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Abstract 

Purpose This study aimed to select robust features against lung motion in a phantom study and use them as input 
to feature selection algorithms and machine learning classifiers in a clinical study to predict the lymphovascular inva‑
sion (LVI) of non‑small cell lung cancer (NSCLC). The results of robust features were also compared with conventional 
techniques without considering the robustness of radiomic features.

Methods An in‑house developed lung phantom was developed with two 22mm lesion sizes based on a clinical 
study. A specific motor was built to simulate motion in two orthogonal directions. Lesions of both clinical and phan‑
tom studies were segmented using a Fuzzy C‑means‑based segmentation algorithm. After inducing motion 
and extracting 105 radiomic features in 4 feature sets, including shape, first‑, second‑, and higher‑order statistics 
features from each region of interest (ROI) of the phantom image, statistical analyses were performed to select robust 
features against motion. Subsequently, these robust features and a total of 105 radiomic features were extracted 
from 126 clinical data. Various feature selection (FS) and multiple machine learning (ML) classifiers were implemented 
to predict the LVI of NSCLC, followed by comparing the results of predicting LVI using robust features with common 
conventional techniques not considering the robustness of radiomic features.

Results Our results demonstrated that selecting robust features as input to FS algorithms and ML classifiers surges 
the sensitivity, which has a gentle negative effect on the accuracy and the area under the curve (AUC) of predic‑
tions compared with commonly used methods in 12 of 15 outcomes. The top performance of the LVI prediction 
was achieved by the NB classifier and RFE FS without considering the robustness of radiomic features with 95% 
area under the curve of AUC, 67% accuracy, and 100% sensitivity. Moreover, the top performance of the LVI predic‑
tion using robust features belonged to the NB classifier and Boruta feature selection with 92% AUC, 86% accuracy, 
and 100% sensitivity.

Conclusion Robustness over various influential factors is critical and should be considered in a radiomic study. 
Selecting robust features is a solution to overcome the low reproducibility of radiomic features. Although setting 
robust features against motion in a phantom study has a minor negative impact on the accuracy and AUC of LVI pre‑
diction, it boosts the sensitivity of prediction to a large extent.
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Introduction
The occurrence of lung cancer and related deaths have 
risen in the past decade, owing in part to pollution, 
smoking rates, and advances in diagnosis [1]. In 2018, 
more than 1.76 million fatalities and 2 million new 
cases were predicted by the Global Cancer Observatory 
Organization (GLOBOCAN), considerably higher than 
the 2012 statistics (1.6 million deaths and 1.8 million new 
cases) [2]. Lung cancer is the second most common can-
cer in both sexes (after breast cancer in women and pros-
tate cancer in men) and it has the highest mortality rate 
[3]. Recently, there have been significant breakthroughs 
in the treatment of non-small cell lung cancer (NSCLC), 
including immunotherapy, chemotherapy, and molecu-
lar-targeted therapy [4]. However, NSCLC cure and sur-
vival rates are still poor, especially in metastatic illnesses 
[4], due to a number of limitations, including late-stage 
diagnosis, treatment resistance, or recurrence.

In resected non-small cell lung carcinoma (NSCLC), 
lymphovascular invasion (LVI) is regarded as a high-risk 
pathologic characteristic [5]. The ability to divide stage I 
patients into risk categories may allow adjuvant therapy 
recommendations to be refined [6]. Towards that end, we 
present a technique that utilizes advanced image analy-
sis of positron emission tomography (PET)/computed 
tomography (CT) imaging. PET is a molecular medical 
imaging modality widely used to detect early signs of 
cancer, brain disorders, and heart disease. Combining 
PET with CT in a concurrent acquisition produces 3D 
images that are superior to PET and CT images acquired 
separately [7].

Radiomics is an emerging quantitative technique 
designed to extract analyzable data from multimodal-
ity medical imaging modalities [8, 9]. The application of 
radiomics in medicine has been widely reported along 
with machine/deep learning for predicting [10], diag-
nosing [11] abnormalities, and predicting response to 
therapy [12]. Conversely, NSCLC presents a complex 
imaging scenario due to the lungs’ inherent motion and 
the tumor’s proximity to moving structures [13]. The 
high variability in tumor size, location, and the sur-
rounding lung parenchyma further complicates image 
analysis and feature extraction. These factors under-
score the necessity for precise and robust radiomic 
analysis capable of accommodating or correcting for 
motion-induced variability [14]. Motion artifacts intro-
duce blurring and distortions in imaging, thus affect-
ing the accuracy of quantitative radiomic features. For 

instance, texture features, crucial for discriminating 
between benign and malignant lesions or for predicting 
gene expression profiles, can be altered by the blurring 
effect of motion, leading to potential misclassification 
or incorrect prognostic assessment [13].

During the recent decade, advances in medical imag-
ing technology has been immense, leading to signifi-
cant improvement in image quality and quantitative 
accuracy [15]. However, medical images are still vul-
nerable to various factors that may affect quantitative 
imaging [16]. This might impact machine learning and 
deep learning radiomic studies [17, 18]. Moreover, the 
repeatability and reproducibility of radiomic features 
have always been under scrutiny [19]. Previous stud-
ies indicated that several factors may impact medical 
images qualitatively and quantitatively and that vari-
ous factors may affect radiomic features, such as image 
reconstruction [13], pre-processing [19], respiratory 
motion [13], image acquisition [14], segmentation tech-
niques [17], and test-retest [13]. Among these factors, 
respiratory motion and the use of multi-centric images 
may especially impact the radiomic features to a large 
extent [13]. Motion artifacts exacerbate this challenge, 
as features that are not robust against such artifacts 
may show considerable variability, undermining their 
predictive power and clinical utility. Therefore, the 
need for features that maintain their integrity and pre-
dictive capability, despite the presence of motion arti-
facts, is paramount [20].

