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Abstract
Background  To explore the value of intratumoral and peritumoral radiomics in preoperative prediction of anaplastic 
lymphoma kinase (ALK) mutation status and survival in patients with lung adenocarcinoma.

Methods  We retrospectively collected data from 505 eligible patients with lung adenocarcinoma from four hospitals 
(training and external validation sets 1–3). The CT-based radiomics features were extracted separately from the gross 
tumor volume (GTV) and GTV incorporating peritumoral 3-, 6-, 9-, 12-, and 15-mm regions (GPTV3, GPTV6, GPTV9, 
GPTV12, and GPTV15), and screened the most relevant features to construct radiomics models to predict ALK (+). The 
combined model incorporated radiomics scores (Rad-scores) of the best radiomics model and clinical predictors 
was constructed. Performance was evaluated using receiver operating characteristic (ROC) analysis. Progression-free 
survival (PFS) outcomes were examined using the Cox proportional hazards model.

Results  In the four sets, 21.19% (107/505) patients were ALK (+). The GPTV3 radiomics model using a support vector 
machine algorithm achieved the best predictive performance, with the highest average AUC of 0.811 in the validation 
sets. Clinical TNM stage and pleural indentation were independent predictors. The combined model incorporating 
the GPTV3-Rad-score and clinical predictors achieved higher performance than the clinical model alone in predicting 
ALK (+) in three validation sets [AUC: 0.855 (95% CI: 0.766–0.919) vs. 0.648 (95% CI: 0.543–0.745), P = 0.001; 0.882 (95% 
CI: 0.801–0.962) vs. 0.634 (95% CI: 0.548–0.714), P < 0.001; 0.810 (95% CI: 0.727–0.877) vs. 0.663 (95% CI: 0.570–0.748), 
P = 0.006]. The prediction score of the combined model could stratify PFS outcomes in patients receiving ALK-TKI 
therapy (HR: 0.37; 95% CI: 0.15–0.89; P = 0.026) and immunotherapy (HR: 2.49; 95% CI: 1.22–5.08; P = 0.012).

Conclusion  The presented combined model based on GPTV3 effectively mined tumor features to predict ALK 
mutation status and stratify PFS outcomes in patients with lung adenocarcinoma.
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Background
Lung cancer is the leading cause of cancer-related death 
worldwide, with non–small cell lung cancer account-
ing for 85% of cases, and adenocarcinoma representing 
the predominant histologic subtype [1]. In recent years, 
targeted therapy and immunotherapy have significantly 
improved survival rates across various stages of lung 
adenocarcinoma, including neoadjuvant/adjuvant ther-
apy for resected patients and palliative treatment for 
advanced patients [2, 3]. Anaplastic lymphoma kinase 
(ALK) is an important driver gene and therapeutic target 
for lung adenocarcinoma. Patients with ALK mutations 
have better clinical outcomes to ALK-tyrosine kinase 
inhibitors (ALK-TKIs) compared to those with wide-type 
ALK, but they may not respond well to immunotherapy 
due to potential immunosuppression [4–6]. Accordingly, 
pre-treatment detection of ALK mutation status has 
become increasingly common, helping clinicians iden-
tify patients suited to either ALK-TKI therapy or immu-
notherapy and thus supporting more accurate individual 
treatment planning.

Currently, tissue or cytological specimens are com-
monly used for detecting ALK mutations; however, 
these methods are mostly invasive. Additionally, tumor 
heterogeneity can lead to unavoidable sampling errors, 
potentially compromising the accuracy of detection [7]. 
Computed tomography (CT) is the primary imaging 
method for the diagnosis of lung adenocarcinoma. Sev-
eral conventional CT features, such as lobulated margin, 
solidity, and pleural indentation have been associated 
with ALK gene rearrangements [8–11]. However, such 
CT features lack objective quantitative indicators, and 
their evaluation is therefore highly subjective. Radiomics 
transforms traditional images into high-dimensional 
quantitative image feature data through the transforma-
tion of the original image; calculation of feature matrices 
can then be used to deeply explore the biological prop-
erties and heterogeneity of the image [12]. Although 
several studies have confirmed the feasibility of CT 
radiomics in predicting ALK mutation, these studies have 
mainly focused on the intratumoral region, ignoring the 
potential value of the peritumoral region in assessing 
mutation status [13–15]. Reports suggest that the area 

surrounding a tumor may contain rich biological infor-
mation, including angiogenesis, lymphatic dilation, vas-
cular invasion, and stromal reaction, characteristics that 
are often closely related to the biological characteristics 
of the tumor [16]. To date, peritumoral radiomics has 
been confirmed to provide additional value in differential 
diagnosis, lymph node metastasis prediction, prognosis, 
and efficacy evaluation of lung cancer [17–20]. However, 
there are currently few studies on the prediction of ALK 
mutation status using a peritumoral radiomics approach.

The purpose of our study was to evaluate the perfor-
mance of CT radiomics features extracted from intra-
tumoral and peritumoral regions in predicting ALK 
mutation in patients with lung adenocarcinoma. We 
aimed to develop and validate a stable, accurate, and non-
invasive prediction model for ALK mutation status. Fur-
thermore, we investigated the potential implications of 
the prediction model on progression-free survival (PFS) 
outcomes in patients with lung adenocarcinoma.

Methods
Study design and participants
This study was approved by the Institutional Review 
Boards, and the requirement for informed consent 
was waived due to retrospective nature. The study was 
reported according to Standards for the Reporting of 
Diagnostic Accuracy Studies (STARD) guidelines [21]. 
Data were acquired concurrently from patients at four 
university teaching hospitals, including the Fifth Affili-
ated Hospital of Wenzhou Medical University (center 1), 
Affiliated People’s Hospital of Ningbo University (center 
2), Jiaxing No.1 Hospital (center 3), and the Sixth Affili-
ated Hospital of Wenzhou Medical University (center 4). 
After applying inclusion and exclusion criteria (Appendix 
E1), a total of 505 cases were included, with 156 (30.89%) 
in the training set, 93 (18.42%) in the validation set 1, 
139 (27.52%) in the validation set 2, and 117 (23.17%) 
in the validation set 3. The patient recruitment process 
is shown in Fig. 1. Patients from the validation sets who 
did not meet the exclusion criteria (Appendix E2) were 
also included in the PFS set. ALK mutant status was con-
firmed by immunohistochemical staining of surgical or 
biopsy specimens (Appendix E3), and all patients were 
divided into 107 patients with ALK-positive (ALK (+)) 

Key points
• Compared with GPTV6, GPTV9, GPTV12, and GPTV15 radiomics signatures, the GPTV3 radiomics signature has the 
highest efficiency for ALK mutation prediction.
• The combined model based on GPTV3 radiomics features and clinical predictors effectively predicted ALK mutation 
in patients with lung adenocarcinoma.
• The prediction score of the combined model was able to stratify progression-free survival in patients receiving 
ALK-TKI therapy and immunotherapy, which could improve the design of personalized treatment strategies.
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and 398 patients with ALK-negative (ALK (-)) groups. 
Clinical information including age, sex, smoking history, 
and clinical Tumor Node Metastasis (TNM) stage [22] 
was obtained from medical records.

