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Abstract 

Background To investigate the feasibility of detecting local recurrent nasopharyngeal carcinoma (rNPC) using unen-
hanced magnetic resonance images (MRI) and optimize a layered management strategy for follow-up with a deep 
learning model.

Methods Deep learning models based on 3D DenseNet or ResNet frames using unique sequence (T1WI, T2WI, 
or T1WIC) or a combination of T1WI and T2WI sequences (T1_T2) were developed to detect local rNPC. A deep-learn-
ing-assisted recurrent NPC detecting simultaneous tactic (DARNDEST) utilized DenseNet was optimized by super-
imposing the T1WIC model over the T1_T2 model in a specific population. Diagnostic efficacy (accuracy, sensitivity, 
specificity) and examination cost of a single MR scan were compared among the conventional method, T1_T2 model, 
and DARNDEST using McNemar’s Z test.

Results No significant differences in overall accuracy, sensitivity, and specificity were found between the T1WIC 
model and T1WI, T2WI, or T1_T2 models in both test sets (all P > 0.0167). The DARNDEST had higher accuracy 
and sensitivity but lower specificity than the T1_T2 model in both the internal (accuracy, 85.91% vs. 84.99%; sensitiv-
ity, 90.36% vs. 84.26%; specificity, 82.20% vs. 85.59%) and external (accuracy, 86.14% vs. 84.16%; sensitivity, 90.32% vs. 
84.95%; specificity, 82.57% vs. 83.49%) test sets. The cost of a single MR examination using DARNDEST was $330,724 
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(internal) and $328,971 (external) with a hypothetical cohort of 1,000 patients, relative to $313,250 of the T1_T2 model 
and $340,865 of the conventional method.

Conclusions Detecting local rNPC using unenhanced MRI with deep learning is feasible and DARNDEST-driven 
follow-up management is efficient and economic.

Background
Nasopharyngeal carcinoma (NPC), a malignancy origi-
nating from the mucosal epithelium of the nasophar-
ynx, is particularly prevalent in Southeast Asia and 
North Africa [1]. Despite advancements in radiother-
apy and imaging techniques, treatment failure due to 
tumor recurrence remains a significant concern for NPC 
patients, with local recurrence occurring in 10% to 20% 
of cases in endemic regions [2–4]. Early detection and 
precise localization of recurrent NPC (rNPC) are essen-
tial for effective salvage treatment and improved progno-
sis [4–7].

However, detecting local rNPC poses challenges as 
it tends to grow submucosally, and deep-seated local 
rNPCs may be missed during clinical examination [8] 
or result in inaccessible endoscopic biopsy, thus thwart 
histopathological diagnosis. Hence, noninvasive and effi-
cient modalities are urgently required for post-treatment 
assessment in NPC patients. Magnetic resonance imag-
ing (MRI) has proven valuable in NPC management 
due to its excellent resolution in soft tissue, sensitivity 
in detecting bone marrow infiltration and advantage of 
multiparameter imaging [9], but its diagnostic efficacy 
in detecting local rNPC varies across studies, with sensi-
tivity ranging from 56% to 83% and specificity from 78% 
to 83% [10, 11]. Radiation-induced anatomic distortion, 
alteration in signal intensity pattern, inflammatory reac-
tions and scarring pose diagnostic difficulty in differen-
tiating recurrent tumors from the variable appearance of 
radiation-induced alteration [12, 13].

Given the limitations of single imaging modalities, 
regular follow-up with repetitive MRI examinations is 
preferred for detecting local rNPC. However, repeated 
administration of MR contrast agent might increase 
the economic burden, mental stress and potential side 
effects for patients. Notably, MRI signals lack specific 
for distinguishing between recurrence and post-treat-
ment changes, moreover, the 5-year local relapse-free 
survival has been increased from 66.6-90.8% to 87.7-
95.5% in NPC patients with different stages of disease by 
introducing intensity modulated radiotherapy (IMRT) 
and comprehensive treatment strategy [14–16]. Deep 
learning algorithms have exhibited remarkable perfor-
mance in lesion detection and segmentation by capturing 