Previous research in quantitative analysis has offered 
possible solutions to tackle this problem, including 
selecting robust features against effective factors [21] 
and ComBat harmonization [22]. Although select-
ing robust features against influential factors has been 
widely examined in previous clinical [23] and phantom 
[24] studies, the application of robust features in the 
clinic has been overlooked, and in the majority of pre-
vious studies, features were selected by feature selec-
tion algorithms [25]. In the realm of machine learning, 
feature selection algorithms are essential for enhanc-
ing model efficiency and interpretability by selecting 
the most influential features from large datasets. These 
algorithms streamline model training, mitigate over-
fitting, and facilitate faster computational processes, 
which is particularly advantageous in fields burdened 
with high-dimensional data, such as multimodal-
ity medical imaging. However, their application is not 
without challenges; they may overlook the interaction 
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among features and the robustness across varied data-
sets, which can lead to models that perform well under 
specific conditions but falter more broadly. As such, 
while feature selection can significantly refine the pre-
dictive power and clarity of machine learning models, it 
is crucial to validate the chosen features’ performance 
across diverse scenarios to ensure their reliability and 
applicability.

Among radiomics machine learning studies, feature 
selection algorithms like Boruta, LASSO, Recursive Fea-
ture Elimination (RFE), Minimum-Redundancy-Maxi-
mum-Relevance (MRMR), and even selecting features 
using classifiers, such as Random Forest, are employed 
to identify the most relevant features from a high-dimen-
sional dataset [26], usually focusing on those with strong 
predictive power, often termed as "bold" features. These 
algorithms prioritize features that provide the maximum 
discriminatory or predictive power for the outcome of 
interest, such as disease classification [27]. However, 
they may overlook robust features that remain stable 
across different imaging protocols or conditions, as the 
algorithms are generally optimized for maximum perfor-
mance on a specific dataset rather than generalizability 
[27].

Given these challenges, our study aims to investigate 
the impact of motion artifacts on the predictive accuracy 
of radiomic features in NSCLC, with a particular focus 
on identifying and evaluating the robustness of features 
against motion, followed by another round of feature 
selection to predict LVI in NSCLC. By doing so, we aim 
to enhance the reliability of radiomics as a tool for the 

early detection, characterization, and treatment planning 
of NSCLC, ultimately contributing to improved patient 
outcomes.

Materials and methods
The framework implemented in the current study is 
depicted in Figure 1.

Phantom study
A GE Discovery 690 PET/CT scanner (General Electric 
Healthcare, USA) was used for the phantom study. In this 
investigation, an in-house thoracic phantom was con-
structed with two spherical inserts with inner diameters 
of 22 mm (left and right), 9.6 L capacity, and 180 mm 
interior length. To eliminate partial volume effect (PVE) 
in a realistic phantom investigation, all lesions did not 
include walls.

We built a motor that was put beneath the phantom 
to induce breathing movements. This motor caused lung 
motion (in two orthogonal directions: lateral and poste-
rior-anterior) at a rate of 12 breaths per minute, which 
is the average respiratory rate of a healthy adult at rest 
[28]. The thoraco-abdominal lesion moves between 6 and 
23 mm in each direction due to respiratory motion [29], 
closely mimicking clinical scenarios for a normal subject. 
We induced 12 mm in one direction and 23 mm in the 
other, 12 times in one minute. The phantom and lesions 
were filled with a combination of 18F-FDG and water 
with activity concentrations of 5.3 kBq/ml and 2.65 KBq/
ml, respectively, corresponding to 370 MBq and 185 MBq 
injected to a 75 kg patient, respectively (Figure  2). The 

Fig 1 The framework implemented in this study starts with the induction of motion, clinical study, proceeds through image processing and feature 
extraction, and concludes with data analysis.
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outcome was a 256 × 256 image grid, where each pixel 
covered a 3.906  mm2 area. To refine the image, a Gauss-
ian post-processing filter with 4.5 mm full width at half 
maximum (FWHM) was utilized. To reduce the impact 
of test-retest on our results, the scanning was repeated 
three times, with and without inducing motion and aver-
aged over 3 repetitive times.

Clinical studies
The Institutional Review Board (IRB) of Tehran Univer-
sity of Medical Sciences granted approval for this retro-
spective study, under approval ID IR.TUMS.MEDICINE.
REC.1397.733. Given the study’s retrospective design, the 
IRB waived the need for written informed consent from 
patients. Data of 126 patients (72 males and 54 females; 
mean age: 48 ± 11) were collected between March 2019 
and January 2022. Each patient included in the study was 
diagnosed with NSCLC through biopsy and had either 
positive or negative LVI, resulting in an imbalanced data-
set with 50 LVI positive cases and 76 LVI negative cases. 
Before undergoing 18F-FDG-PET imaging, patients were 
required to fast for a minimum of six hours. Therefore, 
prior to the scan, blood glucose levels were measured 
using a standard glucometer, a common medical device 
that provides quick and accurate glucose readings. 
Patients with glucose levels exceeding 200 mg/dl were 
rescheduled, as optimal imaging conditions necessitate 
glucose levels within the normal range to avoid compe-
tition between glucose and  the18F-FDG. The PET scans 
were taken between 50 and 70 minutes post-injection. 
Imaging was performed on a GE Discovery 690 PET/
CT scanner, similar to the phantom study. For anatomi-
cal mapping and attenuation correction, a low-dose CT 
scan was performed. PET data was reconstructed using 
the ordered subset-expectation maximization (OSEM) 
iterative technique, which involved three iterations 
and 18 subsets. This resulted in an image grid of 256 × 
256, with each pixel spanning an area of 3.906  mm2. A 

Gaussian post-processing filter, having a FWHM of 4.5 
mm, was applied. Consistency in image generation was 
maintained by using the same reconstruction method, 
subsets, and iterations to minimize variations that could 
affect the reliability of the imaging data. To minimize 
pre- and post-processing variances, all clinical and phan-
tom images were acquired using the same reconstruction 
technique and the same number of subsets and iterations 
(Table 1).

