0.83) and positive predictive values of 0.70–0.94/0.67–0.88/0.90 (LR‑5: 0.94/0.88/0.90). F1 scores for LI‑RADS 
classification of detected lesions ranged between 0.48–0.69/0.47–0.74/0.84 (LR‑5: 0.69/0.74/0.84). Median per lesion 
Sørensen–Dice coefficients were between 0.61–0.74/0.52–0.77/0.84 (LR‑5: 0.74/0.77/0.84).

Conclusion Deep learning‑based HCC risk assessment according to LI‑RADS can be implemented as automatically 
generated tumor risk maps using out‑of‑the‑box image segmentation tools with high detection performance for LR‑5 
lesions. Before translation into clinical practice, further improvements in automatic LI‑RADS classification, for example 
through large multi‑center studies, would be desirable.
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Background
Hepatocellular carcinoma (HCC) is a leading cause of 
cancer-related death worldwide and early detection is 
pivotal. According to recent guidelines [1–4], the char-
acteristic appearance of HCC with radiological imaging 
is sufficient for its diagnosis without the need for biopsy 
in patients who are at high risk for HCC and when there 
is curative intent. The characteristic vascular pattern of 
HCC with marked enhancement in the arterial phase 
and washout appearance in the later phases can be 
observed in dynamic contrast-enhanced (DCE) imag-
ing studies, among which magnetic resonance imaging 
(MRI) has the highest sensitivity and specificity [5]. The 
use of hepatocyte-specific agents, such as gadoxetate 
disodium, further increases the per-lesion sensitivity 
of DCE-MRI, particularly for small HCCs [5], and may 
be useful in the prediction of histopathological features 
such as microvascular invasion [6].

Non-standardized imaging protocols, image interpre-
tation, and reporting can lead to inadequate assessment 
of liver lesions and inaccurate communication of HCC 
risk [7]. To reduce inconsistencies standardized guide-
lines have been proposed [8]. The most popular system 
is the Liver Imaging Reporting And Data System (LI-
RADS) [8].

Although standardized HCC imaging and diagnos-
tics according to LI-RADS is now widely implemented 
in academic centers [8], its adoption by non-academic 
radiologists is lagging, partly due to its complexity [9]. 
Novice users and users in high-volume private practice 
may struggle with its use [10].

Deep learning (DL) methods could provide a solution 
in the form of automated tools for lesion detection, seg-
mentation, and characterization [11]. Out-of-the-box 
DL frameworks, such as nnU-Net, lift model devel-
opment workload, while providing state-of-the-art 
segmentation results [12]. This enables further develop-
ment of tools for automated segmentation of anatomi-
cal structures and pathologies [13], which can be used 
for HCC diagnostics [11]. However, most previous seg-
mentation-based studies have either only evaluated his-
tologically confirmed HCC cases or proposed complex 
multistep pipelines which hinders the utility of these 
methods.

The current study aims to evaluate a simple, yet real-
istic approach, where the available scans of DCE-MRI 
examinations are automatically converted via nnU-Net 
into tumor risk maps, which can be used as an assis-
tance tool for reporting, disease burden quantifica-
tion, large-scale data annotation, and analysis, or as an 
always-available standardized reference of reporting 
quality in the clinical routine.

Methods
Patients
This study was approved by the Institutional Review 
Board and was performed in accordance with the 1964 
Helsinki Declaration and its later amendments, informed 
consent was waived.

In the current retrospective single-center study, 
patients were identified via semi-automatic report search 
and filtering within the clinics Radiology Information 
System. The search included MRI examinations per-
formed on patients at risk of developing HCC (reports 
mentioning cirrhosis, hepatitis B infection, or current 
or prior HCC) between February 1994 and September 
2022  (Fig.  1). The resulting examinations were filtered 
further to include DCE-MRI examinations performed 
with gadoxetate disodium (EOB-MRI, Primovist®, Bayer 
Vital GmBH). Of these filtered examinations, one exami-
nation per patient (≥ 18  years old) containing the high-
est number of lesions, potentially categorizable as LR-3 
or above according to LI-RADS v2018, was included. 
Patient exclusion criteria were cirrhosis due to congenital 
hepatic fibrosis or cirrhosis due to vascular causes.

MRI exclusion criteria were examinations not contain-
ing lesions ≥ LR-3 or LR-M; diffuse or multifocal HCC if 
approximate assessment of tumor margins not possible; 
unavailability of any of late arterial (AP), portal venous 
(PVP), hepatobiliary (HBP), or pre-contrast T1-weighted 
(NCE) phase; severe artifacts on AP. Cases with miss-
ing or noisy images of any other MRI sequence type 
described in the LI-RADS imaging protocol were not 
excluded.

MRI examinations
MRI examinations were performed using five differ-
ent MRI scanners. Examinations used for training were 
acquired using two scanners. The patients in the test 
cohort were scanned with three different scanners 
(Table 1). MRI parameters are listed in Table 2.

Manual image segmentation
The filtered examinations were pseudonymized and 
exported from the Pictures Archiving and Communica-
tion System via ADIT (https:// github. com/ openr adx/ 
adit). Exported examinations were converted to NIfTI 
format, and co-registered to NCE scans using the 3D 
Slicer Elastix module [14]. 3D Slicer v5.1.0 [15] was used 
for manual image segmentation. Manual segmentation 
was performed by a radiology trainee (514 cases) with 
3 years of experience in liver MRI analysis and a board-
certified junior radiologist (88 cases) with 5  years of 
experience in abdominal imaging. Segmentations were 
proofread by a board-certified radiologist with 11  years 
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of experience in abdominal imaging. All clinical informa-
tion was available to the observers.

