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Abstract
Objectives To evaluate the feasibility and value of dynamic contrast-enhanced MRI (DCE-MRI) quantitative analysis 
and MRI-based radiomics in predicting the efficacy of microwave ablation (MWA) in lung cancers (LCs).

Methods Forty-three patients with LCs who underwent DCE-MRI within 24 h of receiving MWA were enrolled in the 
study and divided into two groups according to the modified response evaluation criteria in solid tumors (m-RECIST) 
criteria: the effective treatment (complete response + partial response + stable disease, n = 28) and the ineffective 
treatment (progressive disease, n = 15). DCE-MRI datasets were processed by Omni. Kinetics software, using the 
extended tofts model (ETM) and exchange model (ECM) to yield pharmacokinetic parameters and their histogram 
features. Changes in quantitative perfusion parameters were compared between the two groups. Scientific research 
platform ( h t t p  s : /  / m e d  r e  s e a  r c h  . s h u  k u  n . n e t /) was used for radiomics analysis. A total of 1874 radiomic features were 
extracted for each tumor by manually segmentation of T1WI and Contrast-enhanced of T1WI (Ce-T1WI) fat inhibition 
sequence. The performances of radiomics models were evaluated by the receiver operating characteristic curve. 
Based on radiomics features, survival curves were generated by Kaplan-Meier survival analysis to evaluate patient 
outcomes. P < 0.05 was set for the significance threshold.

Results The Vp value of ECM was significantly higher in the ineffective group compared to the effective group 
(p = 0.027). Additionally, the skewness, and kurtosis of Vp (p = 0.020 and 0.013, respectively) derived from ETM and Fp 
(p = 0.027 and 0.030, respectively) from ECM as well as the quantiles were higher in the ineffective group than in the 
effective group. Significant statistical differences were observed in the energy and entropy of Ve (p = 0.044 and 0.025, 
respectively) and Vp (p = 0.025 and 0.026, respectively) between the two groups. In the process of model construction, 
seven features from T1WI, five features from Ce-T1WI, and ten features from combined sequences were ultimately 
selected. The area under the curve (AUC) values for the T1WI model, Ce-T1WI model, and combined model were 
0.910, 0.890, 0.965 in the training group, and 0.850, 0.700, 0.850 in the test group, respectively.
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Introduction
Lung cancer (LC) is known to have the highest mortal-
ity rate with the poor prognosis among all tumors [1]. 
For patients with lung metastasis or non-small cell lung 
cancer (NSCLC) who are not suitable for surgery, micro-
wave ablation (MWA) is a viable treatment option due to 
its minimally invasive nature, good prognosis, and fewer 
complications [2, 3]. The ground glass opacity (GGO) 
of the ablation zone refers to the hazy area of increased 
density on imaging, often seen on CT scans or MRI, that 
surrounds the ablated region after MWA or other forms 
of thermal ablation therapy for tumors. The GGO rep-
resents a mixture of viable and non-viable tumor cells, 
inflammatory exudates, and coagulative necrosis within 
the ablation zone. Studies have shown that the presence 
and extent of GGO around the ablation zone could be 
used as an early indicator of treatment efficacy [4]. It sug-
gested that the target tissue had been adequately covered 
during the ablation procedure. While CT scans are com-
monly used to visualize GGO [5], distinguishing GGO 
from bleeding or other complications in the immedi-
ate post-operative period can be challenging but is cru-
cial for accurate assessment of treatment outcomes and 
timely intervention if necessary [6].

MRI, with its higher soft tissue contrast, might offer 
better discrimination between these entities. Lin et al. 
[7] posited that exudates could be observed on MRI, 
while isodensity was noted on CT. MRI may be per-
formed in addition to CT when the ablation zone is not 
obvious. In some cases, patchy areas of high signal are 
seen within and/or around the ablation area on pre-con-
trast T1 images, most likely corresponding to ablation-
related haemorrhage, which may compensate for CT 
deficiencies. Roman et al. [8] discovered that enhanced 
MRI performed within 24  h after MWA could effec-
tively delineate the ablation zone and the primary tumor 
boundary. The ablation zone has intact tissue necrosis in 
the central region and viable tissue in the peripheral rim 
[9]. The peripheral margin shows hyperdensity on unen-
hanced CT, strong hyperdensity on T2 sequence, and a 
ring of enhancement on Contrast-enhanced T1 (Ce-T1) 
sequence, and boundary of tumor shows better on Ce-T1 
and T2 than on CT. In addition, Chen et al. [10] found 
that MRI evaluation of RFA in the treatment of small 
lung malignancies (< 3 cm) had an accurate and reliable 
curative effect. Consequently, MRI demonstrates cer-
tain advantages in visualizing post-ablation lung lesions. 
Dynamic contrast-enhanced MRI (DCE-MRI) not only 
elucidates the morphological characteristics of the lesion 

but also reflects the hemodynamic changes subsequent to 
treatment [11]. DCE-MRI pharmacokinetic (PK) param-
eters quantitatively reflect tissue perfusion and blood 
vascular density, and have been extensively employed to 
predict early treatment response in various tumors, pre-
dominantly in brain and breast tumors [12], with recent 
applications in liver tumors [13], lung tumors [14], and 
osteoid osteomas [15]. Pulmonary diseases are charac-
terized by dual blood supply from the pulmonary artery 
and bronchial artery [16]. Following ablation, coagulative 
necrosis occurs, and the ensuing hemodynamic altera-
tions may serve as predictors of early therapeutic efficacy.