PET image segmentation
In clinical and phantom image analysis, MATLAB 2022a 
was utilized to implement a Fuzzy C-means (FCM)-based 
segmentation algorithm to delineate lesions and tumors 
[30]. FCM is a clustering algorithm that assigns each data 
point to one or more clusters based on its degree of mem-
bership. It generalizes the k-means algorithm by allowing 
soft assignment rather than hard assignment of points to 
clusters [31]. In image segmentation, it is commonly used 
to partition an image into regions with similar character-
istics based on pixel values. All segmentation procedures 
and results were controlled and validated by two PET 
medical physicists with 15 and 10 years of experience.

Feature extraction
One hundred and five 3D radiomic features were 
extracted from each region of interest (ROI) in clini-
cal and phantom studies using the “Image Biomarker 
Standardization Initiative” (IBSI) [32, 33] compliant 
Pyradiomics package [34] in Python. These features 
were categorized into four feature sets, including shape 
(n=13), first-order (n=18), second-order and higher-
order texture (Gray Level Dependence Matrix (GLDM) 
(n=14), (Gray Level Co-occurrence Matrix (GLCM) 
(n=23), Gray Level Size Zone Matrix (GLSZM) (n=16), 
Gray Level Run Length Matrix (GLRLM) (n=16), and 
Neighboring Gray Tone Difference Matrix (NGTDM) 
(n=5).

Fig 2. In‑house developed thoracic phantom and motor 
for simulating lung motion (13).

Table 1 Study patients’ clinical and pathological features.

Characteristics

Gender
 Male 72

 Female 54

Height (cm) (mean±SD) 161±21

Weight (kg) (mean±SD) 69±13

Histology
 LVI positive 50

 LVI negative 76
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Feature selection
Robust feature section
Robust features were selected using the phantom study. 
After inducing motion and starting data acquisition, 
radiomic features were extracted from the static and 
simulated lung motion images. Next, the intraclass cor-
relation of coefficient (ICC) was calculated for each radi-
omic feature, between the motion and static situations. 
Radiomic features were categorized based on their ICC 
into four groups: 1) 90%>ICC>100%, 2) 75%<ICC<90%, 
3) 50%>ICC>75%, and 4) ICC<50%. Radiomic features 
with more than 75% ICC were selected as robust features. 
All calculations were implanted in R version 4.0.4 (The R 
Foundation, Vienna, Austria) using the ‘irr’ library (ver-
sion 0.84.1) [35–37].

Feature selection algorithms
Various feature selection algorithms were implemented 
in the current study, including Boruta, Recursive Feature 
Elimination (RFE), and Minimum redundancy maxi-
mum relevance (MRMR). The dataset was divided into 
70%/30% training/validation sets, with Z-score normali-
zation applied to the training set, and with mean and 
standard deviation applied to the validation set, derived 
from the training set. The MRMR feature selection tech-
nique was used to pick a total of 10 features. We didn’t 
employ a predefined number of selected features in REF 
and Boruta feature selection; instead, the technique pro-
vided the number. We applied a quantitative threshold 
to ensure that each selected feature had high relevance 
to our outcome of interest while sharing minimal infor-
mation with other selected features, optimizing both 
predictive power and data efficiency. This methodologi-
cal choice was crucial for enhancing the robustness and 
interpretability of our predictive model.

MRMR: This method selects features based on two cri-
teria. The "Maximum Relevance" part aims to pick fea-
tures that are highly correlated with the target variable, 
ensuring that the chosen features are meaningful. The 
"Minimum Redundancy" aspect aims to make sure that 
the selected features are as different from each other as 
possible to avoid overfitting and multicollinearity. The 
"Minimum Redundancy" part of MRMR could be par-
ticularly useful for radiomics, where features can often 
be highly correlated due to the nature of medical imag-
ing. By ensuring that redundant features are eliminated, 
MRMR increases the robustness of the selected features 
[38].

REF: In this method, a model is trained on the initial 
set of features, and the least important features (often 
judged by their coefficients or feature importance) are 
eliminated. The model is then retrained with the remain-
ing features, and the process repeats until a predefined 

stopping condition is met or the model performance no 
longer improves. REF is iterative, which means it takes 
into account how the removal of one feature affects the 
importance of others. This makes the method adaptive 
and potentially more robust, useful for radiomics where 
the interactions between features can be complex [39].

Boruta: This is a randomized feature selection method. 
It creates shadow features (random permutations of the 
original features) and trains a model like a Random For-
est. Features are then ranked by how much better they 
are at predicting the target variable compared to the 
shadow features. Those that don’t perform better than 
random permutations are progressively eliminated. 
Because it uses a random forest (an ensemble method 
known for its robustness to overfitting), Boruta tends 
to be quite robust. By comparing each feature’s impor-
tance with randomized features, Boruta ensures that only 
genuinely important features for predictive modeling are 
retained [40].

These methods automatically decide the optimal set of 
features based on the data and the problem at hand. Fea-
ture selection methods were applied to the radiomic fea-
tures twice, the first time on the robust features (selected 
from the phantom study) and all 105 radiomic features 
extracted from each ROI of the clinical data set.