Segmentation was performed based on the co-regis-
tered images for each examination by marking lesions 
in a single semantic segmentation mask according to 
LI-RADS v2018. Lesions were manually classified as 
LR-3, LR-4, LR-5, or LR-M based on the co-registered 
contrast-enhanced scans by also considering ancillary 
LI-RADS features in all MRI scans. Subtraction images 
were available for lesion classification as they were 
reported to improve detection of AP hyperenhancement 
in EOB-MRI [16]. The major feature threshold growth 
was not used for categorization. Contrary to the origi-
nal LI-RADS recommendations, pathologically proven 
tumors were also classified solely according to their 
MRI appearance. Observers were instructed to perform 
the manual segmentation of the lesions on the NCE or 
any of the DCE images, (while also taking into account 
lesion appearance on other MRI sequences) depending 

on which phase showed the clearest and most accurate 
lesion margins and least anatomic distortion [17]. As rec-
ommended in the LI-RADS manual (for size measure-
ments), AP images were only used for segmentation if the 
lesion margins were not clearly visible on any other phase 
to avoid size overestimation due to corona enhancement 
or perilesional enhancement [17]. Lesions with enhanc-
ing capsules were commonly segmented on the portal 
venous phase which was reported to be the most accu-
rate phase for detection of a capsule in EOB-MRI [18]. 
LR-3 were often segmented on the AP (non-rim AP 
hyperenhancement is the only major LI-RADS feature 
with prevalence ≥ 50% in LR-3 lesions) or HPB phase 
(HPB hypointensity occurs in ~ 20% of LR-3 lesions) [19].

A publicly available liver segmentation model [20] was 
used to create whole liver segmentations on the co-reg-
istered AP images to identify erroneous segmentations 
of lesions outside the liver boundaries and improve seg-
mentation quality. The segmentations from the publicly 

Fig. 1 Flowchart of study participants, as well as inclusion and exclusion criteria of the study. HCC – hepatocellular carcinoma; LI‑RADS – Liver 
Imaging Reporting and Data System; MRI – magnetic resonance imaging, NIfTI – Neuroimaging Informatics Technology Initiative file format; NCE – 
pre‑contrast T1‑weighted image; AP – late arterial phase; PVP – portal venous phase; HBP – hepatobiliary phase T1‑weighted image; LR‑3 and LR‑M 
– LI‑RADS categories
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available model were used as ground truth for the liver 
class during training.

The etiology of the chronic liver disease (e.g. alcohol, 
chronic virus hepatitis) is known to influence liver size, 
shape, and texture [21]. To generate a widely applicable 

model, cases with different etiologies of the chronic liver 
disease were pooled.

Model development
The final cohort was split into two datasets according to 
the corresponding subdepartment, where the scans were 

Table 1 Patient, scanner, and lesion characteristics (all segmented areas) in the two cohorts

a Median (minimum–maximum range), babsolute number (percentage of all patients), cmedian (lower, upper quartile), dabsolute number (percentage of lesions), 
eProduct of Siemens Healthineers. CHILD-A, -B, -C Child-Turcott-Pugh scores, HBV hepatitis B virus, HCV hepatitis C virus, HCC hepatocellular carcinoma, LR-3, -4, -5, -M 
Liver Imaging Reporting and Data System categories, mm millimeter, MRI magnetic resonance imaging, n number of patients, NASH non-alcoholic steatohepatitis

Training dataset
(n = 383)

Internal test dataset
(n = 219)

Patient characteristics

 Age (years)a 62.0 (32–90) 61.0 (28–84)

  ‑  Maleb 300 (78.3) 173 (79.0)

  ‑  Femaleb 83 (21.7) 46 (21.0)

  Etiologyb

  ‑ Alcohol 130 (33.9) 83 (37.9)

  ‑ HCV 129 (33.7) 55 (25.1)

  ‑ HBV 57 (14.9) 29 (13.2)

  ‑ NASH 17 (4.4) 14 (6.4)

  ‑ Other 72 (18.8) 37 (16.9)

  Cirrhosisb

  Yes

   ‑ CHILD‑A 220 (57.4) 139 (63.5)

   ‑ CHILD‑B 105 (27.4) 49 (22.4)

   ‑ CHILD‑C 41 (10.7) 11 (5.0)

   ‑ NA 3 (0.8) 1 (0.5)

  No

   ‑ Pathology‑proven HCC 12 (3.1) 18 (8.2)

   ‑ Chronic HBV 2 (0.2) 1 (0.5)

MRI  characteristicsb

 MRI model (field strength in Tesla)

  ‑ Siemens  Avantoe (1.5) 288 (75.2) ‑

  ‑ Siemens Avanto  fite (1.5) 95 (24.8) ‑

  ‑ Siemens  Aerae (1.5) ‑ 186 (84.9)

  ‑ Siemens  Symphonye (1.5) ‑ 17 (7.8)

  ‑ Magnetom  Vidae (3.0) ‑ 16 (7.3)

Lesion characteristics

 Lesion diameter (mm)c

  ‑ LR‑3 16 (12, 19) 15 (12, 20)

  ‑ LR‑4 17 (13, 25) 18 (14, 25)

  ‑ LR‑5 28 (19, 40) 34 (23, 55)

  ‑ LR‑M 24 (17, 40) 32 (21, 58)

  All 19 (14, 27) 20 (14, 30)

 Lesion  countd

  ‑ LR‑3 661 (39.9) 304 (34.8)

  ‑ LR‑4 444 (26.8) 309 (35.4)

  ‑ LR‑5 416 (25.1) 220 (25.2)

  ‑ LR‑M 136 (8.2) 41 (4.7)

  All 1657 874
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acquired. The larger dataset was used for training with 
nnU-Net, while the smaller dataset was used for inter-
nal testing. Images within each examination were split 
among 14 groups, each assigned to a U-Net input chan-
nel (Table  2). Missing images within one examination 
were replaced by images consisting of only zero values. 
Model creation, training, planning, and data preprocess-
ing for training, such as augmentation were set by the 
nnU-Net pipeline without modification. Configurations 
along with learning curves are available as supplementary 
materials (Additional files 1–7).