Moreover, emerging techniques in radiomics, which 
involve the high-throughput extraction and analysis of 
quantitative features from medical images, may poten-
tially provide more precise methods for characterizing 
the GGO and predicting the treatment outcome [17]. 
Previous investigations have utilized CT-based radiomics 
model to predict the early postoperative efficacy [18] and 
local progression [19] of MWA in lung malignancies. 
Nevertheless, there are challenges in identifying GGO 
from adjacent bleeding on CT images when manually 
mapping the region of interest (ROI). The MRI-based 
radiomics model has been successfully implemented to 
predict the efficacy of MWA in rectal cancer [20], liver 
metastasis of rectal cancer [21], and small liver cancer 
[22]. It has previously been reported that the radiomics 
model of multi-parameter MRI possessed the potential to 
differentiate the histological grade of NSCLC [23]. There-
fore, we propose that MRI-based radiomics may hold the 
potential to predict the early efficacy of MWA in lung 
malignancies.

This study deliberated on the feasibility and value 
of DCE-MRI quantitative analysis and MRI-based 
radiomics in predicting the efficacy of MWA in lung 
malignancies, to optimize treatment strategies and 
improve patient outcomes.

Methods
Participants
The research was approved by the ethics committee 
of our institution (No. IEC-K-AF-060-1.0) and written 
informed consent for DCE-MRI, MWA and subsequent 
examinations was obtained from our participants.

From January 2021 to October 2023, patients with 
malignant lung tumors treated with MWA in our hos-
pital were enrolled (Fig.  1). The exclusion criteria were 
as follows: (1) Patients receiving other local treatments, 
such as radiotherapy; (2) Patients who did not undergo 

Conclusions DCE-MRI quantitative analysis and MRI-based radiomics may be helpful in assessing the early response 
to MWA in patients with LCs.
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DCE-MRI examination at 24  h post-MWA; (3) Patients 
with a follow-up of less than 6 months; (4) Patients 
with insufficient image quality or incomplete DCE-
MRI images. All primary lung cancers were confirmed 
by pathology, and lung metastases were confirmed by 
pathology or imaging follow-up. The flow diagram of the 
study was shown in Fig. 2.

Computed tomography-guided MWA and follow-up 
studies
The settings of the 16-slice spiral CT scanner (Min-
Found, China) were configured as follows: 16 × 1.2 colli-
mation, 120 kV, 160 mAs, 0.5 S/R rotation speed, and a 
slice thickness of 2 mm. The microwave needle (FuZhong 
Medical Hi-tech Co, Ltd, China) was operated at a power 
of 30 W to 50 W with an ablation time ranging from 5 to 
30 min. The ablation area completely covered the tumor 
and extended to include 0.5–1.0  cm of the surrounding 
normal lung tissue. After removing the needle, postop-
erative complications such as pneumothorax and hemor-
rhage were monitored.

Follow-up CT scans were performed immediately after 
MWA treatment, then every three months for one year 
after MWA treatment, and annually thereafter. The chest 
CT scan performed three months after MWA served 
as the baseline [24]. An interventional radiologist with 
over five years of ablation experience initially assessed 
the efficacy of MWA based on CT images taken at least 
six months after MWA treatment. The results were sub-
sequently reviewed by another interventional radiolo-
gist with more than 20 years of experience in ablation 
procedures. The modified response evaluation criteria 
in solid tumors (m-RECIST) criteria [25, 26] targeted 
lesions with arterial phase enhancement (viable tumors). 

Complete response (CR): Complete disappearance of 
enhanced areas in all target and non-target lesions; Par-
tial response (PR): A sum decrease of ≥ 30% in the diame-
ters of the enhanced areas of target lesions; Stable disease 
(SD): Reduction does not reach PR or increase does not 
reach PD; Progressive disease (PD): A sum increase of 
≥ 20% in the diameters of the enhanced areas of target 
lesions, or the appearance of new lesions. In accordance 
with the m-RECIST criteria, patients were classified into 
two groups: the effective treatment (CR + PR + SD) and 
the ineffective treatment (PD).

DCE-MRI acquisition and image analysis
All patients underwent DCE-MRI examination within 
24  h after MWA. One study indicated that the ablation 
area showed no significant enhancement in any phase of 
dynamic enhancement within 24  h after MWA surgery 
[27], which is of great significance for early detection of 
local tumor residue. Therefore, 24 h after MWA surgery 
was selected as the examination node.