Machine learning classifiers
Multiple machine learning classifiers were utilized for 
the prediction of LVI. We employed five machine learn-
ing algorithms: Logistic Regression (LR), XGBoost 
(XGB), Multilayer Perceptron (MLP), Naive Bayes (NB), 
and Random Forest (RF). All feature selection pro-
cesses, and machine learning classification pipelines 
were implemented using an in-house developed tool 
based on the scikit-learn library in Python 3.9.12. We 
employed a 5-fold nested cross-validation approach for 
hyperparameter tuning of each model. In this method-
ology, the outer loop was responsible for splitting the 
dataset into training and test sets, while the inner loop 
performed model selection through hyperparameter tun-
ing on the training set. The model selected by the inner 
loop was then evaluated on the test set provided by the 
outer loop. This process was repeated five times, ensur-
ing that each fold was used exactly once as the test set. 
Each model pipeline consisted of a feature selector, and 
a machine learning classifier. To assess the stability and 
generalizability of each model, we applied 1000 bootstrap 
resampling in conjunction with the nested cross-valida-
tion. The models were evaluated based on various perfor-
mance metrics, including Accuracy (ACC), Area Under 
the Curve (AUC), Sensitivity (SEN), Specificity (SPE), 
Negative Predictive Value (NPV), and Positive Predictive 
Value (PPV). Evaluations were conducted both with and 
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without consideration of robustness of radiomic features 
to provide a comprehensive understanding of model 
performance.

Statistical analysis
A Wilcoxon Rank-Sum test for p-value [41] was also 
implemented in R version 4.0.4 to calculate the p-value 
between the results of each machine learning classifier, 
feature selection algorithms, with and without consid-
ering the robustness of radiomic features. This statisti-
cal analysis was implemented to quantify the difference 
between the results, including ACC, AUC, and sensitivity 
of LVI prediction, with a 95% confidence interval. Differ-
ences with more than 95% confidence were categorized 
as significant.

Results
The results section of the current study consists of the 
ICC of 105 radiomic features extracted from phantom 
images, comparing the output of multiple machine learn-
ing classifiers and various feature selection algorithms 

belonging to all 105 radiomic features and robust features 
against the motion extracted from the clinical data set, 
including AUC, ACC, and sensitivity (Table 2). Figure 3 
presents the heatmap of the AUC, ACC, and sensitivity 
of the LVI prediction. The final results are the outcome of 
the Wilcoxon Rank-Sum test for the p-value between the 
ACC, AUC, and sensitivity of the LVI prediction.

Table  2 indicates the upper bound (Ubound), lower 
bound (Lbound) with a 95% confidence interval, and 
the results of the ICC test to categorize Radiomic fea-
tures based on their ICC against the lung motion 
into four groups, comprising 1) 90%≤ICC<100%, 2) 
75%≤ICC<90%, 3) 50%≤ICC<75%, and 4) ICC<50%. 
Radiomic features with more than 75% ICC were selected 
as robust features.

The AUC bar charts shown in Figure 3A compare the 
AUC of the LVI prediction using different machine learn-
ing classifiers and feature selection algorithms with and 
without considering the robustness of radiomic features. 
Figure 3A demonstrates that, although the use of robust 
features by feature selection algorithms predominantly 

Table 2 ICC results, upper bound (Ubound), and lower bound (Lbound) with a 95% confidence interval belonging to the 24 robust 
features in the current study. Radiomic features were categorized based on their ICC into four groups, comprising 1) 90%≤ICC<100%, 
2) 75%≤ICC<90%, 3) 50%≤ICC<75%, and 4) ICC<50%. Radiomic features with more than 75% ICC were selected as robust features and 
shown in this Table.

Name ICC Lbound Ubound ICC group

original_glrlm_RunLengthNonUniformity 0.983 0.844 0.998 1

original_shape_SurfaceVolumeRatio 0.982 0.866 0.998 1

original_shape_MeshVolume 0.977 0.835 0.997 1

original_shape_VoxelVolume 0.977 0.834 0.997 1

original_ngtdm_Coarseness 0.955 0.432 0.995 1

original_gldm_SmallDependenceLowGrayLevelEmphasis 0.950 0.569 0.994 1

original_shape_SurfaceArea 0.947 0.209 0.994 1

original_gldm_DependenceNonUniformity 0.945 0.360 0.994 1

original_shape_LeastAxisLength 0.941 0.571 0.993 1

original_firstorder_10Percentile 0.928 0.459 0.992 1

original_shape_Maximum2DDiameterSlice 0.928 0.336 0.992 1

original_glcm_MCC 0.921 0.425 0.991 1

original_gldm_DependenceEntropy 0.899 ‑0.135 0.990 2

original_firstorder_Kurtosis 0.896 0.074 0.989 2

original_shape_MinorAxisLength 0.891 0.218 0.988 2

original_firstorder_Minimum 0.879 0.067 0.987 2

original_glcm_Correlation 0.872 0.044 0.986 2

original_glszm_GrayLevelNonUniformity 0.855 ‑0.001 0.984 2

original_glszm_SizeZoneNonUniformity 0.830 ‑0.292 0.982 2

original_gldm_LargeDependenceHighGrayLevelEmphasis 0.828 ‑0.289 0.982 2

original_glszm_ZoneEntropy 0.820 ‑0.214 0.980 2

original_firstorder_Skewness 0.814 ‑0.208 0.979 2

original_firstorder_Median 0.778 ‑0.112 0.976 2

original_glcm_Idmn 0.759 ‑0.317 0.973 2
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decreases the AUC values for predicting LVI with dif-
ferent machine learning classifiers, the extent of this 
decrease is not significant enough to warrant concern. 
Essentially, while there is a negative impact observed 
in the majority of the results (12 out of 15), the actual 
reduction in predictive accuracy (measured by AUC) 
is minor. This suggests that the drop in performance, 
though noticeable, does not critically impair the effec-
tiveness of the classifiers when using robust features 
for feature selection. Thus, the trade-off between using 
robust features for improved generalizability and a slight 
decrease in predictive power might still be acceptable 
in practical applications, and in 3 outcomes, such as LR 
classifiers with MRMR feature selection (87% to 92%), 
NB classifiers with Boruta feature selection (77% to 92%), 
RF classifiers with MRMR feature selection (63% to 67%), 
the AUC of LVI prediction belonging to robust features 
was higher than the common methods without consider-
ing the robustness of radiomic features. The highest neg-
ative impact of selecting robust features on the AUC of 
prediction was achieved by the MLP classifier where the 
AUC decreased from 94% to 66% and from 83% to 57% 
for MRMR and Boruta feature selection, respectively.