External validation
An external evaluation was performed on the LiverHc-
cSeg dataset [22]. Delayed phase (DEL) images were used 
instead of transitional phase (TRA) and HBP images 

when an extracellular contrast agent was used. Tumors 
were re-categorized according to LI-RADS v2018 based 
on the available NIfTI files, and all DICOM series fitting 
to an input channel were included. Examinations with 
inadequate image quality were excluded.

Statistical evaluation
To allow for a more accurate interpretation of the results, 
model performance was evaluated in segmentation 
(semantic and instance segmentation), lesion detection, 
and the LI-RADS classification of detected lesions. A 
simplified flowchart of how each of these tasks is evalu-
ated based on the semantic segmentation masks that the 
U-Net creates is shown in Fig. 2.

Table 2 Magnetic resonance imaging parameters of the two cohorts per U‑Net input channel

% avail. refers to the percentage of cases where the given image type was available. Where multiple values are presented, the first value is the median and the second 
pair of values is the range. MRI parameter values with two or more digits are rounded to integers. Input channels: NCE—non-contrast T1; AP—arterial phase; PVP—
portal venous phase; TRA—transitional phase; HBP—hepatobiliary phase; IP—in-phase; OOP—out-of-phase; T2H—T2-weighted HASTE; T2B—T2-weighted BLADE; 
T2LTE—Multiple types of T2-weighted sequences with longer time to echo; DWI-L, DWI-M, DWI-H—diffusion-weighted imaging with three increasing B-value ranges; 
ADC—apparent diffusion coefficient. DS dataset, FA flip angle, PS pixel spacing, ST slice thickness, TE time to echo, TR time to repetition, Tr training dataset, Ts internal 
test dataset, mm millimeter, ms millisecond, s second

Input channel DS % avail TE (ms) TR (ms) FA (°) PS (mm) ST (mm) b-value (s/mm2)

NCE Tr 100 1.44; 0.92—4.77 3.5; 2.64—7.09 12; 10—15 1.07; 0.48—1.41 3; 3—3.7

Ts 100 2.16; 1.25—3.33 4.69; 3.57—6.66 10; 9—25 1.25; 0.68—1.76 3; 2.77—3.5

AP Tr 100 1.44; 0.92—4.77 3.5; 2.64—7.09 12; 10—15 1.07; 0.48—1.41 3; 3—3.7

Ts 100 2.16; 1.25—2.28 4.69; 3.57—5.4 10; 9—25 1.25; 0.68—1.76 3; 2.77—3.5

PVP Tr 100 1.44; 0.92—4.77 3.5; 2.64—7.09 12; 10—15 1.07; 0.48—1.41 3; 3—3.7

Ts 100 2.16; 1.25—2.28 4.69; 3.57—5.4 10; 9—25 1.25; 0.68—1.76 3; 2.77—3.5

TRA Tr 90.6 1.13; 0.98 – 6 3.03; 2.51—158 12; 10—70 1.25; 0.86—1.95 3; 2.5—6.5

Ts 99.1 2.16; 1.22—2.28 4.69; 3.41—5.4 10; 9—25 1.25; 0.68—1.76 3; 2—3.5

HBP Tr 100 1.45; 0.95—2.39 3.5; 2.47—6.81 12; 10—40 1.09; 0.47—1.47 3; 3—3.7

Ts 100 2.16; 1.25—2.39 4.69; 3.57—6.66 10; 9—40 1.25; 0.68—1.76 3; 2.77—3.5

IP Tr 49.3 4.77; 4.76—4.78 7.59; 6.64—173 25; 10—70 1.04; 0.7—1.38 3; 3—6

Ts 71.2 4.76; 4.76—4.78 100; 6.71—115 70; 10—70 0.62; 0.53—1.3 6; 3—6

OOP Tr 49.1 2.39; 2.38—2.39 7.59; 6.64—173 25; 10—70 1.04; 0.7—1.38 3.1; 3—6

Ts 71.2 2.38; 2.27—2.39 100; 6.71—115 70; 10—70 0.62; 0.53—1.3 6; 3—6

T2H Tr 99.7 68; 66 – 402 801; 600—1600 160; 99—180 1.09; 0.91—1.95 6; 4—6

Ts 95.4 134; 81 – 137 680; 450—1400 159; 113—180 1.25; 0.59—1.56 6; 4—6

T2B Tr 96.6 101; 1.59 – 116 4353; 465 – 13,646 140; 56—160 1.19; 0.67—1.95 6; 3—7

Ts 71.2 84; 79 – 109 5573; 1330—19,758 150; 101—180 1.22; 0.89—1.88 6; 5—6

T2LTE Tr 49.9 251; 171 – 255 1000; 1000—3490 150; 150—180 1.25; 1.12—1.68 6

Ts 70.3 162; 79—226 1800; 1800 – 7644 180; 131—180 1.48; 0.99—1.84 6

DWI‑L Tr 82.5 73; 57—79 4600; 2500 – 15,742 90 1.98; 1.42—2.6 5; 4—7 50

Ts 91.8 60; 54—78 5400; 3500 – 8600 90 1.98; 1.34—3.38 6; 5—6 50; 50—100;

DWI‑M Tr 59.5 73; 62—131 2500; 2500 – 7731 90 1.98; 1.43—2.6 5; 4—7 300; 300—500;

Ts 65.3 60; 54—78 5400; 2200 – 8600 90 2.08; 1.34—3.23 6; 5—6 400; 300—500;

DWI‑H Tr 84.9 73; 57—131 4600; 2500 – 7731 90 1.98; 1.42—2.6 5; 4—7 600; 600—1000;