They breathed freely and were scanned in the supine 
position. On a 3.0T Verio MRI scanner (Siemens AG, 
Erlangen Germany) via a 12-unit thoracic phased-array 
body coil, DCE-MRI datasets were obtained by 3D VIBE 
T1-weighted (T1W) dynamic perfusion sequences. 
Before the dynamic enhancement scan, a multi-flip angle 
scan was performed (TR = 3.25 ms, TE = 1.17 ms, flip 
angles = 5°, 10°, 15°, field of view = 350  mm × 282  mm, 
matrix size = 162 × 288, slice thickness = 5 mm, number of 
slice = 30, and temporal resolution = 6.5 s per cycle). The 
parameters of the dynamic enhancement scan sequence 
for scanning 35 phases were as follows: flip angle = 10 
degrees, and the rest of the parameters were consistent 
with the description above. The total time of above two 

Fig. 1 Flow chart of the patient selection process
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Fig. 2 The study design
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scans was 247  s. The control agent was gadodiamide 
(Omniscan, GE Healthcare) at an injectable dose of 0.1 
mmol/kg and an injection rate of 2.5–3.0 ml/s.

DCE-MRI datasets were handled through Omni. Kinet-
ics software (GE Healthcare, China). The free-breathing 
3D correction technique (rigid-free medical image reg-
istration algorithm) was applied to rectify for motion 
artifacts. The smoother time intensity curve (TIC) after 
contrast-enhanced injection indicates a good fit. Perfu-
sion parameters for dual bronchial and pulmonary artery 
supply were calculated using extend toft model (ETM) 
and exchange model (ECM). The upper and lower 3–5 
layers of the outlined maximal tumor layer were merged 
into a ROI for quantitative analysis. ETM yielded four PK 
parameters (Ktrans. Kep, Ve, Vp) and ECM yielded five PK 
parameters (Ktrans. Kep, Ve, Vp and Fp). Histogram analysis 
of above PK parameters included skewness, kurtosis, uni-
formity, energy, entropy, Quantile5 (Q5), Q10, Q25, Q50, 
Q75, Q90, and Q95. All lesions were sketched by doctor 
1 and nine lesions were randomly sketched by doctor 2 
to evaluate the inter-rater correlation coefficients (ICC). 
They were spatially and temporally independent, and nei-
ther was aware of the medical history and the follow-up 
results.

Radiomics analysis
Scientific research platform ( h t t p  s : /  / m e d  r e  s e a  r c h  . s h u  k u  n 
. n e t /) was used for radiomics analysis.

Images delineation In this study, MR images, acquired 
within 24 h post-MWA for malignant lung tumors, were 
uploaded to the Scientific research platform in DICOM 
format. The focus was on T1W and Ce-T1W images, with 
a particular emphasis on the ablation zones as targets. 
Doctor 1 with five years of experience manually delineated 
ROI on each slice, meticulously avoiding major blood ves-
sels and bronchi. Subsequently, the software automatically 
generated three-dimensional (3D) reconstructions of the 
lesion. All lesions were sketched by doctor 1 and a radi-
ologist with 20 years of experience confirmed the segmen-
tation results. Twenty lesions were randomly sketched by 
doctor 2 to evaluate the ICC. They were spatially and tem-
porally independent, and blind to the medical history and 
the follow-up results.

Data extraction A total of 1874 radiomics features in 
the ablation area were calculated from T1W and Ce-
T1W images of each lesion, respectively. There are 14 
shape based features. Seven categories of features were 
used for 12 image preprocessing techniques (exponential, 
gradient, lbp-2D, lbp-3D-k, lbp-3D-m1, lbp-3D-m2, log-
sigma, logarithm, original, square, square root, wavelet), 
including 360 first order features, 480 Gy-level co-occur-
rence matrix (GLCM), 280  Gy-level dependence matrix 

(GLDM), 320  Gy-level run-length matrix (GLRLM), 
320 Gy-level size zone matrix (GLSZM), and 100 neigh-
bouring gray tone difference matrix (NGTDM).

Model construction When dealing with class-unbal-
anced datasets, the 7:3 grouping ensures that the class 
distribution in the training and test/validation groups is 
similar to that in the original dataset, thus reducing bias. 
Therefore, all lesions were divided into a training group 
and a test group in a ratio of 7:3 [28]. The training data was 
utilized for features selection and radiomics model con-
struction. Initially, the features underwent normalization, 
and features with a Pearson correlation coefficient abso-
lute value of ≥ 0.90 and ICC < 0.75 were excluded. Subse-
quently, Select K Best (p > 0.05) was employed to identify 
the K features with the highest scores, and then the least 
absolute contraction and selection operator (LASSO) 
was used to obtain the final features for logistic regres-
sion model construction. LASSO adjusted the Greek let-
ter lambda (λ) to assign zero regression coefficients to 
uncorrelated features, and the selection of the best λ value 
involves 5 cross-validations, aiming to obtain the optimal 
model with the highest area under the curve (AUC) value 
of the cross-validations set.

Model evaluation The performance of various sig-
natures was verified using the test dataset, generating 
receiver operating characteristic (ROC) curves to calcu-
late the corresponding AUC. The Delong test was used 
to compare predictive performance differences between 
the models. Additionally, sensitivity, specificity, accuracy, 
F1, positive predictive value (PPV), and negative predic-
tive value (NPV) were also calculated. The Youden index 
determined the optimal cut-off value maximizing the sum 
of sensitivity and specificity. Calibration curves were plot-
ted to assess calibration accuracy, alongside the Hosmer-
Lemeshow (HL) test. Decision curve analysis (DCA) was 
also used to assess the clinical utility of the predictive 
signatures.