Figure  3B presents the ACC bar charts of LVI pre-
diction using various machine learning classifiers and 

feature selection algorithms with and without consider-
ing the robustness of radiomic features. Similarly with 
the AUC, using robust features adversely affects the ACC 
for the most parts (12 of 15 results). The ACC of the LR 
classifier with MRMR feature selection and NB classifier 
with RFE feature selection remained constant at 87% and 
64%, respectively. Moreover, the ACC of the NB classifier 
with MRMR feature selection raised gently from 22% to 
27%. Likewise, the largest adverse influence of selecting 
robust features on the ACC of prediction, was achieved 
by the MLP classifier, where the AUC decreased from 
87% to 33% and from 84% to 59% for the Boruta and 
MRMR feature selection, respectively.

Figure  3C illustrates the sensitivity bar charts of LVI 
prediction using various machine learning classifiers 
and feature selection algorithms with and without con-
sidering the robustness of radiomic features. The great-
est impact of using robust features as input to feature 
selection methods is in the sensitivity of prediction (Fig-
ure 3C). The sensitivity of LVI prediction after selecting 
robust features surged in the majority of outcomes (13 
of 15). According to Figure  2C, using robust features 
boosted the sensitivity of prediction from zero to more 
than 83% in the LR classifier with MRMR feature selec-
tion. In the MLP classifier with MRMR feature selection 

Fig 3 AUC (A), ACC (B), Sensitivity (C), Specificity (D) bar charts comparing the results of LVI prediction using multiple machine learning classifiers 
and various feature selection algorithms, with (RobFea) and without (OriFea) considering the robustness of radiomic features.
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(0 to 42%), the RF classifier with three feature selections 
implemented in this study (Boruta: 0 to 47%, MRMR: 0 to 
73%, RFE: 0 to 38%), and the XGB classifier with MRMR 
(0 to 37%) and RFE (0 to 37%) feature selection, the sen-
sitivity improved to a large extent. Moreover, although 
there are seven zeros in the sensitivity results of the origi-
nal features, none of the predictions using robust features 
is equal to zero. The sensitivity of the NB classifier with 
Boruta feature selection raised from 69% to 100% as well.

As depicted in Figure  3D, the bar charts display the 
specificity of LVI prediction across different machine 
learning classifiers and feature selection algorithms, both 
with and without the incorporation of robust radiomic 
features. Notably, Figure  3D reveals that the specificity 
metrics experienced a decline across all models when 
robust features were utilized.

Out of 24 robust features, the following features 
were selected by between one and three feature selec-
tion algorithms conducted in the current study. Robust 
features are arranged by prevalence of selection: 
original_glrlm_RunLengthNonUniformity (selected 
by MRMR, RFE, Boruta), original_shape_MeshVol-
ume (selected by MRMR, RFE, Boruta), original_
ngtdm_Coarseness (selected by MRMR, RFE, Boruta), 

original_shape_SurfaceArea (selected by MRMR, RFE, 
Boruta), original_firstorder_10Percentile (selected by 
MRMR, RFE), original_gldm_DependenceEntropy 
(selected by MRMR, RFE), original_glcm_Correlation 
(selected by MRMR, Boruta), original_glszm_Gray-
LevelNonUniformity (selected by RFE, Boruta), origi-
nal_firstorder_Skewness (selected by RFE, Boruta), and 
original_glcm_Idmn (selected by MRMR).

Contrarily, only 3 robust features were selected by the 
feature selection when all features were inputted, includ-
ing original_ngtdm_Coarseness (selected by MRMR, 
RFE, Boruta), original_glszm_GrayLevelNonUniform-
ity (selected by RFE, Boruta), and original_glcm_Idmn 
(selected by MRMR). The remaining selected features 
were not among the robust features, which indicates the 
inability of feature selection models in terms of taking 
into account of the robustness of radiomic features and 
raises concerns regarding the reproducibility of radiom-
ics analysis.

Figure 4 depicts the heatmap of AUC (A), ACC (B), and 
sensitivity (C) of the LVI prediction. The highest AUC 
(95%) is associated with the NB classifier and RFE fea-
ture selection, followed by the MLP classifier and MRMR 
feature selection with 94% AUC without considering the 

Fig 4 The AUC (A), ACC (B), sensitivity (C), and Specificity (D) heatmaps of LVI prediction using multiple machine learning classifiers and various 
feature selection algorithms, with (RobFea) and without (OriFea) considering the robustness of radiomic features.
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robustness of radiomic features. After using robust fea-
tures, the LR classifier with MRMR feature selection and 
NB classifier with Boruta feature selection demonstrated 
the highest AUC (92%). The highest ACC (89%) belonged 
to the LR classifier with RFE feature selection and XGB 
with Boruta feature selection, without considering the 
robustness of radiomic features. After using robust fea-
tures, the NB classifier and Boruta feature selection 
resulted in the highest ACC (86%). In terms of sensitiv-
ity, the NB classifier showed that considering results 
after selecting robust features by feature selection meth-
ods resulted in 100%. However, RFE and MRMR feature 
selection with the NB classifier resulted in 100% sensi-
tivity without considering the robustness of radiomic 
features.

Table  3 represents the mean standard deviation with 
a 95% confidence interval of the results of multiple 

machine learning classifiers and various feature selection 
algorithms, with and without considering the robustness 
of radiomic features. Table 4 shows the confidence inter-
val of these results as well.