CT acquisition and evaluation
All patients underwent non-contrast CT of the chest 
performed using 64-,128-, or 192-detector row scan-
ners. The CT scanners and scanning parameters used for 
four hospitals are shown in Table S1. Two diagnosticians 
with more than 10 years of experience in chest diagnosis 
evaluated the CT images; consensus was reached by dis-
cussion in the event of disagreement. Conventional CT 
features collected included margin, density, lobulation 
sign, spicule sign, pleural indentation sign, air broncho-
gram sign, and vacuole sign. The definitions and scoring 
rules of these conventional CT features are described in 
Table S2.

Tumor contour preparation and segmentation
Figure  2 shows the workflow of the study. Image analy-
sis was performed using the platform ITK-SNAP (v3.8, 
http://www.itksnap.org). The gross tumor volume (GTV) 
was defined as the tumor identified within the visible 
tumor border. The region of interest (ROI) of GTV was 
manually outlined layer-by-layer along the tumor edge 
by two radiologists with more than five years of experi-
ence in thoracic diagnosis, before the 3D volume of inter-
est (VOI) was generated. Based on previous studies [19, 

23–26], we used ITK-SNAP to automatically expand 
the GTV outward by 3 mm, 6 mm, 9 mm, 12 mm, and 
15  mm and thus obtained the ROI of the gross peritu-
moral tumor volume (GPTV) of GPTV3, GPTV6, GPTV9, 
GPTV12, and GPTV15 respectively. All delineated GPTV 
target areas included air in the lungs, pulmonary vessels, 
and bronchi but did not include the chest wall or medias-
tinum. The procedure of ROI segmentation was shown in 
Figure S1.

Radiomics feature extraction and selection
After image preprocessing (Appendix E4), the open-
source package “Pyradiomics” in Python was used to 
automatically extract quantitative radiomics features. 
Overall, 2804 radiomics features were extracted for each 
VOI, and details of these features are provided in Appen-
dix E5. Details about intra-observer and inter-observer 
repeatability analysis of VOIs are described in Appendix 
E6.

All radiomics features were Z-score normalized 
( f (x) = s(x−µ x)

δ x
) to eliminate the index dimension dif-

ference. Radiomics feature selection was performed using 
the variance threshold method, SelectKBest method, 
and the Least Absolute Shrinkage and Selection Opera-
tor (LASSO) algorithm (Appendix E7). These methods 
were employed to identify the most relevant features for 
each of the six regions (GTV, GPTV3, GPTV6, GPTV9, 
GPTV12, and GPTV15) in the training set.

Fig. 1  Flowchart illustrating the process of patient selection from four medical centers in this study. ALK, anaplastic lymphoma kinase; PFS, progression-
free survival

 

http://www.itksnap.org
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Radiomics model establishment
Six independent radiomics signatures were constructed 
using multivariable logistic regression (LR) analysis and 
backward stepwise regression analysis, based on the 
optimal features of the six regions in the training set. 
The score of each case calculated from these signatures 
reflects the probability of ALK (+) and was named the 
radiomics score (Rad-score). The predictive performance 
of these radiomics signatures in the training and valida-
tion sets was evaluated using receiver operating charac-
teristic (ROC) curves. The radiomics signature with the 
highest average area under the curve (AUC) and accu-
racy values in the validation sets was subsequently used 
to construct the optimal radiomics model [27–29]. Six 
machine learning algorithms were used to screen the best 
classifier (Appendix E8).

Clinical and combined model construction and evaluation
Univariate LR analysis was performed to assess the asso-
ciation between clinical-radiological characteristics and 
ALK mutant status, and clinical predictors with P < 0.1 
were included in the multivariate LR analysis to estab-
lish the clinical model. To determine the overall impact 
of radiomics features, a combined model and corre-
sponding nomogram integrating independent predic-
tors and the Rad-score of the best radiomics model were 
constructed using multivariate LR analysis and back-
ward stepwise regression analysis based on the Akaike 
Information Criterion. The predictive performance and 
clinical utility of the models were assessed using ROC 
analyses, calibration curves, and decision curve analysis 
(DCA), as detailed in Appendix E9. The performance of 
the combined model was further evaluated through sub-
group analysis (e.g., sex and smoking history) to assess its 
robustness across the entire patient population from the 
three independent validation sets.

Fig. 2  The workflow of the study. Preoperative non-contrast CT chest images of patients with lung adenocarcinoma were retrospectively collected and 
pre-processed, and then segmented for feature extraction. Six radiomics signatures were constructed after feature selection. The radiomics models were 
built using six machine learning classifiers, and the one with the best predictive performance in the validation sets was used to calculate the radiomics 
score (Rad-score). A clinical model was constructed using LR analysis, and a combined model incorporating the Rad-score and clinical predictors was 
constructed and presented as a nomogram. The performance of the nomogram was evaluated by receiver operating characteristic analysis, calibration 
curves, decision curve analysis, and survival curves. GTV, gross tumor volume; GPTV, gross peritumoral tumor volume; LDA, linear discriminant analysis; 
SVM, support vector machine; RF, random forest; KNN, k-nearest neighbor; XGBoost, eXtreme Gradient Boosting
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Prognostic value of the combined model
PFS was defined as the time from the start of treatment to 
the progression of radiologic symptoms or death. Disease 
progression was defined as a 20% increase in the targeted 
lesion volume or the appearance of new lesions [30]. 
Patients in the PFS set were split into two groups: a high-
risk group with a model prediction score of ≥ 0.5 and a 
low-risk group with a model prediction score of < 0.5. 
Spearman analyses were conducted to evaluate the cor-
relation between the combined model prediction score 
and PFS time in both the ALK-TKI therapy and immu-
notherapy groups. We then calculated the hazard ratios 
(HRs) of PFS using Cox proportional hazards regression, 
comparing patients in the low and high-risk groups.