Ts 91.8 60; 54—78 5400; 2800 – 8600 90 1.98; 1.34—3.38 6; 5—6 800; 600—900;

ADC Tr 83.6 1.98; 1.42—2.6 5; 4—7

Ts 91.8 1.98; 1.34—3.38 6; 5—6
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Segmentation
Sørensen–Dice coefficients (DSC) and concordance cor-
relation coefficients (CCC) were calculated to measure 
segmentation quality and volume agreement. DSC was 
calculated on an examination and lesion level. Examina-
tion level DSC measured the spatial overlap between pre-
dicted segmentations and ground truth segmentations 

in one examination, calculated for cases where a manu-
ally marked lesion was present in the given LI-RADS 
category. Lesion level DSC measured the spatial over-
lap between predicted segmentations and ground truth 
segmentations for one certain LI-RADS category of 
the ground truth lesions, not taking into account the 
LI-RADS category of the predicted lesions. DSCs are 

Fig. 2 Flowchart illustrating the calculation of each evaluation metric. AP: arterial phase T1‑weighted; BG: background; FN: false negative; FP: false 
positive; GT: ground truth; LR‑3, ‑4, ‑5, ‑M: Liver Imaging Reporting and Data System categories; PPV: positive predictive value; TN: true negative; TP: 
true positive
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Fig. 3 Confusion matrices from the two internal datasets with example lesions from the internal test dataset. a Confusion matrices comparing 
U‑Net predicted and manually drawn ground truth lesions split up into subplots based on the largest axial diameter of the ground truth 
segmentation (or predicted segmentation for lesions not marked in the ground truth segmentation) lesions. b-d True positive (segmented 
in the correct category) examples. e False negative (undetected) examples. f False positive (manually not marked) examples. Numbers on the left 
in the given row indicate largest axial diameter range from which the lesion is sampled. Input channels in order: NCE – non‑contrast‑enhanced, 
pre‑contrast T1; AP, PVP, TRA—arterial, portal venous, transitional phase contrast‑enhanced T1; HBP – hepatobiliary phase contrast‑enhanced T1; IP, 
OOP – in‑ and out‑of‑phase T1‑weighted sequences; T2H – T2‑weighted HASTE; T2B – T2‑weighted BLADE; T2LTE – multiple types of T2‑weighted 
images with longer time to echo; DWI‑L, ‑M, ‑H – diffusion‑weighted imaging with three increasing b‑value ranges; ADC – apparent diffusion 
coefficient maps. BG: background; mm: millimeter; GT: ground truth: n: number of patients; LR‑3, LR‑4, LR‑5, LR‑M: LI‑RADS categories
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reported as median (lower, upper quartile), CCCs as CCC 
value (lower, upper bound of 95% confidence interval).

Confusion matrices
LI-RADS categories between ground truth lesions and 
predicted segmentations were automatically compared. 
The predicted LI-RADs category were determined using 
the following rules. If predicted segmentations with 
more than one LI-RADS category overlapped with one 
ground truth lesion, the predicted segmentation which 
showed the largest overlap with the ground truth lesion 
determined the predicted LI-RADS category. A predicted 
cluster of voxels that does not overlap with a ground 
truth segmentation was considered a false-positive find-
ing. If this cluster contained different voxels with more 
than one LI-RADS category, the largest portion of voxels 
assigned to one category determined the predicted LI-
RADS category for this false-positive finding.

Based on these results confusion matrices are created (Fig. 2).

Detection
Sensitivity in the context of lesion detection refers to the 
portion of ground truth lesions with a certain LI-RADS 
category that overlapped with predicted lesions with any 
LI-RADS category, compared to all ground truth lesions 
with this certain LI-RADS category.

Positive predictive value (PPV) in the context of lesion 
detection refers to the portion of predicted lesions with 
a certain LI-RADS category that overlapped with any 
ground truth lesion irrespective of the ground truth LI-
RADS category.

Classification
Classification metrics are calculated for ground truth 
lesions that were segmented by nnU-Net (predicted 
lesions). Sensitivity, specificity, negative and positive pre-
dictive values (NPV), F1 score, and Cohen’s kappa values 
are derived from the created confusion matrices (Fig. 2) 
along with bootstrapped confidence intervals (lower, 
upper bound of 95% confidence interval).

To assess the contribution of each input channel, the 
same evaluation process is repeated for each input by 
replacing the respective image with an image containing 
only zero values.

All lesion level metrics are calculated for lesions ≥ 10 mm. 
For additional information see the supplementary materials 
(Additional file 1.docx) [23–25].

Results
Study population
Out of 4275 patients identified, 602 were included in the 
analysis. Included examinations were performed between 
May 2005 and September 2022. The flowchart of inclu-
sion and exclusion steps is shown in Fig. 1.

Patient, scanner, and lesion characteristics are 
described in Table 1. 1657 and 874 marked areas were 
automatically identified from the manual semantic seg-
mentations in the training and test datasets, of which 
416 and 220 were marked as LR-5. Stratification of 
lesions based on their largest axial diameter is shown in 
Figs. 3 and 4. Most patients had less severe (CHILD-A) 
cirrhosis, while all Child–Pugh score categories were 
present in both groups, as well as patients without cir-
rhosis. The summary of MRI parameters of the scans 
used is available in Table 2.

Semantic segmentation
For liver segmentation, in the internal test dataset, 
median DSC of 0.96 (0.92, 0.97) of the predicted seg-
mentations compared to the segmentations from the 
public model and of 0.99 (0.98, 1.00) compared to the 
manually corrected outputs were calculated. In the 
training dataset, the median DSC between the pre-
dicted segmentations and the segmentations from the 
public model was 0.97 (0.95, 0.97).