intrinsic features of medical images. Deng YS et al dem-
onstrated that contrast-enhanced magnetic resonance 
imaging (ceMRI) could be substituted in the identifi-
cation and segmentation of NPC with the aid of deep 
learning models [17]. Likewise, the convolutional neural 
network-based algorithm could automatically discrimi-
nate between malignant and benign diseases at naso-
pharynx using T2-weighted fat-suppressed MR images 
[18]. Recently, MR-based deep learning models have 
enhanced radiologists’ accuracy in detecting regional 
recurrent NPC [19]. This prompts the question of 
whether deep learning algorithms could aid in the differ-
entiation between rNPC and radiation alterations, opti-
mizing the follow-up strategy by selectively discarding 
contrast-enhanced MR examinations in certain subpopu-
lation. This approach alleviates the economic burden on 
patients and national health systems and minimizes the 
potential risks associated with gadolinium-based con-
trast agents (GBCAs) in some extent.

To address that, deep learning models employed self-
constrained 3D DenseNet or ResNet using unique sequence 
images (T1-weighted image [T1WI], T2-weighted image 
[T2WI], or post-contrast T1WI [T1WIC]) or their combi-
nation were developed to detect local rNPC. Consequently, 
we have demonstrated that unenhanced MRI is adequate 
in selective post-treatment NPC patients during follow-up 
with the aid of deep learning-based models and verified that 
in three different institutes. Moreover, an optimal deep-
learning-assisted recurrent NPC detecting simultaneous 
tactic (DARNDEST) based on MRI and a layer manage-
ment strategy was developed, thereby providing an efficient, 
cost-effective, and lower-risk approach for NPC follow-up.

Methods
Patient enrollment
The participants in this study were previously subjects of 
research investigating the feasibility of detecting regional 
rNPC using deep learning-aided MRI [19]. In contrast, 
this research focused on local rNPC, with an emphasis 
on the viability of omitting enhanced MR examination 
and incorporating layer management for follow-up by 
introducing economic analysis.

We searched the picture archiving and communica-
tion system (GE, USA) using the following terms and 
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strategy: examination time = from Dec 01st, 2008 to 
July 31st, 2020, equipment = MR, examination type 
= plain and enhancement, region = head and neck, 
diagnosis = recurrent nasopharyngeal carcinoma or 
post-treatment or postradiotherapy alteration. The 
following cases were excluded: a) poor quality images 
due to artifacts or incomplete images; b) unconfirmed 
diagnosis; c) heterochronous tumor located at the 
nasopharynx or adjacent region; and d) surgery deliv-
ered to the nasopharynx. Finally, 4349, 420 and 257 
eligible patients were enrolled from Sun Yat-sen Uni-
versity Cancer Center (SYSUCC), the First People’s 
Hospital of Foshan (FPHF) and the Affiliated Cancer 
Hospital of Guangzhou Medical University (ACH-
GMU), respectively. To enhance model robustness, 
external participants were combined into an "exter-
nal cohort". The participants were randomly split into 
training, validation and test sets according to ratios of 

8:1:1 and 1.4:1:1 in the internal and external cohorts, 
respectively (Fig. 1).

Scanning parameters
Digital Imaging and Communications in Medi-
cine images (DICOM) of T1-weighted (T1WI), and 
T2-weighted (T2WI) images preenhancement and 
T1-weighted images postenhancement (T1WIC) in the 
axial view were used for development, tuning and evalu-
ation of the models. The images in the internal cohort 
were non-fat saturated, while those in the external cohort 
were fat saturated. Detailed information on the scanning 
machines and parameters was available in a previous 
study [19].

Radiologists’ assessment and Image tagging
Initially, the image tagging was performed based on the 
imaging report. A junior radiologist (D.H.) with two 
years of experience, along with two radiation oncologists 

Fig. 1 Flowchart of the participant enrollment and development of deep learning models
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(H.W. and W.Q.) with over ten years of experience in 
head and neck malignancies, subsequently reviewed the 
image tagging in sequence and made necessary correc-
tions according to the following criteria, 1) local recur-
rence referred to the detection of viable lesions in the 
nasopharynx or adjacent skull base/intracranial, includ-
ing histopathology-confirmed nasopharyngeal carcinoma 
or those whose nasopharyngeal lesions increased in size 
as detected by time-serial images three months before 
or after the current MR examination, or who had suspi-
cious nasopharyngeal lesions detected by the current 
MR examination that subsequently shrunk after anti-
tumor treatment; 2) local recurrence-free referred to 
the absence of detectable viable lesions in the nasophar-
ynx or adjacent skull base/intracranial on the current 
examination, with no evidence of recurrence, as defined 
above, after a follow-up period of one year. Notably, par-
ticipants with regional recurrence, such as metastatic 
retropharyngeal or cervical lymph nodes, but no viable 
lesions in the nasopharynx or adjacent skull base/intrac-
ranial, were classified as negative for local recurrence. For 
cases lacking histopathological evidence and where there 
were different opinions between the junior radiologist 
and radiation oncologists, a senior radiologist (C.X.) with 
over thirty years of experience in head and neck malig-
nancy made the final determination.