According to Figure 5A 3% (14 of 465) of the Wilcoxon 
Rank-Sum test for p-value results for the AUC of the LVI 
prediction were non-significant, including original fea-
tures of Boruta feature selection with RF classifier and 
Boruta feature selection with NB classifier. Sixty-two 
percent of the results were significantly lower, which 
indicated that using robust features adversely affects the 
AUC of prediction by more than 5%. According to fig-
ure 5B, the number of non-significant ACC results of the 
Wilcoxon Rank-Sum test for the p-value test is higher 
than AUC (42 out of 465 equals 9%). Seventy-four per-
cent of the results were significantly lower, which shows 
that using robust features as input to feature selection 

Table 3 The mean standard deviation (SD) of 1000 bootstraps belonged to the results of multiple machine learning classifiers and 
various feature selection algorithms, with (RobFea) and without (OriFea) considering the robustness of radiomic features.

Type AUC ACC SEN SPE PPV NPV

OriFea_Boruta_LR 0.88 ± 0.07 0.86 ± 0.05 0.33 ± 0.21 0.97 ± 0.03 0.66 ± 0.32 0.88 ± 0.05

OriFea_Boruta_NB 0.77 ± 0.13 0.89 ± 0.05 0.69 ± 0.19 0.93 ± 0.04 0.68 ± 0.2 0.94 ± 0.04

OriFea_Boruta_XGB 0.76 ± 0.12 0.89 ± 0.05 0.52 ± 0.21 0.97 ± 0.03 0.76 ± 0.24 0.91 ± 0.05

OriFea_Boruta_RF 0.77 ± 0.13 0.84 ± 0.06 0.00 ± 0.00 1.00 ± 0.00 0.93 ± 0.25 0.84 ± 0.06

OriFea_Boruta_MLP 0.83 ± 0.11 0.87 ± 0.05 0.17 ± 0.17 1.00 ± 0.00 0.96 ± 0.19 0.86 ± 0.05

OriFea_MRMR_LR 0.87 ± 0.07 0.84 ± 0.05 0.00 ± 0.00 1.00 ± 0.00 0.36 ± 0.48 0.84 ± 0.05

OriFea_MRMR_NB 0.91 ± 0.05 0.22 ± 0.06 1.00 ± 0.00 0.06 ± 0.04 0.17 ± 0.06 1 ± 0

OriFea_MRMR_XGB 0.72 ± 0.12 0.83 ± 0.05 0.00 ± 0.00 1.00 ± 0.00 0.92 ± 0.27 0.83 ± 0.05

OriFea_MRMR_RF 0.63 ± 0.09 0.83 ± 0.05 0.00 ± 0.00 1.00 ± 0.00 0.76 ± 0.43 0.83 ± 0.05

OriFea_MRMR_MLP 0.94 ± 0.04 0.84 ± 0.05 0.00 ± 0.00 1.00 ± 0.00 0.37 ± 0.48 0.84 ± 0.05

OriFea_RFE_LR 0.86 ± 0.08 0.89 ± 0.05 0.5 ± 0.23 0.97 ± 0.03 0.74 ± 0.25 0.91 ± 0.05

OriFea_RFE_NB 0.95 ± 0.04 0.67 ± 0.07 1.00 ± 0.00 0.61 ± 0.08 0.33 ± 0.11 1 ± 0

OriFea_RFE_XGB 0.69 ± 0.12 0.84 ± 0.05 0.00 ± 0.00 1.00 ± 0.00 0.93 ± 0.26 0.84 ± 0.05

OriFea_RFE_RF 0.81 ± 0.12 0.84 ± 0.05 0.00 ± 0.00 1.00 ± 0.00 0.76 ± 0.43 0.84 ± 0.05

OriFea_RFE_MLP 0.79 ± 0.1 0.84 ± 0.06 0.34 ± 0.22 0.94 ± 0.04 0.5 ± 0.28 0.88 ± 0.05

RobFea_Boruta_LR 0.66 ± 0.08 0.69 ± 0.07 0.35 ± 0.19 0.75 ± 0.07 0.21 ± 0.13 0.86 ± 0.06

RobFea_Boruta_NB 0.92 ± 0.04 0.86 ± 0.05 1.00 ± 0.00 0.84 ± 0.06 0.54 ± 0.16 1 ± 0

RobFea_Boruta_XGB 0.64 ± 0.1 0.7 ± 0.06 0.42 ± 0.18 0.76 ± 0.07 0.24 ± 0.11 0.87 ± 0.06

RobFea_Boruta_RF 0.62 ± 0.09 0.55 ± 0.07 0.47 ± 0.17 0.57 ± 0.08 0.17 ± 0.07 0.85 ± 0.07

RobFea_Boruta_MLP 0.57 ± 0.05 0.33 ± 0.07 0.74 ± 0.12 0.27 ± 0.07 0.14 ± 0.05 0.85 ± 0.08

RobFea_MRMR_LR 0.92 ± 0.05 0.84 ± 0.06 0.83 ± 0.17 0.84 ± 0.07 0.5 ± 0.16 0.96 ± 0.03

RobFea_MRMR_NB 0.79 ± 0.09 0.27 ± 0.07 1 ± 0 0.13 ± 0.06 0.18 ± 0.06 1 ± 0

RobFea_MRMR_XGB 0.68 ± 0.11 0.74 ± 0.07 0.37 ± 0.21 0.81 ± 0.06 0.27 ± 0.15 0.87 ± 0.06

RobFea_MRMR_RF 0.67 ± 0.11 0.64 ± 0.07 0.73 ± 0.17 0.62 ± 0.08 0.27 ± 0.1 0.92 ± 0.05

RobFea_MRMR_MLP 0.66 ± 0.11 0.59 ± 0.07 0.42 ± 0.19 0.62 ± 0.08 0.17 ± 0.08 0.84 ± 0.07