For liver volume estimation, in the internal test data-
set, a CCC of 0.73 (0.51, 0.85) was calculated between 
model predictions compared to liver segmentations 
acquired from the public model, and a CCC of 0.98 
(0.96, 0.99) was achieved compared to manually cor-
rected segmentations. In the training dataset, CCC for 
liver volume estimation was 0.85 (0.76, 0.90). The liver 
segmentations were not corrected manually due to the 
large number of cases in both datasets.

For liver lesion semantic segmentation, the highest 
overlap between ground truth and predicted segmen-
tations was for LR-5 in the training and internal test 
cohorts  (DSCtraining = 0.72,  DSCtest = 0.76) with CCC 

(See figure on next page.)
Fig. 4 External test results. a Confusion matrices of classification results. b‑e Input images per U‑Net input channel overlapped with the ground 
truth segmentations and the nnU‑Net segmentations (b true positives, c misclassified lesions, d not detected, e false positive detection). 
Input channels in order from left to right: NCE – non‑contrast‑enhanced, pre‑contrast T1; AP, PVP, DEL/TRA—arterial, portal venous, delayed/
transitional phase contrast‑enhanced T1; HBP – hepatobiliary phase contrast‑enhanced T1; IP, OOP – in‑ and out‑of‑phase T1‑weighted sequences; 
T2H – T2‑weighted HASTE; T2B – T2‑weighted BLADE; T2LTE – multiple types of T2‑weighted images with longer time to echo; DWI‑L, ‑M, ‑H – 
diffusion‑weighted imaging with three increasing b‑value ranges; ADC – apparent diffusion coefficient maps. BG – background, LR‑3, ‑4, ‑5, ‑M – 
included LI‑RADS categories; mm – millimeter
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Fig. 4 (See legend on previous page.)
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values of 0.86 and 0.94. In both cohorts, DSC and CCC 
values were markedly lower in the LR-3, LR-4, and LR-M 
categories (DSC ≤ 0.07, CCC ≤ 0.35).

Segmentation and volumetry metrics are presented in 
detail in Table 3 and Fig. 5.

Instance segmentation
Lesions level median DSCs ranged between 0.61–0.74 
in training and 0.52–0.77 in the internal test cohort. 
CCCs between the predicted and ground truth volume 
of lesions ranged between 0.28–0.91 for lesions detected 
in the training cohort, and accordingly 0.05–0.93 in the 
internal test cohort. In both cohorts, DSC and CCC were 
highest for LR-5. Segmentation and volumetry results are 
presented in detail in Table 3 and Fig. 5.

Lesion detection
The sensitivity in detection was highest for lesions manu-
ally segmented as LR-5 in the training and internal test 
datasets  (sensitivitytraining = 0.85,  sensitivitytest = 0.90) 
and lowest for LR-3  (sensitivitytraining = 0.41, 
 sensitivitytest = 0.40). PPV was highest among lesions 
segmented by nnU-Net as LR-5  (PPVtraining = 0.94, 
 PPVtest = 0.88) and lowest among LR-3  (PPVtraining = 0.70) 
and LR-M  (PPVtest = 0.67). Ground truth lesions below 
10 mm were almost never predicted by nnU-Net. Lesions 
detection metrics are listed in Table 4.

LI-RADS classification of detected lesions
When comparing the LI-RADS category of the manu-
ally segmented ground truth lesions ≥ 10  mm and 
corresponding predicted lesions from the nnU-
Net, sensitivity, and F1 values were highest for LR-5 
lesions  (sensitivitytraining = 0.75,  sensitivitytest = 0.80, 
 F1training = 0.69,  F1test = 0.74), while for other LI-RADS 
categories, the values ranged between 0.50–0.66 in 
the two cohorts. Specificity and NPV were high for all 
LI-RADS categories (Specificity ≥ 0.78, NPV ≥ 0.76) 
and highest for LR-M lesions  (specificitytraining = 0.97, 
 specificitytest = 0.97,  NPVtraining = 0.95,  NPVtest = 0.96). 
Kappa values were highest for LR-M and LR-5 lesions 
(κtraining = 0.62, κtest = 0.56). Larger LR-5 lesions were 
more often categorized accurately and mislabeled pre-
dicted lesions were most frequently misclassified as the 
neighboring LI-RADS category (see Fig. 3). Classification 
metrics are listed in Table  4. Confusion matrices of the 
training and internal test datasets with example lesions 
from the internal test dataset with corresponding seg-
mentations are shown in Fig. 3.

Occlusion sensitivity analysis
In the occlusion sensitivity analysis, we evaluated the 
contribution of each input channel by replacing each 

channel, one at a time, with an image of all zeros (Fig. 6). 
We then calculated the percent change within each met-
ric for that given channel. The three most important 
inputs contributing to lesion detection (% change of 
sensitivity) were HBP (-85.3%), AP, NCE for LR-3; AP 
(-77.4%), HBP, NCE for LR-4; AP (-42.1%), HBP, PVP for 
LR-5 and AP (-48.5%), HBP, PVP for LR-M.