A senior radiologist (L.K.) with over ten years of expe-
rience in field of head and neck malignancy and a junior 
radiologist (Y.H.) with five years of experience partici-
pated in the test section. The two radiologists made diag-
noses based on a single MR scan with complete DICOM 
images in the test set and were blinded to the histopa-
thology and previous or subsequent examinations.

Model development and tuning
Two commonly used deep learning model archi-
tectures, 3D DenseNet and 3D ResNet34 [20], were 
employed to investigate whether enhanced imag-
ing could be replaced for the detection of local rNPC. 
PyTorch with 2 GPUs was utilized to train the 3D 
DenseNet and ResNet models for local rNPC detection 
using different sequences. To ensure the comparability 
of the performance of different models, we adopted the 
same hyperparameter settings and maintained the con-
sistency of the training process. This includes using the 
same optimizer, loss function, minibatch size, learning 
rate adjustment strategy, data preprocessing, data aug-
mentation methods, and model training monitoring. 
MR image preprocessing is described in supplementary 
methods. The detailed description of the 3D DenseNet 
model structure and a summary of its parameters are 

provided in the supplementary methods and supple-
mentary Table  1, respectively. ’Adam’ optimizer with 
binary cross-entropy loss, minibatch size 12, and initial 
learning rate  1e-3 was used for training. Data augmen-
tation with RandomAffine [21] and an adaptive learn-
ing rate scheduling strategy was applied. Learning rate 
was reduced by half if validation set loss plateaued for 
5 epochs and monitoring threshold set to  1e-4. Finally, 
models with best performance in validation set were 
chosen. The predicted values of T1WI and T2WI were 
combined with a weight of 0.5 to create T1_T2 model. 
The cutoff values for the predicted values of each model 
were determined using the Youden index (Supplemen-
tary Table 2).

Optimization of the DARNDEST
Given the superior overall performance of the DenseNet 
model in detecting local rNPC compared to the ResNet 
model, the optimization of DARNDEST focused on the 
DenseNet model. To further improve the sensitivity of 
detecting local rNPC and identify those who might ben-
efit from contrast-enhanced MRI (ceMRI), patients were 
divided into three groups as follows: all patients under-
went evaluation using the T1_T2 model initially, those 
with predicted values above the first-level cutoff value 
(internal: 0.490, external: 0.460) according to the Youden 
index were categorized as positive. A second-level cut-
off value was established by ensuring that the sensitivity 
was no less than 90% across the entire test set, achieved 
by adding the T1WIC model to the non-positive group. 
Non-positive patients were then allocated to suspicious 
and negative groups based on the secondary cutoff val-
ues (internal: 0.197, external: 0.282) (Supplementary Fig-
ure  1). DARNDEST was optimized for layered patient 
management; herein, patients in the positive and suspi-
cious groups were subjected to enhanced MR exami-
nation, whereas patients in the negative group merely 
underwent unenhanced MR examination, thus maximiz-
ing the cost-benefit ratio.

Comparison of identification performance in local rNPC 
among models and statistical analysis
The developed models’ performance in detecting local 
rNPC was assessed using standard evaluation metrics 
such as accuracy, sensitivity, specificity, positive predic-
tive value (PPV), and negative predictive value (NPV). 
And these metrics were compared between any two 
models using McNemar’s Z test. Receiver operating char-
acteristic (ROC) curves were used to calculate the area 
under the curve (AUC) to assess the diagnostic efficacy 



Page 5 of 12Deng et al. Cancer Imaging           (2025) 25:39  

of each model. Differences in AUCs among models were 
assessed using paired-sample area differences under the 
ROC curves. All analyses were performed using the Sta-
tistical Program for Social Sciences 22.0 (Chicago, USA). 
The power of the test during comparison among any two 
models was assessed using Power Analysis and Sample 
Size 2023 (Kaysville, USA).