RobFea_RFE_LR 0.78 ± 0.08 0.78 ± 0.06 0.33 ± 0.2 0.87 ± 0.06 0.34 ± 0.21 0.87 ± 0.05

RobFea_RFE_NB 0.84 ± 0.07 0.67 ± 0.07 1.00 ± 0.00 0.61 ± 0.09 0.34 ± 0.11 1 ± 0

RobFea_RFE_XGB 0.67 ± 0.1 0.71 ± 0.07 0.37 ± 0.19 0.78 ± 0.07 0.25 ± 0.14 0.86 ± 0.06

RobFea_RFE_RF 0.66 ± 0.1 0.74 ± 0.06 0.38 ± 0.19 0.81 ± 0.07 0.29 ± 0.15 0.86 ± 0.06

RobFea_RFE_MLP 0.68 ± 0.11 0.42 ± 0.07 0.86 ± 0.14 0.33 ± 0.08 0.2 ± 0.07 0.92 ± 0.08
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mostly has a negative impact on the ACC results of pre-
diction. Figure  5C indicates that the number of signifi-
cantly higher results of the Wilcoxon Rank-Sum test for 
the p-value test is considerably higher than AUC and 
ACC, where 32% and 11% of the results were significantly 
lower and non-significant, respectively. According to Fig-
ure 5D, 66% and 16% of the specificity results were sig-
nificantly lower and non-significant, respectively.

Discussion
Radiomics, an emerging tool to extract hidden informa-
tion from medical images, has been widely utilized in 
previous studies. The application of radiomics encom-
passes predicting response to therapy [42], and predict-
ing and diagnosing abnormities [43]. However, radiomic 
features are vulnerable to various factors, including 
motion [44] and multi-center studies [45]. Various 

strategies were devised to overcome the low repeatability 
and reproducibility of radiomic features, such as selecting 
robust features against the influential factor and Combat 
harmonization. Even though the selection of robust fea-
tures was examined in previous studies, the number of 
studies that studied the impact of motion on radiomic 
features, especially on PET images, is relatively small. In 
few studies, the effect of lung movement on radiomic fea-
tures was evaluated [13]. Lung movement has a consider-
able impact on radiomic features, where 11% and 12% of 
them showed ICC of more than 90% and 75%≤ICC<90%, 
respectively, and were considered robust features against 
motion (24 out of 105 feature). Even though feature selec-
tion algorithms are powerful at choosing bold features 
that boost exploring data and identifying patterns, they 
might have weaknesses in considering the repeatability 
and reproducibility of radiomic features.

Table 4 The confidence interval (CI) of 1000 bootstraps for multiple machine learning classifiers and various feature selection 
algorithms, with (RobFea) and without (OriFea) considering the robustness of radiomic features.

Type AUC ACC SEN SPE PPV NPV

OriFea_Boruta_LR 0.88 ‑ 0.89 0.86 ‑ 0.87 0.32 ‑ 0.34 0.96 ‑ 0.97 0.64 ‑ 0.68 0.88 ‑ 0.89

OriFea_Boruta_NB 0.77 ‑ 0.78 0.89 ‑ 0.90 0.67 ‑ 0.7 0.93 ‑ 0.94 0.66 ‑ 0.69 0.94 ‑ 0.94

OriFea_Boruta_XGB 0.75 ‑ 0.77 0.89 ‑ 0.90 0.51 ‑ 0.53 0.97 ‑ 0.97 0.74 ‑ 0.77 0.91 ‑ 0.91

OriFea_Boruta_RF 0.76 ‑ 0.78 0.83 ‑ 0.84 0.00 – 0.00 1.00 – 1.00 0.92 ‑ 0.95 0.83 ‑ 0.84

OriFea_Boruta_MLP 0.82 ‑ 0.83 0.86 ‑ 0.87 0.16 ‑ 0.18 1.00 – 1.00 0.95 ‑ 0.98 0.86 ‑ 0.87

OriFea_MRMR_LR 0.87 ‑ 0.88 0.83 ‑ 0.84 0.00 – 0.00 1.00 – 1.00 0.33 ‑ 0.39 0.83 ‑ 0.84

OriFea_MRMR_NB 0.90 ‑ 0.91 0.21 ‑ 0.22 1.00 – 1.00 0.061 ‑ 0.067 0.17 ‑ 0.18 1.00 – 1.00

OriFea_MRMR_XGB 0.71 ‑ 0.73 0.83 ‑ 0.84 0.00 – 0.00 1.00 – 1.00 0.9 ‑ 0.94 0.83 ‑ 0.84

OriFea_MRMR_RF 0.62 ‑ 0.63 0.83 ‑ 0.84 0.00 – 0.00 1.00 – 1.00 0.73 ‑ 0.79 0.83 ‑ 0.84

OriFea_MRMR_MLP 0.93 ‑ 0.94 0.83 ‑ 0.84 0.00 – 0.00 1.00 – 1.00 0.34 ‑ 0.4 0.83 ‑ 0.84

OriFea_RFE_LR 0.85 ‑ 0.86 0.89 ‑ 0.89 0.48 ‑ 0.51 0.97 ‑ 0.97 0.72 ‑ 0.75 0.91 ‑ 0.91

OriFea_RFE_NB 0.95 ‑ 0.96 0.67 ‑ 0.68 1.00 – 1.00 0.6 ‑ 0.61 0.32 ‑ 0.34 1.00 – 1.00

OriFea_RFE_XGB 0.68 ‑ 0.70 0.83 ‑ 0.84 0.00 – 0.00 1.00 – 1.00 0.91 ‑ 0.95 0.83 ‑ 0.84

OriFea_RFE_RF 0.81 ‑ 0.82 0.83 ‑ 0.84 0.00 – 0.00 1.00 – 1.00 0.74 ‑ 0.79 0.83 ‑ 0.84