Lesion segmentation quality (instance segmentation 
DSC) was reduced by omission of HBP (-37.5), AP and 
NCE for LR-3; AP (-35.3%), PVP and HBP for LR-4; AP 

Table 3 Semantic and instance segmentation metrics

In parentheses: astandard deviation, blower, upper quartile, clower, upper 
bound of 95% confidence interval. CCC  concordance correlation coefficient, 
DSC Sørensen–Dice coefficient, LR-3, LR-4, LR-5, LR-M LI-RADS categories, mm 
millimeters, Tr training dataset, Ts internal test dataset, Ex external test dataset

LR-3 LR-4 LR-5 LR-M

Semantic segmentation
 Mean DSCa

  Tr 0.15 (0.23) 0.23 (0.29) 0.57 (0.32) 0.29 (0.33)

  Ts 0.16 (0.24) 0.21 (0.27) 0.58 (0.34) 0.15 (0.27)

  Ex ‑ ‑ 0.45 (0.40) ‑

 Median DSCb

  Tr 0.00 (0.00, 
0.21)

0.02 (0.00, 
0.41)

0.72 (0.34, 
0.83)

0.07 (0.00, 0.59)

  Ts 0.00 (0.00, 
0.31)

0.04 (0.00, 
0.41)

0.76 (0.28, 
0.85)

0.00 (0.00, 0.15)

  Ex ‑ ‑ 0.53 (0.00, 
0.85)

‑

 CCC c

  Tr 0.04 (0.00, 
0.13)

0.14 (0.06, 
0.22)

0.86 (0.62, 
0.97)

0.35 (0.11, 0.71)

  Ts 0.06 (0.00, 
0.16)

0.07 (0.02, 
0.18)

0.94 (0.83, 
0.97)

0.08 (0.00, 0.33)

  Ex ‑ ‑ 0.53 ‑

Instance segmentation
(lesions ≥ 10 mm)

 Mean DSCa

  Tr 0.56 (0.23) 0.61 (0.21) 0.63 (0.27) 0.59 (0.25)

  Ts 0.53 (0.24) 0.59 (0.23) 0.66 (0.26) 0.45 (0.31)

  Ex ‑ ‑ 0.68 (0.29) ‑

 Median DSCb

  Tr 0.61 (0.42, 
0.73)

0.67 (0.52, 
0.77)

0.74 (0.54, 
0.82)

0.66 (0.44, 0.78)

  Ts 0.58 (0.35, 
0.74)

0.66 (0.46, 
0.76)

0.77 (0.58, 
0.84)

0.52 (0.10, 0.70)

  Ex ‑ ‑ 0.84 (0.65, 
0.87)

‑

 CCC c

  Tr 0.28 (0.08, 
0.73)

0.54 (0.39, 
0.73)

0.91 (0.78, 
0.97)

0.89 (0.73, 0.97)

  Ts 0.05 (0.01, 
0.26)

0.08 (0.02, 
0.64)

0.93 (0.80, 
0.97)

0.57 (0.20, 0.95)

  Ex ‑ ‑ 0.91 ‑
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(-16,8%), HBP (-16.4%) and NCE for LR-5; and NCE, AP, 
T2H, HBP, PVP (ranging between -7.6% and -4.7%) for 
LR-M (the removal of the majority of the image groups 
increased DSC for LR-M lesions).

Based on the percentage change of F1 scores, HBP 
(-60.5%, -55.9%) and AP (-20.3%, -25.4%) had the high-
est impact on LR-3 and LR-4 lesion classification, fol-
lowed by NCE for LR-3 and TRA for LR-4. The most 

Fig. 5 Evaluation of predicted segmentations. aa, ab: Sørensen–Dice coefficient (DSC) per LI‑RADS category (category present in the ground 
truth segmentations) in the training (aa) and internal test (ab) cohorts. Box and scatter plot of DSCs of the test dataset liver segmentations 
(ac). Plots ad and bd: Internal test dataset output segmentation before (ad) and after manual correction (bd). Plots aa‑ac: vertical axes show 
segmentation classes and the ratio of marked cases compared to all cases where the class was present. ba, bb: Liver volume calculated 
from predicted segmentations versus from ground truth segmentations for training (ba) and test (bb) datasets. bc: Liver volumes calculated 
from the segmentations of our model compared to volumes calculated from the manually corrected segmentations of our model in the test 
dataset. Plots ca‑fd: compare the predicted segmentations from our model and manually drawn ground truth segmentations per LI‑RADS category. 
Plots ca, cb, da, db, ea, eb, fa, fb compare whole segmentation volumes in the training (ca, da, ea, fa) and test (cb, db, eb, fb) datasets. Plots 
cc, cd, dc, dd, ec, ed, fc, fd compare lesion volumes of the manually marked ground truth lesions to the volume of any overlapping predicted 
lesion in the training (cc, dc, ec, fc) and test (cd, dd, ed, fd) datasets. CCC: concordance correlation coefficient; ml: milliliter; A, L, R, P (ad, bd): 
anterior, left, right, and posterior directions; MV: volumes calculated from manual segmentations; RV: reference volumes; PV: volumes calculated 
from the segmentations of our model
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influential group for LR-5 classification was AP (-14.1%), 
other groups showed minor contributions or increased 
the F1 score, which is possibly due to the reduction in the 
detection of LR-3 and LR-4 lesions. For LR-M, the most 
impactful groups were AP (-49.8%), PVP and NCE. The 
ranked changes for each metric are shown in Fig. 7. An 
example case is shown in Fig. 6.

External validation
One examination from the external test dataset was 
excluded due to inadequate image quality. Almost all 
lesions in the external cohort were categorized as LR-5. 
Sensitivity and PPV in lesion detection were 0.83 and 
0.90, respectively. The F1 score for LI-RADS classifica-
tion of predicted LR-5 lesions was 0.84. Per lesion, the 
median DSC was 0.84 (0.65, 0.87). Detailed results are 
shown in Tables 3 and 4 and Fig. 4.

Discussion
In the present study, an automatic DCE-MRI segmen-
tation model for hepatocellular carcinoma (HCC) risk 
assessment was developed using nnU-Net. The model 
showed moderate agreement in the classification of 
LR-5 lesions compared to a gold standard expert read 
and excellent agreement in LR-5 volume prediction. 
Whole liver segmentation allowed for the exclusion of 
erroneously segmented lesions outside the liver bound-
aries. For this, the initial segmentations of a pre-trained 
liver segmentation model could be improved by further 
training with nnU-Net by including more images per 
examination. Co-registration of images made segmen-
tations transferable to all included MRI sequences. By 
occluding the images, the contribution of each image 
group to the final lesion segmentation and classifica-
tion was measured. The results from our segmentation 
model were validated using an external dataset com-
posed of MRIs with extracellular and hepatocyte-spe-
cific contrast agents.