Cost analysis
An economic analysis was conducted based on the actual 
prevalence of the internal and external cohorts, positive 
yield of local rNPC, and associated confidence interval 
with a hypothetical cohort of 1,000 NPC patients. The 
cost of detecting one true-positive local rNPC either 
using enhanced or unenhanced MRI was calculated for 
different groups according to DARNDEST. The Chi-
nese currency was converted to US dollars based on the 
exchange rate and date (rate of US$1.00=￥7.17, 2024). 
The prevalence was defined as those patients with local 
rNPC divided by the total cases. Additional fees for other 
examinations or treatment were not included in the eco-
nomic analysis.

Results
Demographic and clinical characteristics of the eligible 
participants
Among the 1993 patients with recurrence in the inter-
nal cohort, 1467 (73.61%) and 35 (1.76%) patients had 
histopathologically confirmed recurrent lesion at naso-
pharynx and metastatic lymphadenopathy, respectively. 

73.40% (138/188) and 69.11% (85/123) of patients had 
histopathologically confirmed local rNPC in FPHF and 
ACHGMU. Notably, Submucosal local rNPC accounted 
for 85.6%, 4.26%, and 9.76%, while lesions with necrotic 
characteristic accounted for 23.53%, 13.30%, and 21.95% 
in SYSUCC, FPHF, and ACHGMU cohorts, respectively. 
Most patients in the three institutions were diagnosed 
with advanced local rNPC, with 74.86%, 84.04%, and 
82.11% in SYSUCC, FPHF, and ACHGMU, respectively. 
Detailed demographic and clinical information from the 
three institutions are listed in Supplementary Tables 3-5.

Comparison of diagnostic performance of different models 
in identifying local rNPC
The T1WIC model using DenseNet showed no significant 
differences in overall accuracy, sensitivity, or specificity 
when compared to the T1WI, T2WI, or T1_T2 models, 
in both the internal and external cohorts (all P > 0.0167), 
with an overall accuracy and sensitivity over 83% in the 
internal cohort and over 81% in the external cohort, and 
all of the power of the test more than 95%. Radiologists 
achieved a slightly higher or non-inferior overall accu-
racy, benefiting from the favorable specificity that was 
slightly above or equal to that of the DenseNet models, 
but they experienced a decline in sensitivity, which was 
critical in detecting recurrence during post-treatment 
surveillance. Moreover, the PPV and NPV of the T1_T2 
model were slightly higher than those of T1WIC with-
out statistical significance in both test sets (Table 1). The 
T1_T2 model showed similar performance to the T1WIC 

Table 1 Comparison of performance in identifying local rNPC among DenseNet models developed using different MRI sequence and 
doctors in test set

Abbreviation: rNPC recurrent nasopharyngeal carcinoma, PPV positive predictive value, NPV negative predictive value, T1WI T1-weighted image, T2WI T2-weighted 
image, T1WIC T1-weighted image post-enhancement, Doctor-S senior radiologist, Doctor-J junior radiologist.

Test No of rNPC TP FN FP TN sensitivity specificity accuracy PPV NPV
% 95% CI (%) % 95% CI (%) % 95% CI (%) % 95% CI (%) % 95% CI (%)

Internal 197

 T1WIC 166 31 35 201 84.26(79.18,89.35) 85.17(80.64,89.70) 84.76(81.37,88.14) 82.59(77.34,87.83) 86.64(82.26,91.02)

 T1WI 168 29 40 196 85.28(80.33,90.23) 82.57(78.26,87.84) 84.06(80.62,87.51) 80.77(75.41,86.13) 87.11(82.73,91.49)

 T2WI 164 33 40 196 83.25(78.03,88.46) 85.32(78.26,87.84) 83.14(79.61,86.67) 80.39(74.94,85.84) 85.59(81.04,90.14)

 T1_T2 166 31 34 202 84.26(79.18,89.35) 85.59(81.11,90.07) 84.99(81.62,88.35) 83.00(77.79,88.21) 86.70(82.33,91.06)