Survival analysis The progression of lesions in abla-
tion zone was defined as the primary endpoint. This was 
characterized by either a sum increase of ≥ 20% in the 
diameters of the enhanced areas of target lesions, or the 
emergence of new lesions. To evaluate patient outcomes 
based on radiomics features, survival curves were gener-
ated by Kaplan-Meier survival analysis. Subjects were cat-
egorized into two groups according to the cut-off value 
derived from each radiomics model: those above and 
those below the specified threshold. The statistical signifi-
cance between the survival rates of these two cohorts was 
assessed using the p-value calculated from the compari-
son of their survival curves.

https://medresearch.shukun.net/
https://medresearch.shukun.net/
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Statistical analysis
The clinical and DCE-MRI datasets analysis was per-
formed via SPSS 25.0 software (Version 25.0, NY). 
Quantitative data following to normal distribution were 
presented by a T-test and expressed as X ± S, or tested 
by a Wilcoxon test and expressed as median (upper and 
lower quartile). Categorical variables were analyzed by 
the χ2 test or F-test as appropriate. Image segmentation, 
features analysis, radiomics model construction and eval-
uation of statistical processing used scientific research 
platform ( h t t p  s : /  / m e d  r e  s e a  r c h  . s h u  k u  n . n e t /). The “rms” 
package of R software (version 4.4.0, US) was used to 
construct calibration curves and DCA, and the “psych” 
package was used to calculate the ICC. The progression-
free survival (PFS) of different risk cohorts was analyzed 
by Kaplan-Meier survival analysis. The significance 
threshold was set at p < 0.05.

Results
Characteristics of the study population
A total of 43 patients were finally enrolled in the study, 
including 28 cases with effective treatment and 15 cases 
with ineffective treatment. In our study, there were 12 
cases of mild pneumothorax and 6 cases of mild bleed-
ing on CT examination immediately after MWA, while 
there were 9 cases of mild pneumothorax, 6 cases of mild 
bleeding in DCE-MRI within 2 days after MWA.

The clinical characteristics are shown in Table 1. There 
was a significant difference in tumor size on CT between 
the effective and ineffective treatment cohorts (B = 0.147, 
OR = 1.159(95%CI 1.019,1.317)).

Differences of Pharmacokinetic parameters and their 
histogram parameters between the effective and 
ineffective treatment groups
Four (Ktrans, Kep, Ve, Vp) and five (Ktrans, Kep, Ve, Vp, Fp) 
PK parameters were obtained from the ETM and ECM, 
respectively. The mean value of Vp from ECM in the 
effective treatment group was statistically lower than that 
in the ineffective treatment group (Fig. 3). The ICC of Vp 
from ECM was 0.875.

A total of 108 histogram parameters were obtained 
from nine PK parameters by the two models. The ETM 
and ECM respectively obtained 11 and 10 histogram 
parameters with significant differences between the effec-
tive and ineffective treatment groups (shown in Table 2). 
The quantiles were higher in the ineffective group than 
in the effective group. Skewness and kurtosis of Vp from 
ETM and Fp from ECM in the ineffective group were 
higher than that in the effective group. Compared to the 
ineffective group, the effective group had higher energy 
and lower entropy of Ve (from ETM), but it had the lower 
energy and higher entropy of Vp (from ETM). The ICC of 
the above parameters ranged from 0.580 to 0.959, among 
which the ICC of six parameters (Q75 of Kep from ETM, 

Table 1 Comparisons of patient characteristics
Characteristics Effective 

treatment 
cohort 
(n = 28)

Ineffective 
treatment 
cohort 
(n = 15)

P 
value

Age 65.57 ± 11.43 66.07 ± 13.77 0.900
BMI 23.59 ± 2.54 24.07 ± 3.71 0.658
Gender 0.055
 Female 17 (81.0%) 4 (7.3%)
 Male 11 (50.0%) 11 (50.0%)
Location 1.000
Upper middle lobes 11 (64.7%) 6 (35.3%)
 Lower lobe 17 (65.4%) 9 (34.6%)
Tumor size on CT (mm) 9.60 

(7.60,14.38)
16.20 
(10.60,20.80)

0.003*

Maximum diameter of ablation 
zone on CT (mm)

27.65 
(26.05,42.10)

36.41 ± 10.41 0.169

Maximum diameter of ablation 
zone on T2 (mm)

36.00 ± 10.16 39.53 ± 9.95 0.280

Maximum diameter of ablation 
zone on T1 (mm)

32.19 ± 9.48 37.71 ± 10.19 0.084

Maximum diameter of ablation 
zone on DCE (mm)

32.89 ± 8.16 37.25 ± 10.24 0.135

Tumor pathology 0.674
 Primary 8 (57.1%) 6 (42.9%)
 Metastasis 20 (69.0%) 9 (31.0%)
-Colorectal cancer 10 7
-Liver cancer 2 2
-Gastric cancer 1 0
-Breast cancer 3 0
-Lung cancer 2 0
-Pancreatic cancer 1 0
-Nasopharyngeal carcinoma 1 0
*p < 0.05 (two-sided) was considered statistically significant

Fig. 3 Scatter plot of the mean value of Vp from exchange model (ECM) 
between the effective group and the ineffective group. The mean value of 
Vp from ECM was 0.031 (0.022,0.068) and 0.065 (0.042,0.094), respectively
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Q25, Q50, Q90, and Q95 of Vp, and kurtosis of Fp from 
ECM) ranged from 0.500 to 0.750, and the ICC of two 
parameters (Q95 of Ktrans and Fp from ECM) were higher 
than 0.900.