DL-based algorithms such as the one from the pre-
sent study could potentially alleviate some of the limi-
tations of LI-RADS [11]. Although LI-RADS reduced 
HCC reporting variability compared to non-standardized 
reporting, it did not eliminate it [7]. Interreader incon-
sistency is common, can have a strong impact on patient 
management, and partly be attributed to the complexity 
of LI-RADS [26]. Standardized LI-RADS assessment can 
be more time-consuming than narrative reporting [10]. 
The comparatively good performance of our segmenta-
tion model in the detection and segmentation of LR-5 
lesions shows that DL-based algorithms could assist in 
lesion classification, especially for inexperienced radi-
ologists in cases with widespread disease or high-volume 
reporting [10]. The kappa value of LR-5 lesions from our 

model versus expert opinion (0.56) was almost equal to 
the reported kappa of twenty untrained radiologists ver-
sus expert opinion (0.57), but lower than the kappa of the 
same twenty radiologists after a special LI-RADS training 
(0.77) [27]. In the present study, LR-3, LR-4 and LR-M 
lesions were more often discordant in detection and 
classification which is in line with discordances in the 
assignment of these categories by radiologists in previous 
studies [26, 27]. Notably, the performance of untrained 

Table 4 Lesion detection and LI‑RADS classification metrics

In parentheses: lower, upper bound of 95% confidence intervals. LR-3, LR-4, LR-5, 
LR-M LI-RADS categories, mm millimeters, NPV negative predictive value, PPV 
positive predictive value, Tr training cohort, Ts internal test cohort, Ex external 
test cohort. Bold: metric or metric category. aNo true negative samples

LR-3 LR-4 LR-5 LR-M

Detection metrics ignoring predicted class
(lesions ≥ 10 mm)

 Sensitivity

  Tr 0.41 (0.37, 0.44) 0.68 (0.63, 0.72) 0.85 (0.81, 0.88) 0.75 (0.67, 0.82)

  Ts 0.40 (0.34, 0.45) 0.65 (0.59, 0.70) 0.90 (0.85, 0.93) 0.80 (0.66, 0.90)

  Ex ‑ ‑ 0.83 ‑

 PPV

  Tr 0.70 (0.65, 0.75) 0.86 (0.81, 0.89) 0.94 (0.91, 0.96) 0.80 (0.72, 0.88)

  Ts 0.79 (0.82, 0.85) 0.86 (0.80, 0.90) 0.88 (0.84, 0.92) 0.67 (0.52, 0.80)

  Ex ‑ ‑ 0.90 ‑

LI-RADS classification metrics of detected and manually marked 
lesions
(lesions ≥ 10 mm)

 Sensitivity

  Tr 0.57 (0.51, 0.63) 0.46 (0.40, 0.51) 0.75 (0.70, 0.79) 0.59 (0.49, 0.70)

  Ts 0.66 (0.57, 0.75) 0.50 (0.43, 0.57) 0.80 (0.73, 0.85) 0.45 (0.3, 0.64)

  Ex ‑ ‑ 0.80 ‑

 Specificity

  Tr 0.86 (0.83, 0.89) 0.82 (0.78, 0.85) 0.78 (0.74, 0.81) 0.97 (0.96, 0.98)

  Ts 0.88 (0.85, 0.91) 0.86 (0.82, 0.89) 0.78 (0.73, 0.82) 0.97 (0.95, 0.98)

  Ex ‑ ‑ 0a ‑

 PPV

  Tr 0.59 (0.53, 0.66) 0.51 (0.44, 0.57) 0.64 (0.60, 0.70) 0.73 (0.62, 0.82)

  Ts 0.59 (0.50, 0.67) 0.65 (0.58, 0.74) 0.69 (0.63, 0.74) 0.48 (0.32, 0.68)

  Ex ‑ ‑ 0.89 ‑

 NPV

  Tr 0.85 (0.82, 0.88) 0.79 (0.76, 0.82) 0.85 (0.82, 0.88) 0.95 (0.94, 0.97)

  Ts 0.91 (0.88, 0.93) 0.76 (0.71, 0.80) 0.86 (0.82, 0.90) 0.96 (0.95, 0.98)

  Ex ‑ ‑ 0a ‑

 F1

  Tr 0.58 (0.52, 0.63) 0.48 (0.43, 0.53) 0.69 (0.65, 0.73) 0.66 (0.57, 0.73)

  Ts 0.62 (0.55, 0.70) 0.57 (0.50, 0.63) 0.74 (0.69, 0.78) 0.47 (0.33, 0.63)

  Ex ‑ ‑ 0.84 ‑

 Kappa

  Tr 0.44 (0.37, 0.50) 0.29 (0.22, 0.35) 0.50 (0.45, 0.56) 0.62 (0.53, 0.70)

  Ts 0.51 (0.43, 0.61) 0.38 (0.29, 0.46) 0.56 (0.48, 0.62) 0.43 (0.29, 0.60)

  Ex ‑ ‑ ‑0.14 ‑
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radiologists for the assignment of LR-4 and LR-M lesions 
was within the same range as our model’s performance 
but improved after a special LI-RADS training [27]. The 
greater variability of the LR-3 and LR-4 categories can 
be explained by the larger amount of possible imaging 

feature combinations that can lead to LR-3/LR-4 assign-
ments, especially when also considering ancillary fea-
tures [28]. In the case of ambiguity in LI-RADS features, 
tie-breaking rules often lead to the categorization of 
equivocal lesions as LR-3/LR-4 [28]. Moreover, processes 