 Doctor-S 154 43 13 223 78.17(71.62,83.60) 94.49(90.55,96.91) 87.07(83.45,90.01) 92.22(86.78,95.62) 83.83(78.73,87.94)

 Doctor-J 166 31 41 195 84.26(78.25,88.90) 82.63(77.05,87.11) 83.37(79.45,86.69) 80.19(73.97,85.26) 86.28(80.94,90.35)

External 93

 T1WIC 78 15 19 90 83.87(76.40,91.35) 82.57(75.45,89.69) 83.17(78.01,88.33) 80.41(72.51,88.31) 85.71(79.02,92.41)

 T1WI 75 18 19 90 80.65(72.62,88.67) 82.57(75.45,89.69) 81.68(76.35,87.02) 79.79(71.67,87.91) 83.33(76.30,90.36)

 T2WI 76 17 16 93 81.72(73.87,89.58) 85.32(78.68,91.96) 83.66(78.57,88.76) 82.61(74.86,90.35) 84.55(77.79,91.30)

 T1_T2 79 14 18 91 84.95(77.68,92.21) 83.49(76.52,90.46) 84.16(79.12,89.19) 81.44(73.71,89.18) 86.67(80.16,93.17)

 Doctor-S 77 16 3 106 82.80(73.26,89.55) 97.25(91.57,99.29) 90.59(85.49,94.09) 96.25(88.68,99.03) 86.89(79.28,92.09)

 Doctor-J 72 21 4 105 77.42(67.35,85.18) 96.33(90.32,98.82) 87.62(82.09,91.68) 94.74(86.36,98.30) 83.33(75.42,89.16)
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model when using the ResNet frame, with slightly higher 
sensitivity but no statistical significance in both the inter-
nal (84.26% vs. 82.74%) and external (84.95% vs. 84.95%) 
test sets (Supplementary Table 6).

Particularly, the ROC curves revealed no significant 
differences in the AUC between the T1WIC model and 
the T1WI, T2WI, or T1_T2 models in both test sets 
when using DenseNet (0.9124 vs. 0.9098, 0.9145, 0.9296 
in the internal test set; 0.9071 vs. 0.8874, 0.8877, 0.9065 
in the external test set; all P > 0.0167, Fig. 2) or ResNet 
(0.8970 vs. 0.8840, 0.8939, 0.9045 in the internal test set; 
0.9061 vs. 0.8800, 0.8791, 0.8973 in the external test set; 
all P > 0.0167, Supplementary Figure 2).

Comparison of errors in diagnosing local rNPC 
among models and radiologist
Further analysis of errors in diagnosing local 
rNPC was performed to understand the mecha-
nism of DenseNet models in detecting lesions. In 

misdiagnosed cases, mistaking radiation-induced 
fibrosis as recurrence was the first major cause for 
both the DenseNet models and the junior radiologist 
in both test sets, whereas mistaking radiation necro-
sis or wrongly identifying sinusitis or enhanced tur-
binate as recurrence were the second major causes 
for the DenseNet models in the internal or external 
test set, respectively (Fig.  3a, b). However, the senior 
radiologist, whose specificity was higher than that of 
deep learning models and junior radiologist (94.49% 
vs. 82.57-85.17% in internal test set, 97.25% vs. 82.57-
96.22% in external test set, Table 1), excelled in distin-
guishing radiation-induced fibrosis from recurrence 
in both test sets but encountered challenges in differ-
entiating recurrence from radiation necrosis, leading 
to lower sensitivity compared to models and junior 
radiologist in the internal test set (78.17% vs. 83.25-
85.28%, Table 1 and Fig. 3b, c).

Fig. 2 ROC curves of DenseNet models in the test set. (a-b) The diagnostic efficacy of DenseNet models developed using different MRI sequences 
in detecting local recurrent nasopharyngeal carcinoma is compared using ROC curves in the internal (a) and external (b) test sets. The area 
under the curve and 95% confidence interval of each model are also shown. Abbreviations: ROC, receiver operator characteristic curve; Doctor-S, 
senior radiologist; Doctor-J, junior radiologist.