Diagnostic efficacy of Pharmacokinetic parameters of DCE-
MRI
The ROC curves with AUC, sensitivity, specificity and 
Youden index of above PK histogram parameters were 
shown in Fig. 4; Table 3. We found that the AUCs of Vp 

Table 2 The difference between effective and ineffective group of PK histogram parameters
Models PK parameters Histogram parameters Effective treatment cohort (n = 28) Ineffective treatment cohort (n = 15) P value ICC
ETM Ktrans Quantile75 0.032 (0.019,0.050) 0.059 (0.024,0.128) 0.047 0.789

Quantile90 0.046 (0.028,0.082) 0.103 (0.038,0.202) 0.047 0.813
Quantile95 0.058 (0.032,0.109) 0.134 (0.501,0.271) 0.039 0.837

Kep Quantile75 0.887 (0.607,1.446) 1.587 ± 0.809 0.044 0.602
Ve Energy 0.059 (0.036,0.104) 0.038 (0.023,0.052) 0.044 0.836

Entropy 4.553 ± 0.897 5.204 ± 0.835 0.025 0.898
Vp Skewness 1.645 ± 0.949 2.874 ± 1.740 0.020 0.835

Kurtosis 3.348 (0.297,5.938) 6.737 (2.168,15.044) 0.013 0.804
Uniformity -0.411 (-0.604,0.022) -0.919 ± 0.715 0.013 0.798
Energy 0.174(0.071,0.256) 0.338 ± 0.204 0.025 0.821
Entropy 4.876 ± 1.214 3.886 ± 1.545 0.026 0.849

ECM Ktrans Quantile95 0.148 (0.086,0.209) 0.206 (0.134,0.697) 0.037 0.959
Kep Quantile95 3.252 ± 1.581 4.222 ± 1.303 0.049 0.820
Vp Quantile25 0.004 (0.002,0.010) 0.008 (0.003,0.018) 0.037 0.708

Quantile50 0.011 (0.005,0.022) 0.029 ± 0.023 0.018 0.580
Quantile75 0.022 (0.015,0.048) 0.042 (0.021,0.063) 0.030 0.772
Quantile90 0.034 (0.023,0.076) 0.066 (0.038,0.098) 0.022 0.700
Quantile95 0.043 (0.029,0.095) 0.086 (0.047,0.123) 0.018 0.658

Fp Skewness 1.052 ± 0.635 1.514 (1.070,2.126) 0.027 0.841
Kurtosis 1.087 (-0.010,2.315) 2.455 (0.954,5.100) 0.030 0.602
Quantile95 0.120 (0.071,0.158) 0.189 (0.106,0.349) 0.039 0.959

Note: PK refers to pharmacokinetic; ICC refers to inter-rater correlation coefficients

Fig. 4 Receiver operating characteristic (ROC) curves of above eight pharmacokinetic (PK) histogram parameters. The AUCs of Ktrans, Kep, Ve, and Vp from 
extend toft model (ETM) were 0.683, 0.688,0.676, and 0.805, respectively. The AUCs of Ktrans, Kep, Vp and Fp from exchange model (ECM) were 0.695, 0.667, 
0.843, and 0.776, respectively
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histogram parameters were higher than other parameters 
(AUC = 0.805 for ETM, and AUC = 0.843 for ECM). The 
AUCs of ETM and ECM was 0.905 (95%CI 0.776, 0.973) 
and 0.900 (95%CI 0.770, 0.970), respectively (shown in 
Fig. 5). The sensitivity, specificity and Youden index were 
1.000, 0.643, and 0.643 for ETM and 0.800, 0.964, and 
0.764 for ECM, respectively.

Radiomics characteristics
The training cohort included 30 patients (20 effec-
tive treatment vs. 10 ineffective treatment), and the test 
cohort included 13 patients (8 effective treatment vs. 5 
ineffective treatment). Seven features from T1WI and 
five features from Ce-T1WI were finally selected. When 
we combined T1WI with Ce-T1WI features, 10 features 
were eventually enrolled, including four features for Ce-
T1WI and six features for T1WI (Table 4).

Performance of the radiomics models based on MRI
Three radiomics models based on T1WI, Ce-T1WI and 
combined sequences were constructed. The diagnos-
tic performance of three models in the training and test 
groups were listed in Table  5. When three MRI-based 
radiomics models had the same sensitivity, the com-
bined model had the highest specificity and accuracy in 
the training and test groups. The ROC curves, calibration 
curves, and DCA of three models were shown in Fig. 6.