Statistical analysis
Statistical analysis was conducted in R v4.1.2 (www.
Rproject.org), MedCalc v22.0 (www.medcalc.org), and 
Python v3.9.7 (www.python.org). Continuous baseline 
characteristics were analyzed using Student’s t-test or 
the Mann–Whitney U test according to the results of the 
Kolmogorov-Smirnov test; categorical data were ana-
lyzed using the chi-squared test or Fisher’s exact analy-
sis. The LASSO regression, LR analysis, plotting of the 
nomogram and calibration curves, H-L test, and DCA 
were performed on the R packages “glmnet”, “rms”, “gen-
eralhoslem”, and “dca.R”, respectively. Model performance 
comparisons were performed using the Delong test, a 
solid statistical approach for distinguishing between vari-
ous models. We implemented the Cox proportional haz-
ards model and Kaplan-Meier survival curves to analyze 
PFS. All statistical tests were two-tailed; P < 0.05 was con-
sidered statistically significant.

Results
Patient characteristics and clinical model construction
The patients’ baseline information is outlined in Table 1 
and Table S3. The mean age of the entire set was 59 years; 
40.59% (205/505) of patients were male. In terms of clini-
cal TNM staging, 21.39% (108/505) patients were classed 
as stage IV. In the four sets, 21.19% (107/505) patients 
were immunohistochemically determined to be ALK (+). 
Overall, all sets were balanced and comparable (Table 
S3). Univariate and multivariate analysis showed that 
clinical TNM stage and pleural indentation were inde-
pendent predictors of ALK (+), which were used to estab-
lish the clinical model (Appendix E10).

Feature extraction and selection
In total, 2804 radiomics features were extracted from 
each of the GTV, GPTV3, GPTV6, GPTV9, GPTV12, and 
GPTV15 VOIs; good reproducibility, with intra-observer 
and inter-observer ICCs > 0.80, was found for 2495 
(88.98%), 2440 (87.02%), 2409 (85.91%), 2513 (89.62%), 

2489 (88.77%), and 2502 (89.23%) features, respectively. 
For each VOI, after the process of feature selection, 
LASSO was finally applied to determine the optimal λ 
values for GTV, GPTV3, GPTV6, GPTV9, GPTV12, and 
GPTV15 as 0.187, 0.088, 0.079, 0.124, 0.068, and 0.059, 
respectively (Figure S2). Based on the optimal λ values, 
12, 18, 16, 11, 12, and 13 features, respectively, were 
obtained for further constructing radiomics models 
(Fig. 3). The details of features selected for modeling and 
their coefficients are detailed in Table S5.

Establishment of radiomics model
Following selection, we constructed feature-specific 
radiomics signatures using six regions and then used 
ROC analysis to assess the diagnostic performance 
of these signatures in the training and validation sets 
(Table  2 and Figure S3), and the results of DeLong’s 
tests are shown in Figure S4. Among signatures for all 
regions, the GPTV3 radiomics signature performed best, 
with an average AUC of 0.778 and average accuracy of 
72.20% in the validation sets (Table S6). Based on the best 
radiomics signature model, we used six ML algorithms 
to improve model performance (Table 3 and Figure S5), 
and the results of DeLong’s tests are detailed in Figure 
S6. The results showed that the support vector machine 
(SVM) model had the best performance, with the highest 
average AUC of 0.811 and the highest average accuracy 
of 77.17% in the validation sets (Table S7). Therefore, 
the SVM-based GPTV3 radiomics model was selected 
as the best radiomics model and used to calculate the 
GPTV3-Rad-score.

Development, evaluation, and clinical utility of combined 
model
The GPTV3-Radscore, clinical TNM stage, and pleural 
indentation were incorporated into the combined model 
(Table S8) and then visualized as a nomogram (Fig-
ure S7). The radiomics nomogram was evaluated in the 
training set (Figure S8), and validation sets 1 (Fig.  4A), 
2 (Fig. 4B), and 3 (Fig. 4C). The detailed diagnostic per-
formance of the three models is summarized in Table 4, 
and the results of DeLong’s tests are listed in Table S9. 
Notably, the incorporation of the GPTV3-Radscore led 
to a significant increase in the AUC values compared to 
the clinical model in validation sets 1 to 3 from 0.648 
[95% confidence interval (CI): 0.543–0.745] to 0.855 (95% 
CI: 0.766–0.919) (Z = 3.288, P = 0.001), 0.634 (95% CI: 
0.548–0.714) to 0.882 (95% CI: 0.801–0.962) (Z = 3.961, 
P < 0.001), and 0.663 (95% CI: 0.570–0.748) to 0.810 (95% 
CI: 0.727–0.877) (Z = 2.751, P = 0.006), respectively. The 
calibration curves demonstrate that predicted ALK status 
had good agreement with actual observations. The Hos-
mer-Lemeshow test showed that the nomogram fit well 
(P > 0.05). The DCA results showed that the nomogram 

http://www.Rproject.org
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achieved a better net benefit than clinical and GPTV3 
radiomics models. Table S10 lists the corresponding 
scores of each variable and the formula to calculate the 
prediction score in the nomogram. Figure 5 presents two 
instances that illustrate the nomogram’s clinical utility.

Subgroup prediction performance of the combined model
Subgroup analyses, separately stratified by sex and smok-
ing history, were conducted across the entire patient 
population from the three independent validation sets. 
The combined model yielded an AUC of 0.831 (95% 
CI: 0.741–0.921) in the male group and 0.868 (95% CI: 
0.813–0.924) in the female group. The AUC was 0.877 
(95% CI: 0.821–0.934) for patients with no smoking 

Fig. 3  The most relevant radiomics features with nonzero coefficients were selected using the Least Absolute Shrinkage and Selection Operator (LASSO) 
regression analysis for each of the six regions (GTV, GPTV3, GPTV6, GPTV9, GPTV12, and GPTV15) in the training set. GTV, gross tumor volume; GPTV, gross 
peritumoral tumor volume
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Table 2  Diagnostic performance of radiomics models for ALK mutation status in the training and validation sets 1–3
Models Cohorts AUC (95% CI) Sensitivity (%) 

(95% CI)
Specificity (%) 
(95% CI)

Accuracy (%) 
(95% CI)

PPV (%) (95% CI) NPV (%)
(95% CI)

GTV Training set 0.730
(0.654–0.798)