Fig. 6 Example case illustration of the effects of input image removal on the output segmentations. Black images indicate input image 
replacement with an image containing only zero values. Input channels in order: NCE—non‑contrast T1; AP, PVP, TRA—arterial, portal venous, 
transitional phase contrast‑enhanced T1; HBP – hepatobiliary phase contrast‑enhanced T1; IP, OOP – in‑ and out‑of‑phase T1‑weighted sequences; 
T2H – T2‑weighted HASTE; T2B – T2‑weighted BLADE; T2LTE – Multiple types of T2‑weighted images with longer time to echo; DWI‑L, DWI‑M, DWI‑H 
– diffusion‑weighted imaging with three increasing b‑value ranges; ADC – apparent diffusion coefficient maps. GT: ground truth; LR‑3, LR‑4, LR‑5: 
LI‑RADS categories

Fig. 7 Ranked changes after replacing each input image group with an image containing only zero values. Horizontal axes: percentage of change 
in the given metric (titles) compared to the same set of cases where the given input image type was present. Vertical axes: U‑Net input channel 
ordered from most negative to most positive change per metric from top to bottom. Original values of each metric are noted in parentheses 
after the abbreviation of the channel. LR‑3, LR‑4, LR‑5, LR‑M: included LI‑RADS categories; DSC: Sørensen–Dice coefficient; FP: false positives; PPV: 
positive predictive value. Input channels in order: NCE—pre‑contrast T1; AP, PVP, TRA—arterial, portal venous, transitional phase contrast‑enhanced 
T1; HBP – hepatobiliary phase contrast‑enhanced T1; IP, OOP – in‑ and out‑of‑phase T1‑weighted sequences; T2H – T2‑weighted HASTE; T2B – 
T2‑weighted BLADE; T2LTE – multiple types of T2‑weighted images with longer time to echo; DWI‑L, DWI‑M, DWI‑H – diffusion‑weighted imaging 
with three increasing b‑value ranges; ADC – apparent diffusion coefficient maps

(See figure on next page.)



Page 14 of 17Stollmayer et al. Cancer Imaging           (2025) 25:36 

in the background liver parenchyma such as perfusion 
alterations that are often detected by MRI can be mis-
takenly diagnosed as LR-3, instead of LR-2 [28]. Disa-
greement regarding LR-M lesions is partly explainable 

by the various differential-diagnostic possibilities such as 
intrahepatic cholangiocarcinoma, hepatocholangiocarci-
noma, atypical HCC, metastasis, lymphoma, and multi-
ple benign entities [29].

Fig. 7 (See legend on previous page.)
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The satisfactory performance of our model in LI-RADS 
category assignment coupled with high sensitivity and 
PPV for lesion detection suggests several potential use 
cases. It could be used for automated secondary analy-
sis of MRI cases where lesion assessment in the origi-
nal report was not according to (the newest version of ) 
LI-RADS. The automation of the segmentation enables 
large-scale analyses for local or multicenter research pro-
jects and clinical investigations. Precise measurements of 
tumor volume facilitate intra- and interindividual com-
parisons of tumor burden for response assessment. Also, 
the extraction of radiomics features of liver lesions for the 
prediction of histopathological features and prognostica-
tion is made possible by our segmentation model [30].

Multiple research groups have published machine 
learning (ML)- and DL-based studies for automated liver 
lesion segmentation and/or classification in patients at 
risk for HCC. Several semi-automatic and automatic 
segmentation and (LI-RADS) classification approaches 
for MRI have been reported. However, these approaches 
are limited by either the need for human annotation for 
segmentation [31], for classification [32, 33], or they were 
only tested on a small number of unequally distributed 
lesions per LI-RADS category, with a disproportionate 
prevalence of LR-5 lesions [34]. Our approach for auto-
mated LI-RADS segmentation/detection/classification 
differs from the above-mentioned studies. Our model 
is a fully automated end-to-end semantic segmenta-
tion model without a separate assessment of individual 
imaging features in an interim step. This approach, to 
our knowledge, is unique in the RADS literature. Our 
approach allows for a separate evaluation of the effect of 
individual imaging features on LI-RADS category assign-
ment, although not by analysis of the features themselves 
but by modification of the images that may contain them. 
Our segmentation model was trained and tested on a 
large well-characterized radiological dataset, consist-
ing of heterogeneously acquired MRI scans, comprising 
lesions with differences in size and texture within the 
same LI-RADS category. We also show that the nnU-Net 
pipeline scales well to MRI-based tasks that are more 
complex than most previously reported use cases. As a 
byproduct of our analyses, we have shown that nnU-Net 
improves liver segmentation quality when less accurate 
liver segmentations are provided as ground truth along 
with additional input images in multiple input channels.

Limitations of our study include the determination of 
the gold-standard segmentation and LI-RADS classifica-
tion by only one expert radiologist, the lack of separate 
evaluation of distinct LI-RADS features, the incomplete 
implementation of LI-RADS categories (only LR-3–5 
and LR-M were marked), the lack of correlation with his-
topathological diagnosis, the lack of correlation of the 

(automated) classification results with the etiology of the 
underlying liver disease (e.g. alcohol, chronic virus hepa-
titis), and the use of a single type of hepatocyte-specific 
contrast agent in the internal datasets. Future studies 
addressing these limitations would be beneficial.

Conclusion
In conclusion, we proposed and evaluated a simpli-
fied approach for the DL-based automation of LI-RADS 
v2018. We showed that self-configuring semantic seg-
mentation pipelines, like nnU-Net, can be used to detect 
LR-5 lesions with high sensitivity and PPV and directly 
extract LI-RADS classification results which show mod-
erate agreement, PPV, and specificity compared to expert 
classification. Such models have a wide range of down-
stream use cases from research, such as data exploration 
as demonstrated on an external cohort, to clinical deci-
sion support and quality assurance systems.
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