The role of radiomics features in predicting survival 
outcomes
PFS for the effective and ineffective groups was 477.0 
(244.3, 770.0) and 344.0 ± 189.6 days, respectively 
(p = 0.108). For the T1WI, Ce-T1WI, and combined 
models, the optimal cut-off points, based on the sum of 
sensitivity and specificity, were determined to be Nomo-
scores of 0.256, 0.273, and 0.455, respectively. Patients 
were stratified into high-risk (Nomo-score below the cut-
off) and low-risk (Nomo-score above the cut-off) groups 
using the corresponding optimal cut-off values. In the 
training cohort, the PFS of the low-risk group was signifi-
cantly longer than that of the high-risk group (Fig. 7).

Discussion
The aim of this study was to investigate the applica-
tion of quantitative DCE-MRI analysis and MRI-based 
radiomics models in assessing the efficacy of LC patients 
after MWA. Quantitative parameters derived from the 
analysis of tracer kinetic models (ETM and ECM), which 
correlate with tissue perfusion and capillary permeabil-
ity, provide valuable insights into tumor status after local 
MWA treatment. During a follow-up period of at least 
six months, we found differences in PK parameters and 
their histogram parameters in LC patients with different 
prognoses. In addition, we developed three radiomics 
models: one based on T1WI, one based on Ce-T1WI, and 
a combined model combining the former two to predict 
the efficacy of LC patients after MWA. The results of the 
study showed that the MRI radiomics model exhibited 
high specificity and accuracy.

Table 3 Diagnostic efficacy of above eight PK histogram parameters
PK histogram parameters AUC Sensitivity Specificity Youden index
Ktrans_ETM 0.683 (95%CI 0.524,0.817) 0.600 0.821 0.421
Kep_ETM 0.688 (95%CI 0.529,0.820) 0.600 0.821 0.421
Ve_ETM 0.676 (95%CI 0.516,0.811) 0.800 0.536 0.336
Vp_ETM 0.805 (95%CI 0.655,0.910) 0.733 0.786 0.519
Ktrans_ECM 0.695 (95%CI 0.536,0.826) 0.667 0.750 0.417
Kep_ECM 0.667 (95%CI 0.507,0.803) 0.933 0.464 0.398
Vp_ECM 0.843 (95%CI 0.700,0.936) 0.800 0.857 0.657
Fp_ECM 0.776 (95%CI 0.623,0.889) 0.867 0.643 0.510
Note: Ktrans_ETM, Kep_ETM, Ve_ETM, and Vp_ETM refered to Ktrans (Q75, Q90,Q95), Kep (Q75), Ve (energy, entropy) and Vp (skewness, kurtosis, uniformity, energy, 
entropy) from ETM. Ktrans_ECM, Kep_ECM, Vp_ECM, and Fp_ECM refered to Ktrans (Q95), Kep (Q95), Vp (Q25, Q50, Q75, Q90, Q95), Fp (skewness, kurtosis, Q95) from ECM, 
respectively. AUC = area under curve

Fig. 5 Receiver operating characteristic (ROC) curves of extend toft 
model (ETM) and exchange model (ECM). The AUCs of ETM and ECM was 
0.905 and 0.900, respectively
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Quantitative PK parameters have been used to assess 
tumor response to interventional therapy [29–32]. After 
MWA, tumors undergo coagulative necrosis, result-
ing in reduced tissue perfusion and decreased capillary 
permeability, which should be reflected in lower perfu-
sion parameter values. Vp denotes the volume fraction of 
plasma per unit volume, and it has been suggested that 
Vp might be useful in the early prediction of disease pro-
gression [33]. In this study, the Vp value was significantly 
higher in the ineffective group compared to the effective 
group, suggesting that higher Vp value from ECM may 
be associated with poorer treatment effect. Histogram 
parameters provided complementary data to measure 
the response to tumor treatment [34–36]. Skewness, 
kurtosis, homogeneity, entropy, energy, and quantiles 

are commonly used. Quantiles refer to the configuration 
of the histogram, while skewness and kurtosis describe 
the degree and tendency of the grayscale distribution to 
deviate from symmetry, respectively. Changes in histo-
gram contours and asymmetry reveal differences in the 
tumor microenvironment. Previous studies have shown 
that skewness, kurtosis, and entropy correlate with 
tumor heterogeneity [37–39]. Our results showed that 
the skewness and kurtosis of Vp from ETM and Fp from 
ECM in the ineffective group exceeded those in the effec-
tive group, whereas the quantiles of other PK parameters 
(especially higher quantiles such as Q95 and Q75) were 
higher in the ineffective group, except for Vp from ETM. 
These statistical measures suggested that the distribution 
of these parameters were more variable and potentially 

Table 4 The features selected from T1WI, Ce-T1WI and combined sequences
Sequences Coefficients Image preprocessing Categories Features
T1WI 0.397 wavelet-HLL GLSZM High Gray Level Zone Emphasis