68.57 (24/35)
(52.17–84.97)

67.77 (82/121)
(59.44–76.10)

67.95 (106/156)
(60.63–75.27)

38.10 (24/63)
(26.10-50.09)

88.17 (82/93)
(81.61–94.74)

Validation 
set 1

0.652
(0.546–0.748)

73.91 (17/23)
(52.17–84.97)

57.14 (40/70)
(45.55–68.74)

61.29 (57/93)
(51.39–71.19)

36.17 (17/47)
(22.43–49.91)

86.96 (40/46)
(77.22–96.69)

Validation 
set 2

0.693
(0.609–0.768)

72.00 (18/25)
(54.40–89.60)

62.28 (71/114)
(53.38–71.18)

64.03 (89/139)
(56.05–72.01)

29.51 (18/61)
(18.06–40.95)

91.03 (71/78)
(84.68–97.37)

Validation 
set 3

0.669
(0.576–0.753)

75.00 (18/24)
(57.68–92.32)

59.14 (55/93)
(49.15–69.13)

62.39 (73/117)
(53.62–71.17)

32.14 (18/56)
(19.91–44.37)

90.16 (55/61)
(82.69–97.64)

GPTV3 Training set 0.872
(0.810–0.920)

82.86 (29/35)
(70.37–95.34)

80.99 (98/121)
(74.00-87.98)

81.41 (127/156)
(75.31–87.52)

55.77 (29/52)
(42.27–69.27)

94.23 (98/104)
(89.75–98.71)

Validation 
set 1

0.779
(0.681–0.858)

78.26 (18/23)
(61.40-95.12)

68.57 (48/70)
(57.70-79.45)

70.97 (66/93)
(61.74–80.19)

45.00 (18/40)
(29.58–60.42)

90.57 (48/53)
(82.70-98.44)

Validation 
set 2

0.803
(0.727-865)

76.00 (19/25)
(59.26–92.74)

75.44 (86/114)
(67.54–83.34)

75.54 (105/139)
(68.39–82.69)

40.43 (19/47)
(26.40-54.46)

93.48 (86/92)
(88.43–98.52)

Validation 
set 3

0.752
(0.664–0.827)

75.00 (18/24)
(57.68–92.32)

68.82 (64/93)
(59.40-78.23)

70.09 (82/117)
(61.79–78.38)

38.30 (18/47)
(24.40–52.20)

91.43 (64/70)
(84.87–97.99)

GPTV6 Training set 0.766
(0.691–0.830)

80.00 (28/35)
(66.75–93.25)

70.25 (85/121)
(62.10-78.39)

72.44 (113/156)
(65.42–79.45)

43.75 (28/64)
(31.60–55.90)

92.39 (85/92)
(86.97–97.81)

Validation 
set 1

0.671
(0.566–0.765)

69.57 (16/23)
(50.76–88.37)

65.71 (46/70)
(54.59–76.83)

66.67 (62/93)
(57.09–76.25)

40.00 (16/40)
(24.82–55.18)

86.79 (46/53)
(77.68–95.91)

Validation 
set 2

0.760
(0.680–0.828)

76.00 (19/25)
(59.26–92.74)

68.42 (78/114)
(59.89–76.95)

69.78 (97/139)
(62.15–77.42)

34.55 (19/55)
(21.98–47.11)

92.86 (78/84)
(87.35–98.36)

Validation 
set 3

0.726
(0.636–0.805)

79.17 (19/24)
(62.92–95.41)

61.29 (57/93)
(51.39–71.19)

64.96 (76/117)
(56.31–73.60)

34.55 (19/55)
(21.98–47.11)

91.94 (57/62)
(85.16–98.71)

GPTV9 Training set 0.809
(0.739–0.868)

74.29 (26/35)
(59.81–98.71)

76.03 (92/121)
(68.43–83.64)

75.64 (118/156)
(68.91–82.38)

47.27 (26/55)
(34.08–60.47)

91.09 (92/101)
(85.53–96.65)

Validation 
set 1

0.713
(0.610–0.802)

82.61 (19/23)
(67.12–98.10)

65.71 (46/70)
(54.59–76.83)

69.89 (65/93)
(60.57–79.22)

44.19 (19/43)
(29.34–59.03)

92.00 (46/50)
(84.48–99.52)

Validation 
set 2

0.725
(0.643–0.797)

72.00 (18/25)
(54.40–89.60)

67.54 (77/114)
(58.95–76.14)

68.35 (95/139)
(60.61–76.08)

32.73 (18/55)
(20.33–45.13)

91.67 (77/84)
(85.76–97.58)

Validation 
set 3

0.680
(0.588–0.763)

70.83 (17/24)
(52.65–89.02)

65.59 (61/93)
(55.94–75.25)

66.67 (78/117)
(58.12–75.21)

34.69 (17/49)
(21.37–48.02)

89.71 (61/68)
(82.48–96.93)

GPTV12 Training set 0.764
(0.690–0.828)

77.14 (27/35)
(63.23–91.05)

68.60 (83/121)
(60.32–76.87)

70.51 (110/156)
(63.36–77.67)

41.54 (27/65)
(29.56–53.52)

91.21 (83/91)
(85.39–97.03)

Validation 
set 1

0.645
(0.539–0.741)

73.91 (17/23)
(55.97–91.86)

67.14 (47/70)
(56.14–78.15)

68.82 (64/93)
(59.40-78.23)

42.50 (17/40)
(27.18–57.82)

88.68 (47/53)
(80.15–97.21)

Validation 
set 2

0.690
(0.606–0.766)

80.00 (20/25)
(64.32–95.68)

57.02 (65/114)
(47.93–66.11)

61.15 (85/139)
(53.05–69.25)

28.99 (20/69)
(18.28–39.69)

92.86 (65/70)
(86.82–98.89)

Validation 
set 3

0.633
(0.539–0.720)

62.50 (15/24)
(43.13–81.87)

66.67 (62/93)
(57.09–76.25)

65.81 (77/117)
(57.22–74.41)

32.61 (15/46)
(19.06–46.16)

87.32 (62/71)
(79.58–95.06)

GPTV15 Training set 0.727
(0.650–0.795)

71.43 (25/35)
(56.46–86.40)

68.60 (83/121)
(60.32–76.87)

69.23 (108/156)
(61.99–76.47)

39.68 (25/63)
(27.60-51.76)

89.25 (83/93)
(82.95–95.54)

Validation 
set 1

0.629
(0.522–0.727)