(See figure on next page.)
Fig. 3 Classification and comparison of errors in diagnoses among deep learning models and doctors. a Representative images of major errors 
in diagnosing local rNPC. The representative cases are radiation necrosis (necrotic lesion indicated by asterisk) wrongly identified by models 
in a case without recurrence, and missed diagnose due to low confidence (early recurrent lesion indicated by arrowhead at the right parietal wall 
of the nasopharynx). The columns from left to right in each case are original MR images, heatmap predicted by the DenseNet model and merged 
images of the former two. b-c The errors of misdiagnose (b) and missed diagnose (c) in local rNPC are shown in the stacked bar chart. Herein, focal 
recurrence refers to cases with rT1 stage disease; atypical recurrent site refers to uncommon site involved by NPC, such as nasolacrimal duct, nasal 
cavity, etc.; difficult to differentiate refers to misdiagnose between local rNPC and radiation necrosis.
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Fig. 3 (See legend on previous page.)
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Missed diagnoses for radiologists in both test sets 
were primarily due to recurrence at an early stage 
with focal lesions. Conversely, deep learning mod-
els struggled with accurate identification of lesions in 
the correct location and displayed uncertainty in true 
recurrent cases, with positional misjudgments as a 
secondary cause for missed diagnoses. Additionally, 
recurrence at an atypical site or skull base constituted 
a critical cause of missed diagnoses for radiologists in 
the internal or external test set, respectively (Fig. 3a, c).

Evaluation of DARNDEST’s diagnostic performance 
and a comparative analysis of economic and time factors 
against the T1_T2 model and conventional methods 
for detecting rNPC
Expectedly, DARNDEST showed higher accuracy and 
sensitivity compared to the T1_T2 model in the whole 
test sets, with slightly reduced specificity in both the 
internal (accuracy, 85.91% vs. 84.99%; sensitivity, 90.36% 
vs. 84.26%; specificity, 82.20% vs. 85.59%) and exter-
nal (accuracy, 86.14% vs. 84.16%; sensitivity, 90.32% vs. 
84.95%; specificity, 82.57% vs. 83.49%) cohorts (Table 2).

Further economic analysis was compared among the 
conventional method, T1_T2 model alone and DARND-
EST. There would be 462, 171 and 367 patients catego-
rized as positive, suspicious and negative group in the 
internal cohort according to DARNDEST, of which 383, 
62 and 9 patients were diagnosed with local rNPC based 
on the actual incidence of the internal cohort with the 
hypothesis of 1000 patients. Meanwhile, 383, 28 and 5 
patients would be detected as having local rNPC pre-
cisely using DARNDEST. ￥6,381 (5,671, 7,231), ￥87,286 
(49,878, 162,933) and ￥488,800 (135,778, 244,000) were 
needed to detect a patient with local rNPC in each group. 
Similarly, there would be 480, 89 and 431 patients cat-
egorized as positive, suspicious and negative group, of 
which 391, 35 and 35 patients were diagnosed with local 

rNPC based on the actual incidence of external cohort, 
while 391, 25 and 5 patients would be detected as local 
recurrence using DARNDEST. ￥6,251 (4,436, 5,961), 
￥97,760 (40,733, 271,556) and ￥488,800 (76,375, infin-
ity) were needed to detect a patient with recurrence in 
each group (Fig. 4 and Supplementary Table 7).

For a single examination in a hypothetical cohort of 
1,000 patients, DARNDEST required 190.7 and 184.5 
hours in the internal and external cohorts, while the T1_
T2 model and conventional method required 129.2 and 
226.4 hours, respectively. The total cost of MR examina-
tion using DARNDEST was 105.58% and 100.53% of the 
cost of the T1_T2 model (￥2,371,293 vs ￥2,246,000 and 
￥2,358,723 vs ￥2,246,000, respectively) in the inter-
nal and external cohorts, whereas it was 97.03% and 
96.51% (￥2,371,293 vs ￥2,444,000 and ￥2,358,723 vs 
￥2,444,000, respectively) of the cost of the conventional 
method in the internal and external cohorts (Table 2).

Discussion
Our study showcased the viability of unenhanced MRI 
for detecting local rNPC during post-treatment surveil-
lance using widely adopted deep learning frameworks, 
DenseNet or ResNet, validated across internal and exter-
nal cohorts. The combined T1WI and T2WI model 
exhibited sensitivity comparable to that of radiologists. 
Error analysis revealed analogous misdiagnosis and 
missed diagnosis patterns for DenseNet models and radi-
ologists, indicating similar lesion detection mechanisms. 
Additionally, we introduced an efficient and economical 
follow-up strategy using DenseNet, DARNDEST, opti-
mizing sensitivity by overlaying the T1WIC model onto 
the T1_T2 model in positive and suspicious subpopula-
tions while maintaining cost-effectiveness.