0.329 lbp-3D-k Firstorder Kurtosis
0.257 log-sigma-3-0-mm-3D GLSZM Gray Level NonUniformity
0.020 logarithm GLSZM Size Zone NonUniformity
0.015 wavelet-HLL Firstorder Kurtosis

-0.127 wavelet-LLL GLSZM Size Zone NonUniformity Normalized
-0.283 wavelet-HHL GLRLM High Gray Level Run Emphasis

Ce-T1WI 1.201 wavelet-LLH Firstorder Skewness
0.797 gradient Firstorder 10 Percentile
0.622 logarithm GLSZM Gray Level NonUniformity
0.370 wavelet-LLH GLCM Cluster Prominence

-0.234 wavelet-LLH Firstorder 10 Percentile
Combined 1.589 wavelet-LLH Firstorder Skewness_Ce-T1

1.216 wavelet-HLL GLSZM High Gray Level Zone Emphasis_T1
0.821 lbp-3D-k Firstorder Kurtosis_T1
0.644 gradient Firstorder 10 Percentile_Ce-T1
0.592 logarithm GLSZM Gray Level NonUniformity_Ce-T1
0.265 log-sigma-3-0-mm-3D GLSZM Gray Level NonUniformity_T1
0.154 wavelet-HLL Firstorder Kurtosis_T1

-0.109 logarithm GLSZM Size Zone NonUniformity_T1
-1.245 wavelet-LLH Firstorder 10 Percentile_Ce-T1
-1.939 wavelet-HHL GLRLM High Gray Level Run Emphasis_T1

GLSZM refers to gray-level size zone matrix, GLRLM refers to gray-level run-length matrix, and GLCM refers to gray-level co-occurrence matrix

Table 5 The diagnostic performances of three models in the training and test groups
Training group Test group
T1WI Ce-T1WI Combined T1WI Ce-T1WI Combined

AUC 0.910(95%CI 
0.748,0.983)

0.890(95%CI 
0.722,0.974)

0.965(95%CI 
0.825,0.999)

0.850(95%CI 
0.550,0.982)

0.700(95%CI 
0.393,0.913)

0.850(95%CI 
0.550,0.982)

Sensitivity 1.000 1.000 1.000 0.800 0.800 0.800
specificity 0.750 0.700 0.850 0.625 0.500 0.750
Accuracy 0.833 0.800 0.900 0.692 0.615 0.769
F1 0.800 0.769 0.870 0.667 0.615 0.727
Youden index 0.750 0.700 0.850 0.600 0.375 0.625
PPV 0.667 0.625 0.769 0.571 0.500 0.667
NPV 1.000 1.000 1.000 0.833 0.800 0.857
Note: PPV refers to Positive predictive value; NPV refers to Negative predictive value
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more higher in the ineffective group. In the histogram 
parameters of Ve from ETM, the ineffective group had 
higher energy and lower entropy than the effective group; 
in the parameters of Vp from ETM, the ineffective group 
had lower energy and higher entropy than the effective 
group. Energy and entropy are textural features that can 
reflect the uniformity and complexity of the MR sig-
nal within the ROI, respectively. Together, these results 

suggested that the tissue perfusion and the tumor het-
erogeneity in the ineffective group were higher than 
those in the effective group after MWA, which might 
be related to the incomplete ablation of tumors and the 
high invasiveness of the tumors in the ineffective group. 
We also observed that the histogram parameters of Vp 
appeared to be superior to other parameters in predict-
ing the efficacy of MWA, with AUCs of 0.805 and 0.843, 

Fig. 6 The Receiver operating characteristic (ROC) curves (A), calibration curves (B), and decision curve analysis (C) of T1WI, Ce-T1WI (CE) and combined 
models in the train and test groups
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respectively. Therefore, the PK parameters and their his-
togram attributes of DCE-MRI may predict tumor effi-
cacy after MWA to a certain extent, especially Vp and its 
related histogram parameters.

Among the MR multiple sequences, we first selected 
the pressurized lipid T1W, T2W, and Ce-T1 sequences 
to outline the ROI of the lesion. During the outlining 
process, we found that the signals of hemorrhage and 
inflammatory edema in T2WI were more difficult to 
differentiate, and the stability of model efficacy in the 
training and test groups was poorer (see Additional file 
1), so we did not consider the T2WI model in the later 
study. In this experiment, we extracted seven and five 
radiomics features from T1WI and Ce-T1WI, respec-
tively. The features from T1WI were mainly features of 
GLSZM, firstorder, and GLRLM via wavelet, lbp, and 
log transformations. Among them, kurtosis, gray level 
non uniformity, size zone non uniformity, and high gray 
level run emphasis were reproduced in a study of CT 
imaging histological model to assess the efficacy of lung 
malignancy after MWA [18, 40, 41]. Kurtosis reflects 
the degree of grayness. Other parameters measure tex-
tural and spatial heterogeneity. Features from Ce-T1WI 
were mainly firstorder, GLSZM, and GLCM features 
derived from wavelet, log, and gradient transforma-
tions, where 10 percentile, gray level non uniformity, 
and cluster prominence have also appeared in previous 
studies [40, 41]. The above parameters mainly reflect the 
degree of gray in-homogeneity, and the feature selec-
tion process helps in identifying the most informative 
parameters for distinguishing between the effective 
and ineffective treatments. Our recent study concluded 
that CT imaging histology for predicting the efficacy of 
MWA in lung malignancies was feasible and reliable by 
performing imaging histology analysis on preoperative 
[40], ΔCT [41], and postoperative [42] images of MWA. 
Huang et al. combined preoperative and postoperative 
CT images and reached a similar conclusion by habitat 
analysis [43]. As most patients with MWA of lung tumors 
are treated with the aim of cure, CT follow-up shows a 
significant radiological burden. Replacement of one or 