60.87 (14/23)
(40.92–80.82)

64.29 (45/70)
(53.06–75.51)

63.44 (59/93)
(53.65–73.23)

35.90 (14/39)
(20.84–50.95)

83.33 (45/54)
(73.39–93.27)

Validation 
set 2

0.652
(0.567–0.731)

56.00 (14/25)
(36.54–75.46)

67.54 (77/114)
(58.95–76.14)

65.47 (91/139)
(57.56–73.37)

27.45 (14/51)
(15.20–39.70)

87.50 (77/88)
(80.59–94.41)

Validation 
set 3

0.570
(0.484–0.670)

79.17 (19/24)
(62.92–95.41)

43.01 (40/93)
(32.95–53.07)

50.43 (59/117)
(41.37–59.49)

26.39 (19/72)
(16.21–36.57)

88.89 (40/45)
(79.71–98.07)

Abbreviations: ALK, anaplastic lymphoma kinase; AUC, area under the curve; CI, confidence interval; GTV, gross tumor volume; GPTV, gross peritumoral tumor 
volume; NPV, negative predictive value; PPV, positive predictive value
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Table 3  Diagnostic performance of six different machine learning models for ALK mutation status in the training and validation sets 
1–3
Models Cohorts AUC (95% CI) Sensitivity (%) 

(95% CI)
Specificity (%) 
(95% CI)

Accuracy (%) 
(95% CI)

PPV (%) (95% CI) NPV (%)
(95% CI)

LR Training set 0.872
(0.810–0.920)

82.86 (29/35)
(70.37–95.34)

80.99 (98/121)
(74.00-87.98)

81.41 (127/156)
(75.31–87.52)

55.77 (29/52)
(42.27–69.27)

94.23 (98/104)
(89.75–98.71)

Validation 
set 1

0.779
(0.681–0.858)

78.26 (18/23)
(61.40-95.21)

68.57 (48/70)
(57.70-79.45)

70.97 (66/93)
(61.74–80.19)

45.00 (18/40)
(29.58–60.42)

90.57 (48/53)
(82.70-98.44)

Validation 
set 2

0.803
(0.727-865)

76.00 (19/25)
(59.26–92.74)

75.44 (86/114)
(67.54–83.34)

75.54 (105/139)
(68.39–82.69)

40.43 (19/47)
(26.40-54.46)

93.48 (86/92)
(88.43–98.52)

Validation 
set 3

0.752
(0.664–0.827)

75.00 (18/24)
(57.68–92.32)

68.82 (64/93)
(59.40-78.23)

70.09 (82/117)
(61.79–78.38)

38.30 (18/47)
(24.40–52.20)

91.43 (64/70)
(84.87–97.99)

RF Training set 0.933
(0.881–0.967)

77.14 (27/35)
(63.23–91.05)

93.39 (113/121)
(88.96–97.82)

89.74 (140/156)
(84.98–94.50)

77.14 (27/35)
(63.23–91.05)

93.39 (113/121)
(88.96–97.82)

Validation 
set 1

0.673
(0.568–0.767)

30.44 (7/23)
(11.63–49.24)

94.29 (66/70)
(88.85–99.72)

78.50 (73/93)
(70.14–86.85)

63.64 (7/11)
(35.21–92.06)

80.49 (66/82)
(71.91–89.07)

Validation 
set 2

0.626
(0.540–0.706)

56.00 (14/25)
(36.54–75.46)

64.91 (74/114)
(56.15–73.67)

63.31 (88/139)
(55.30-71.32)

25.93 (14/54)
(14.24–37.61)

87.06 (74/85)
(79.92–94.19)

Validation 
set 3

0.672
(0.580–0.756)

62.50 (15/24)
(43.13–81.87)

73.12 (68/93)
(64.11–82.31)

70.94 (83/117)
(62.71–79.17)

37.50 (15/40)
(22.50–52.50)

88.31 (68/77)
(81.14–95.49)

SVM Training set 0.912
(0.855–0.951)

85.71 (30/35)
(74.12–97.31)

85.12 (103/121)
(78.78–91.46)

85.26 (133/156)
(79.69–90.82)

62.50 (30/48)
(48.80–76.20)

95.37 (103/108)
(48.80–76.20)

Validation 
set 1

0.822
(0.729–0.894)

86.96 (20/23)
(67.87–95.46)

71.43 (50/70)
(60.85–82.01)

75.27 (70/93)
(66.50-84.04)

50.00 (20/40)
(34.50–65.50)

94.34 (50/53)
(84.63–98.06)

Validation 
set 2

0.841
(0.769–0.897)

76.00 (19/25)
(59.26–92.74)

84.21 (96/114)
(77.52–90.90)

82.73 (115/139)
(76.45–89.20)

51.35 (19/37)
(35.25–67.46)

94.12 (96/102)
(89.55–98.68)

Validation 
set 3

0.771
(0.685–0.844)

75.00 (18/24)
(57.68–92.32)

73.12 (68/93)
(64.11–82.31)

73.50 (86/117)
(65.51–81.50)

41.86 (18/43)
(27.11–56.61)

91.89 (68/74)
(85.67–98.11)

KNN Training set 0.806
(0.735–0.864)

80.00 (28/35)
(66.75–93.25)

71.07 (86/121)
(62.99–79.15)

73.08 (114/156)
(66.12–80.04)

44.44 (28/63)
(32.17–56.71)

92.47 (86/93)
(87.11–97.84)

Validation 
set 1

0.752
(0.652–0.836)

86.96 (20/23)
(67.87–95.46)

55.71 (39/70)
(53.65–73.23)

63.44 (59/93)
(55.29–71.32)

39.22 (20/51)
(25.82–52.62)

92.86 (39/42)
(80.99–97.54)

Validation 
set 2

0.675
(0.590–0.752)

76.00 (19/25)
(56.57–88.50)

61.40 (70/114)
(52.47–70.34)

64.03 (89/139)
(56.05–72.01)

30.16 (19/63)
(18.83–41.49)

92.11 (70/76)
(86.04–98.17)

Validation 
set 3

0.728
(0.638–0.806)

75.00 (18/24)
(57.68–92.32)

60.22 (56/93)
(50.27–70.16)

63.25 (74/117)
(54.51–71.98)

32.73 (18/55)
(20.33–45.13)

90.32 (56/62)
(82.96–97.68)

LDA Training set 0.746
(0.670–0.812)

80.00 (28/35)
(66.75–93.25)