Early detection of recurrent NPC is crucial for timely 
salvage treatment [4]. Routine annual MR examination 

Table 2 Comparison of the diagnostic efficacy, total cost and time in a single MR examination using DARNDEST and T1_T2 model or 
conventional methods

Abbreviation: TC total cost, TT Total time, DARNDEST deep-learning-assisted recurrent NPC detecting simultaneous tactic.

Cohort Model/Method Accuracy (%) Sensitivity (%) Specificity (%) TC TT(hr)

95% CI (%) 95% CI (%) 95% CI (%)

Internal T1_T2 84.99
(81.62,88.35)

84.26
(79.18,89.35)

85.59
(81.11,90.07)

￥2,246,000($313,250) 129.2

DARNDEST 85.91
(82.19,88.98)

90.36
(85.13,93.94)

82.20
(76.59,86.74)

￥2,371,293($330,724) 190.7

External T1_T2 84.16
(79.12,89.19)

84.95
(77.68,92.21)

83.49
(76.52,90.46)

￥2,246,000($313,250) 129.2

DARNDEST 86.14
(80.42,90.44)

90.32
(81.97,95.20)

82.57
(73.86,88.92)

￥2,358,723($328,971) 184.5

Internal/External Conventional / / / ￥2,444,000($340,865) 226.4
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of the nasopharynx and neck is essential for NPC sur-
veillance since submucosal or intracranial lesions can be 
missed during physical examination or endoscopy [4, 8, 
22]. Detecting submucosal recurrent lesions and early-
stage disease is challenging, and distinguishing recur-
rent NPC from radiation-induced alterations is complex 
[4, 12]. Conventional MRI has limited sensitivity and 
specificity, with 56% sensitivity and 78-83% specificity 
reported since it only relied on the morphological char-
acteristics [10]. However, our DenseNet models achieved 
higher sensitivity (83.25-84.26% internal, 80.65-84.95% 
external) and comparable specificity (82.57-85.59% inter-
nal, 82.57-85.32% external). Moreover, the optimized 
DARNDEST gained an impressively increased sensitivity 
(internal, 90.36% and external, 90.32%) with mild reduc-
tion in specificity (internal, 82.20% and external, 82.57%); 
still comparable to previous studies and could be supple-
mented by radiologists.

Additionally, although several studies have demon-
strated a lack of added clinical value of using gadolinium 
contrast agent for routine follow-up scans of benign 
intracranial tumors (e.g., meningiomas [23], pituitary 

macroadenoma [24] and vestibular schwannomas [25]), 
cystic lesions of pancreas [26, 27] and small solid renal 
masses [28], we have similarly shown that enhanced 
MRI can be exempted in the initial detection of NPC 
with the aid of a deep learning model [17]. However, no 
studies have evaluated unenhanced MRI or abbreviated 
MRI protocols for imaging follow-up of NPC, nor have 
they addressed the economic impact of eliminating gad-
olinium contrast agent. Herein, the economic analysis 
revealed that using DARNDEST could save significant 
costs (13.4/15.6 and 76.6/78.2 times) in detecting posi-
tive cases of local rNPC in the suspicious or negative 
groups compared to conventional methods. Moreover, 
DARNDEST reduced MR examination costs and time 
by approximately ￥72,707/85,277 ($10,140/11,894) and 
35.7/41.9 hours in a hypothetic cohort of 1,000 patients 
based on the actual incidence of local rNPC in the inter-
nal or external cohorts, respectively. Taken together, this 
demonstrated for the first time in the era of artificial 
intelligence, enhanced MR examination may be exempt 
reasonably in the administration of NPC patients after 
radical treatment, since not all patients are indicated for 