more CT with MRI can significantly reduce the cumula-
tive dose in these patients. In addition, in our previous 
study, some tumors were adjacent to blood vessels, and 
pulmonary hemorrhage was inevitable during MWA, 
and when outlining the ROI, it was more difficult to dis-
tinguish the ablation area ground glass shadow from the 
hemorrhagic foci on the CT image. MRI compensated for 
this shortcoming well, and in predicting the efficacy, the 
T1WI model also showed a better efficacy than the CT 
model. Six of the image features constituting the com-
bined model were from T1WI and four were from Ce-T1 
sequences. According to the coefficient weights of each 
feature, it was known that the T1WI features might have 
a greater influence on the model. The AUC values for 
the T1WI model, Ce-T1WI model, and combined model 
were calculated for both the training and test groups. 
In the training group, the AUCs were 0.910, 0.890, and 
0.965, respectively, indicating high discriminative power 
for all models, especially the combined model. In the test 
group, the AUCs were 0.850, 0.700, and 0.850, respec-
tively, showing a slight decrease in performance but still 
maintaining reasonable accuracy, particularly for the 
T1WI and combined models. These results highlighted 
the potential of using advanced MRI analysis technique 
to evaluate the efficacy of MWA in LCs. The combina-
tion of different MRI sequences and derived features 
improved the predictive power of the model.

Survival curves were utilized to visually assess early 
outcomes after MWA in patients with lung tumors, strat-
ified into high-risk and low-risk groups. In the training 
cohort, significant differences were observed in survival 
curves between patients above and below the Nomo-
scores threshold for the T1WI, Ce-T1WI, and combined 
models. These findings highlighted the potential utility of 
radiomic features in survival modeling. However, due to 
the relatively small sample size in the current study, no 
significant difference in the survival curve was observed 
between high-risk and low-risk groups in the test cohort.

Conventional imaging features were not included in 
this study because MRI is less useful than CT for show-
ing peri-tumor structures. Previous studies have shown 

Fig. 7 In the training cohort, survival curves were plotted based on patients whose Nomo-scores were above or below the cut-off values of the T1WI 
model (P < 0.001), Ce-T1WI model (P < 0.001), and combined model (P < 0.001). The red line represented the high-risk group, while the green line signified 
the low-risk group
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that tumor size was an independent variable in the early 
efficacy of MWA for the treatment of lung malignancies, 
and patients with large tumors had a lower survival rate 
after MWA than patients with small tumors [44, 45]. In 
the present study, the mean tumor size was 9.6 mm and 
16.2 mm in the effective and ineffective groups, respec-
tively, which is consistent with previous reports. In clini-
cal practice, there are indeed differences in the prognosis 
of lung cancers originating from various sources. How-
ever, our study observed no significant statistical differ-
ence in the prognosis between patients with primary lung 
cancer and pulmonary metastases after MWA.

The reprehensibility and stability of image parameters 
for manual and semi-automatic sketching have always 
been a concern. In this study, the ICC of DCE-MRI per-
fusion parameters ranged from 0.580 to 0.959, and most 
of the parameters showed high repeatability (ICC ≥ 0.75), 
and six parameters (Q75 of Kep from ETM, Q25, Q50, 
Q90 and Q95 of Vp from ECM, and kurtosis of Fp from 
ECM) showed moderate repeatability (0.75 > ICC ≥ 0.5) 
[46]. Radiomics features (ICC < 0.75) were excluded, and 
all features used for feature screening and model building 
had great repeatability.

There are several limitations of this study: Firstly, due 
to ethical requirements and timeliness, we did not per-
form pre- and post-treatment DCE-MRI in the treatment 
group. Secondly, the overall sample size was small and 
patients in this study came from the same hospital, which 
was prone to bias. More cases which come from different 
hospitals will be included for further study in the future. 
Thirdly, although there was no difference in prognosis 
between primary lung cancer and lung metastases in this 
study, for the sake of the rigor of the study, we will refine 
lung cancer from different sources and conduct separate 
studies for validation in the future. In the end, the accu-
racy of quantitative parameters is affected not only by the 
choice of hemodynamic model, but also by the type of 
contrast agent, injection protocol, scan time resolution, 
scan time, and image noise level.

Overall, this study highlighted the potential of quan-
titative DCE-MRI analysis and MRI-based radiomics 
models in evaluating the efficacy of MWA in treating 
patients with LCs. This study laid the foundation for 
further exploration of the application of DCE-MRI and 
radiomics in assessing and predicting the efficacy of vari-
ous oncological interventions in the future.
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