76.86 (93/121)
(69.35–84.37)

77.56 (121/156)
(71.02–84.11)

50.00 (28/56)
(34.50–65.50)

93.00 (93/100)
(88.00–98.00)

Validation 
set 1

0.640
(0.534–0.737)

52.17 (12/23)
(32.96–70.76)

77.14 (54/70)
(67.31–86.98)

70.97 (66/93)
(61.74–80.19)

42.86 (12/28)
(26.51–60.93)

83.08 (54/65)
(73.96–92.19)

Validation 
set 2

0.714
(0.632–0.788)

68.00 (17/25)
(48.41–82.79)

71.93 (82/114)
(63.68–80.18)

71.22 (99/139)
(63.70-78.75)

34.69 (17/49)
(21.37–48.02)

91.11 (82/90)
(85.23–96.99)

Validation 
set 3

0.655
(0.562–0.740)

70.83 (17/24)
(50.83–85.09)

62.37 (58/93)
(52.52–72.21)

64.10 (75/117)
(55.41–72.80)

32.69 (17/52)
(19.94–45.44)

89.23 (58/65)
(81.69–96.77)

XGBoost Training set 0.861
(0.797–0.911)

80.00 (28/35)
(66.75–93.25)

75.21 (91/121)
(67.51–82.90)

76.28 (119/156)
(69.61–82.96)

48.28 (28/58)
(35.42–61.14)

92.86 (91/98)
(87.76–97.96)

Validation 
set 1

0.701
(0.597–0.792)

65.22 (15/23)
(44.89–81.19)

68.57 (48/70)
(57.70-79.45)

67.74 (63/93)
(58.24–77.24)

40.54 (15/37)
(24.72–56.36)

85.71 (48/56)
(76.55–94.88)

Validation 
set 2

0.746
(0.665–0.816)

72.00 (18/25)
(52.42–85.72)

71.93 (82/114)
(63.68–80.18)

71.94 (100/139)
(64.47–79.41)

36.00 (18/50)
(22.70–49.30)

92.14 (82/89)
(86.54–97.73)

Validation 
set 3

0.729
(0.639–0.807)

75.00 (18/24)
(57.68–92.32)

64.52 (60/93)
(54.79–74.24)

66.67 (78/117)
(58.12–75.21)

35.29 (18/51)
(22.18–48.41)

90.91 (60/66)
(83.97–97.84)

Abbreviations: ALK, anaplastic lymphoma kinase; AUC, area under the curve; CI, confidence interval; LR, logistic regression; LDA, linear discriminant analysis; 
RF, random forest; SVM, support vector machine; KNN, k-nearest neighbor; XGBoost, eXtreme Gradient Boosting; NPV, negative predictive value; PPV, positive 
predictive value
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history and 0.824 (95% CI: 0.685–0.963) for patients with 
a smoking history. The Delong tests showed no statisti-
cally significant differences among these two subgroup 
analyses (sex subgroup: Z = 0.184, P = 0.854; smoking his-
tory subgroup: Z = 0.695, P = 0.489). The subgroup pre-
diction performance and AUC curves are presented in 
Table S11 and Figure S9.

Individualized prognostic stratification
The PFS data comprised patients who received ALK-
TKI therapy (n = 72) and patients who received 

immunotherapy (n = 63). In the ALK-TKI therapy group, 
the median PFS was estimated to be 42.30 (95% CI: 39.40, 
45.20) months, while in the immunotherapy group it 
was 8.50 (95% CI: 5.89, 11.11) months. In the ALK-TKI 
therapy group, a statistically significant positive correla-
tion was observed between the model prediction score 
and PFS time, with a Spearman’s rho of 0.572 (P < 0.001) 
(Fig.  6A); further analysis revealed that patients in the 
high-risk group had a significantly longer PFS dura-
tion compared to those in the low-risk group (HR: 0.37; 
95% CI: 0.15–0.89; P = 0.026) (Fig.  6C). Conversely, the 

Fig. 4  The performance of the clinical model, GPTV3 radiomics model and nomogram was evaluated in the validation sets. The receiver operating char-
acteristic curves, calibration curves, and decision curve analysis curves of different models in the validation set 1 (A), validation set 2 (B), and validation set 
3 (C). AUC, area under the curve; GPTV, gross peritumoral tumor volume
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immunotherapy group showed a statistically significant 
negative association between the model prediction score 
and PFS time, with a Spearman’s rho of -0.596 (P < 0.001) 
(Fig.  6B); individuals in the low-risk group exhibited a 
longer PFS time compared to those in the high-risk group 
(HR: 2.49; 95% CI: 1.22–5.08; P = 0.012) (Fig. 6D).

Discussion
The identification of ALK mutation status can facilitate 
targeted implementation of appropriate therapies by sur-
geons and oncologists to improve patient outcomes [31, 
32]. However, determining ALK status through patho-
logical analysis typically requires invasive procedures. In 
this study, we quantitatively evaluated the use of intratu-
moral and peritumoral radiomics using preoperative CT 
images in predicting ALK mutation in patients with lung 
adenocarcinoma. The results show that radiomics sig-
natures, including peritumoral features, were stable and 
accurate indicators at a close area surrounding the tumor 
(3–9 mm). A radiomics model based on the SVM classi-
fier outperformed models based on other ML algorithms. 
A combined model, incorporating GPTV3 radiomics fea-
tures and clinical predictors, outperformed the clinical 
model alone and exhibited robust predictive capabilities 
in subgroup analyses. Furthermore, we observed asso-
ciations between the prediction score of the combined 

model and PFS in patients receiving ALK-TKI therapy 
and immunotherapy.