Fig 4 Comparison of the economic burden associated with using enhanced MRI in each group based on DARNDEST. The economic analysis 
was modeled based on the actual prevalence, positive yield of local rNPC, and associated CI derived from this study with a hypothetical cohort 
of 1,000 patients who underwent follow-up MR examination after radical treatment. For each group in the figure, numbers in bonds denote cases 
and associated CI categorized as positive, suspicious or negative by DARNDEST. Italicized numbers above the line represent true-positive cases 
of local rNPC detected by DARNDEST, while those below represent true-positive cases confirmed by histopathology or follow-up MRI. Dark blue text 
boxes labeled "enhanced/unenhanced" is recommended MR examination methods according to DARNDEST. Data in gridline represent the costs 
per true-positive case of each group. Cost in China from the Medical Insurance Administration Bureau of Guangzhou, 2024. One dollar = 7.17 RMB. 
Abbreviation:  CVi or  CVe, cut-off value of the internal or external set, respectively
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gadolinium contrast agents, especially in those patients 
with impaired renal function induced by multiple causes, 
including chemotherapy [29–31]. Particularly, eliminat-
ing gadolinium contrast agent for the follow-up of NPC 
could lead to significant cost and time savings, while 
improving accessibility and patient tolerance.

Notably, the T1_T2 model exhibited slightly higher or 
equal sensitivity but lower specificity compared to the 
radiologists, indicating that unenhanced MRI was suf-
ficient for detecting local lesions in unsupervised situa-
tions, whereas enhanced MRI aided in differentiation for 
radiologists. Particularly, the T1_T2 model performed 
consistently in both cohorts, while radiologists showed 
variations, likely due to distinct disease characteristics 
and scanning parameters between institutions; for exam-
ple, the proportion of rNPC cases exhibiting necrotic 
characteristics was higher in the internal cohort than 
in the external cohort and the postenhancement axial 
T1-weighted images of the external cohort were fat satu-
rated, different from those of the internal cohort. Obvi-
ously, variable data resources have helped to improve 
model robustness. Moreover, causes of error in misdi-
agnoses or missed diagnoses among DenseNet models 
developed using either unenhanced or enhanced MRI 
were consistent. Specifically, the models tended to mis-
construed the asymmetric structure with a mass effect 
as a recurrent lesion, such as fibrotic scarred tissue 
induced by radiation, and were prone to miss diagnosis 
in cases with limited lesions although localized lesion 
precisely but insufficient confidence, similar to that of 
junior radiologist. Therefore, we speculated that shape or 
texture might play a more important role than intensity 
in the recognition of deep convolution neural networks 
(DCNNs) in grayscale images. Consistent with previous 
studies, DCNNs have access to local shape information 
in the form of local edge relations in object classification 
[32, 33]. However, further comparative studies focusing 
on feature extraction in identification using DCNNs are 
warranted in the future.

The study has some limitations. First, a portion of 
patients (internal, 24.64%; external, 25.53% and 30.89%) 
were diagnosed based on time-serial MRI without his-
topathological confirmation due to challenging biopsy 
locations. However, debatable cases were excluded ini-
tially, and the remaining enrolled cases were confirmed 
by either detecting size enlargement through follow-up 
MRIs or observing lesion shrinkage after anti-cancer 
treatment. Second, the focus was on detecting local 
rNPC for overall accuracy when developing deep learn-
ing models, omitting considerations for metastatic lymph 
nodes or tumor segmentation. Third, only single-time 
point axial images were used for model development 
since the purpose of this study was to determine the 

feasibility of detecting local rNPC using unenhanced 
MRI. Abbreviated protocols should also be explored for 
follow-up patients in the era of artificial intelligence, 
where time-serial images and multiple orientation images 
should be considered in future studies. On the other 
hand, time-serial MRI examinations during NPC follow-
up could provide additional insights in clinical practice, 
whereas a single-time point MRI examination may lead 
to an underestimation of the radiologists’ performance 
in this study. Fourth, clinical data, particularly Epstein-
Barr Virus DNA copy numbers, were not incorporated 
into the models. Future studies should consider com-
prehensive models that integrate clinical data and time-
serial images. Lastly, for cases that might benefit from 
enhanced MRI, a repetition of the MRI scan with con-
trast agent could introduce additional costs, which may 
outweigh the initial savings from eliminating the contrast 
agent. Therefore, the developed T1_T2 models should be 
integrated into the scanning system to provide real-time 
guidance during follow-up scans.

Conclusion
Using unenhanced MRI with deep learning models for 
detecting local rNPC is feasible. DARNDEST’s layer 
management during follow-up is efficient, economic, 
timesaving, and minimally toxic.
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