To our knowledge, few studies have revealed the added 
value of peritumoral radiomics in predicting ALK muta-
tional status in lung adenocarcinoma. Previously, Cui et 
al. [33] demonstrated that a prediction model integrating 
intratumoral and peritumoral radiomics features per-
formed slightly better than an intratumoral-only model. 
However, the difference was not statistically significant 
(AUC = 0.68 vs. 0.67, P = 0.738), indicating a limited 
capacity for peritumoral features to enhance predictive 
accuracy. Notably, this previous study only extracted 
radiomics features within 5 mm of the peritumoral range, 
potentially failing to capture information available from 
a broader area. Some studies [24, 26] have reported the 
average distance from lung adenocarcinoma to micro-
metastases as 2.69–3.0  mm, others suggest the periph-
eral extension distance of lung adenocarcinoma and 
lung squamous carcinoma must be increased to 8  mm 
and 6 mm, respectively, to cover 95% of micrometastases 
[23]. Other reports have found that a 3–9 mm area sur-
rounding the tumor can provide biological information 
related to the heterogeneity of lung adenocarcinoma [25], 
while CT radiomics features identified by enlarging the 
tumor border externally by 15 mm were shown to be pre-
dictive for gene mutation in lung adenocarcinoma [19]. 
Thus, to compare the predictive performance of different 

Table 4  Diagnostic performance of prediction models for ALK mutation status in the training and validation sets 1–3
Models Cohorts AUC (95% CI) Sensitivity (%) 

(95% CI)
Specificity (%) 
(95% CI)

Accuracy (%) 
(95% CI)

PPV (%) (95% CI) NPV (%)
(95% CI)

Clinical Training set 0.690
(0.611–0.761)

74.29 (26/35)
(59.81–88.77)

55.37 (67/121)
(46.51–64.23)

59.62 (93/156)
(51.92–67.32)

32.50 (26/80)
(22.24–42.76)

88.16 (67/76)
(80.89–95.42)

Validation 
set 1

0.648
(0.543–0.745)

56.52 (13/23)
(36.81–74.37)

70.00 (49/70)
(59.36–80.74)

66.67 (62/93)
(57.09–76.25)

38.24 (13/34)
(21.90-54.57)

83.05 (49/59)
(73.48–92.62)

Validation 
set 2

0.634
(0.548–0.714)

68.00 (17/25)
(48.41–82.79)

51.75 (59/114)
(42.58–60.93)

54.68 (76/139)
(46.40-62.95)

23.61 (17/72)
(13.80-33.42)

88.06 (59/67)
(80.30-95.82)

Validation 
set 3

0.663
(0.570–748)

79.17 (19/24)
(59.93–90.76)

58.06 (54/93)
(48.04–68.10)

62.39 (73/117)
(52.36–71.17)

32.76 (19/58)
(20.68–44.84)

91.53 (54/59)
(84.42–98.63)

GPTV3 
Radiomics

Training set 0.912
(0.855–0.951)

85.71 (30/35)
(74.12–97.31)

85.12 (103/121)
(78.78–91.46)

85.26 (133/156)
(79.69–90.82)

62.50 (30/48)
(48.80–76.20)

95.37 (103/108)
(48.80–76.20)

Validation 
set 1

0.822
(0.729–0.894)

86.96 (20/23)
(67.87–95.46)

71.43 (50/70)
(60.85–82.01)

75.27 (70/93)
(66.50-84.04)

50.00 (20/40)
(34.50–65.50)

94.34 (50/53)
(84.63–98.06)

Validation 
set 2

0.841
(0.769–0.897)

76.00 (19/25)
(59.26–92.74)

84.21 (96/114)
(77.52–90.90)

82.73 (115/139)
(76.45–89.20)

51.35 (19/37)
(35.25–67.46)

94.12 (96/102)
(89.55–98.68)

Validation 
set 3

0.771
(0.685–0.844)

75.00 (18/24)
(57.68–92.32)

73.12 (68/93)
(64.11–82.31)

73.50 (86/117)
(65.51–81.50)

41.86 (18/43)
(27.11–56.61)

91.89 (68/74)
(85.67–98.11)

Nomogram Training set 0.951
(0.904–0.979)

85.71 (30/35)
(74.21–97.31)

92.56 (112/121)
(88.05–97.56)

91.03 (142/156)
(87.51–95.45)

76.92 (30/39)
(62.50-88.39)

95.73 (112/117)
(92.81–98.49)

Validation 
set 1

0.855
(0.766–0.919)

78.26 (18/23)
(61.40-95.12)

87.14 (61/70)
(77.96–94.74)

84.95 (79/93)
(76.13–91.52)

66.67 (18/27)
(47.82–84.35)

92.42 (61/66)
(86.33–97.77)

Validation 
set 2

0.882
(0.801–0.962)

76.00 (19/25)
(56.57–88.50)

92.98 (106/114)
(87.65–97.46)

89.93 (125/139)
(85.81–92.56)

70.37 (19/27)
(52.82–86.82)

94.64 (106/112)
(89.20-98.07)

Validation 
set 3

0.810
(0.727–0.877)

70.83 (17/24)
(50.83–85.09)

79.57 (74/93)
(71.24–86.46)

77.78 (91/117)
(69.63–85.45)

47.22 (17/36)
(30.45–61.83)

91.36 (74/81)
(84.99–97.13)

Abbreviations: ALK, anaplastic lymphoma kinase; AUC, area under the curve; CI, confidence interval; GPTV, gross peritumoral tumor volume; NPV, negative 
predictive value; PPV, positive predictive value
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peritumoral areas and determine the optimal peritu-
moral range, this study automatically extended outwards 
to 3  mm, 6  mm, 9  mm, 12  mm, and 15  mm from the 
GTV. Unlike previous studies, we simplified the process 
by removing intra-tumor masks and extracted radiomic 
features from combined segmentation, rather than 
extracting GTV and peritumoral tumor volume (PTV) 
separately [25, 34]. While the peritumoral microenviron-
ment plays an important role in assessing tumor aggres-
siveness, the intratumoral region is highly representative 
of tumor proliferation and heterogeneity and should 
not be discarded when delineating ROIs [35]. Previous 
studies have found that the performance of the GPTV 
model is higher than that of a single GTV or PTV model, 
indicating that the area around the tumor can provide 
supplementary information to the intratumor area [20]. 
The GPTV model constructed in this study can there-
fore not only provide intra- and peritumoral biological 
information, but also help simplify clinical application. It 
is worth mentioning that our study used three indepen-
dent external validation sets to verify the generalization 
ability of the model. As a result, our model may be more 

effective in identifying the differences in radiomics fea-
tures between lung adenocarcinoma patients of different 
ALK mutation status.

Our results showed that the GPTV model, including 
proximal regions around the tumor, has a higher predic-
tive value than the GTV model. This confirms that the 
inclusion of intratumoral components and incremental 
peritumoral information can significantly improve pre-
dictive performance. By comparing the diagnostic per-
formance of different GPTV models, the optimal size was 
determined; the GPTV3 model showed the highest pre-
dictive performance, suggesting that efficiency decreases 
with increased distance from the tumor. This may be 
related to the increase in PTV, with the inclusion of 
structures adjacent to the nodule (such as blood vessels, 
fascicular opacities, and bronchi) [36]. We speculate that 
the presence of such structures reduces the heterogene-
ity of the radiomic signature, producing greater similarity 
between ALK (+) and ALK (-) group signatures, reducing 
the accuracy of differential diagnosis. This would explain 
the better performance of the GPTV3 compared to other 
models.

Fig. 5  Two instances of using the nomogram to predict ALK status in lung adenocarcinoma patients. (A) Case 1: A 63-year-old man with a diagnosis of 
adenocarcinoma, clinical IV stage, manifested as a well-circumscribed solid nodule in the left upper lobe with pleural indentation sign. Immunohisto-
chemical (IHC) staining (×200) suggests the presence of granular cytoplasmic staining, confirming ALK (+). Vertical lines of each variable were drawn in 
the nomogram, and to obtain the GPTV3-Rad-score was 0.36. After summing all variables’ points the total was 78.74, and the graph revealed that the risk 
of ALK (+) was approximately 70%. (B) Case 2: A 52-year-old man with a diagnosis of adenocarcinoma, clinical I stage, manifesting as an ill-defined mixed-
density nodule in the right upper lobe. IHC staining (×200) suggests no obvious stained cells, confirming ALK (-). Vertical lines of each variable were drawn 
in the nomogram. The GPTV3-Rad-score was 0.25. After summing all variables’ points the total was 25.00, and the graph revealed that the risk of ALK (+) 
was approximately 7%. ALK, anaplastic lymphoma kinase; GPTV, gross peritumoral tumor volume
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Consistent with several previous studies [13, 15, 
33], the most predictive radiomics features ultimately 
selected in our study included a large number of wave-
let transform-based features. This may be attributed to 
the ability of wavelet transform to decompose image data 
into different frequency components, reflecting the spa-
tial heterogeneity of tumors at the cellular level, as well 
as conveying angiogenesis and genetic information [37]. 
Among these wavelet features, the “ClusterTendency” 
feature has the highest correlation coefficient. This value 

is derived from the skewness of the gray-level co-occur-
rence matrix. The larger the value, the more uneven the 
image texture distribution and the more irregular the 
grayscale changes; this indicates highly invasive tumor 
lesions. Such quantitative analysis of radiomics fea-
tures can serve as a non-invasive method to reflect the 
biological behavior of tumors and provide a basis for 
precise personalized treatment of patients with lung 
adenocarcinoma.

Fig. 6  Individualized prognostic stratification of the prediction score of the combined model in ALK (+) patients undergoing ALK-TKI therapy and ALK (-) 
patients receiving immunotherapy. The correlation between the prediction score and the progression-free survival time in the ALK-TKI therapy group (A) 
and immunotherapy group (B). The progression-free survival stratification of the model prediction score in the ALK-TKI therapy group (C) and immuno-
therapy group (D). ALK, anaplastic lymphoma kinase; HR, hazard ratio; TKI, tyrosine kinase inhibitor
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Multivariable LR analysis identified clinical TNM 
stage and pleural indentation as independent predictors 
of ALK (+), measures then used to establish the clinical 
model in this study. The signaling pathway of the ALK 
fusion protein promotes the survival and migration of 
tumor cells [13], meaning ALK (+) lung cancer may be 
more prone to lymph node and distant metastasis and 
present at a higher clinical stage. Pleural indentation is 
an important indicator of local progression of lung can-
cer. Since ALK-mutated tumors have higher invasiveness 
and spread capabilities, this rapid expansion often leads 
to direct invasion of the pleura, causing inward pleu-
ral indentation [38]. We developed a combined model 
including clinical TNM stage and pleural indentation 
with the GPTV3 radiomics signature to predict ALK 
mutation status in patients with lung adenocarcinoma. 
Our constructed model showed promising results with 
AUCs of 0.855, 0.882, and 0.810 in the validation sets 1 
to 3, respectively, significantly outperforming the clini-
cal model. The combined model also exhibited robust 
predictive performance in subgroup analyses for sex 
and smoking status. We further visualized the combined 
model as an easy-to-use nomogram, which can assist 
clinicians in calculating the prediction score for ALK 
mutation status. Notably, the model not only provides 
a convenient, non-invasive tool for clinical use, but also 
effectively stratifies PFS outcomes in patients receiving 
ALK-TKI therapy and immunotherapy. These results 
indicated that our constructed model helps to accurately 
and quickly quantify the ALK mutation status, which is 
critical in identifying of lung adenocarcinoma patients 
suitable for ALK-TKI therapy, and also provides potential 
possibilities for guiding immunotherapy. The use of this 
tool can help clinicians develop and optimize personal-
ized treatment strategies and enhance patient manage-
ment in clinical practice.

Our study still has some limitations. First, this is a ret-
rospective study and may have varying degrees of selec-
tion bias. Future studies should perform prospective 
trials to confirm these conclusions and extend their rele-
vance to broader populations. Second, only non-contrast 
CT was used in this study to construct the prediction 
model. Further exploration of using contrast CT for 
ALK mutation prediction will be considered, as this may 
provide a more comprehensive tumor assessment and 
enhance predictive performance. Third, the sample was 
limited demographically and ethnically. We will expand 
the validation cohort to include a more diverse and 
multi-ethnic population to assess the generalizability of 
the model. Fourth, although radiomics features extracted 
through manual segmentation are more accurate, this 
process is time and labor intensive. As automated image 
segmentation technology advances, future research 
should focus on integrating these tools into radiomics 

analysis to reduce time and labor while preserving or 
enhancing feature extraction accuracy. Finally, this study 
solely divided TNM into stages I-III and IV, which may 
overlook the differences between patients in stages I, II, 
and III. Therefore, we plan to conduct more detailed vali-
dation of the model’s applicability in patients with differ-
ent TNM stages in future research.

Conclusions
In summary, GPTV3 radiomics signatures based on an 
SVM classifier can provide non-invasive biomarkers for 
predicting ALK mutation status in patients with lung 
adenocarcinoma. Additionally, a combined model incor-
porating GPTV3-Rad-score and clinical predictors can 
further improve predictive efficiency and stratify PFS 
outcomes in patients receiving ALK-TKI therapy and 
immunotherapy. This may serve as an important tool for 
the formulation of personalized treatment strategies for 
lung adenocarcinoma patients. We suggest that future 
research should investigate the biological mechanisms 
by which the peritumoral microenvironment influences 
ALK mutation status, as this could reveal new thera-
peutic targets and improve treatment precision for lung 
adenocarcinoma.
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