OriFea_RFE_MLP 0.79 ‑ 0.8 0.83 ‑ 0.84 0.33 ‑ 0.35 0.93 ‑ 0.94 0.48 ‑ 0.51 0.87 ‑ 0.88

RobFea_Boruta_LR 0.66 ‑ 0.67 0.68 ‑ 0.69 0.34 ‑ 0.37 0.75 ‑ 0.76 0.21 ‑ 0.22 0.86 ‑ 0.86

RobFea_Boruta_NB 0.92 ‑ 0.92 0.86 ‑ 0.87 1.00 – 1.00 0.83 ‑ 0.84 0.53 ‑ 0.55 1.00 – 1.00

RobFea_Boruta_XGB 0.63 ‑ 0.65 0.70 ‑ 0.71 0.41 ‑ 0.44 0.75 ‑ 0.76 0.24 ‑ 0.25 0.87 ‑ 0.88

RobFea_Boruta_RF 0.62 ‑ 0.63 0.54 ‑ 0.56 0.46 ‑ 0.49 0.56 ‑ 0.58 0.16 ‑ 0.17 0.84 ‑ 0.86

RobFea_Boruta_MLP 0.55 ‑ 0.58 0.31 ‑ 0.35 0.7 ‑ 0.77 0.25 ‑ 0.29 0.12 ‑ 0.15 0.83 ‑ 0.87

RobFea_MRMR_LR 0.92 ‑ 0.92 0.83 ‑ 0.84 0.82 ‑ 0.84 0.83 ‑ 0.84 0.49 ‑ 0.51 0.96 ‑ 0.96

RobFea_MRMR_NB 0.78 ‑ 0.79 0.26 ‑ 0.27 1.00 – 1.00 0.13 ‑ 0.13 0.18 ‑ 0.19 1.00 – 1.00

RobFea_MRMR_XGB 0.68 ‑ 0.69 0.73 ‑ 0.74 0.35 ‑ 0.38 0.81 ‑ 0.82 0.26 ‑ 0.28 0.86 ‑ 0.87

RobFea_MRMR_RF 0.66 ‑ 0.68 0.63 ‑ 0.64 0.72 ‑ 0.74 0.61 ‑ 0.63 0.26 ‑ 0.28 0.91 ‑ 0.92

RobFea_MRMR_MLP 0.65 ‑ 0.67 0.58 ‑ 0.59 0.40 ‑ 0.43 0.61 ‑ 0.63 0.16 ‑ 0.18 0.84 ‑ 0.85

RobFea_RFE_LR 0.78 ‑ 0.79 0.78 ‑ 0.78 0.32 ‑ 0.35 0.86 ‑ 0.87 0.32 ‑ 0.35 0.87 ‑ 0.87

RobFea_RFE_NB 0.84 ‑ 0.85 0.67 ‑ 0.68 1.00 – 1.00 0.6 ‑ 0.61 0.33 ‑ 0.34 1.00 – 1.00

RobFea_RFE_XGB 0.66 ‑ 0.68 0.71 ‑ 0.72 0.36 ‑ 0.38 0.78 ‑ 0.79 0.24 ‑ 0.26 0.85 ‑ 0.86

RobFea_RFE_RF 0.65 ‑ 0.67 0.73 ‑ 0.74 0.36 ‑ 0.39 0.81 ‑ 0.82 0.28 ‑ 0.3 0.86 ‑ 0.87

RobFea_RFE_MLP 0.67 ‑ 0.69 0.41 ‑ 0.42 0.85 ‑ 0.86 0.32 ‑ 0.33 0.20 ‑ 0.21 0.91 ‑ 0.92
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In the current study, we aimed at selecting robust fea-
tures against lung motion in a phantom study followed 
by using these robust features as input to various fea-
ture selection methods and comparing these results with 
conventional techniques without considering the repro-
ducibility of radiomic features to assess the impact of 
considering the robustness of radiomic features on the 
results of machine learning classifiers.

In a recent PET-based radiomics study, Hu et  al. [46] 
predicted lymph node metastasis for 794 NSCLC patients 
using machine learning classifiers and natural language 
processing, resulting in 79% AUC with random forest 
classifiers. In our results, by comparison, the RF and NB 
classifiers with RFE feature selection of original features 
achieved 81% and 95% AUC, respectively. In a CT-based 
radiomics analysis, Peng et al. [47] examined the poten-
tial of radiomic features to predict LVI in esophageal 
squamous cell carcinoma using different machine learn-
ing algorithms. According to their results involving 294 
patients, the highest reported AUC was 79% and 66% 
for the training cohort and validation cohort, respec-
tively. In a machine learning PET/CT study, Fan et  al. 
[48] predicted LVI using clinical factors, PET radiomics, 

CT radiomics, and their combination with three machine 
learning classifiers, such as adaptive boosting (Ada-
Boost), LR, and linear discriminant analysis (LDA). Based 
on their results, the best performance in terms of AUC 
was achieved by the combined model, image model, and 
clinical factors with 94%, 84%, and 74% AUC of the Ada-
Boost classifier. None of these studies considered the 
repeatability of radiomic features, and radiomic features 
were selected by feature selection algorithms.

There have been a few studies that considered the 
robustness of radiomic features in a machine/deep learn-
ing approach. Mostafa et al. [49] aimed to identify robust 
radiomic features from 18F-FDG PET/CT images of 
NSCLC patients, assess their reproducibility across dif-
ferent segmentation methods, and evaluate their prog-
nostic value for 2-year overall survival. Employing four 
distinct segmentation techniques, the authors found 
10 robust radiomic features, with three texture features 
showing association with 2-year overall survival. Com-
paring these results to our findings, there are notable par-
allels and distinctions in the pursuit of robust radiomic 
features in NSCLC LVI prediction. Both studies under-
score the critical importance of feature robustness—ours 

Fig 5 Wilcoxon Rank‑Sum test for p‑value results for the AUC (A), ACC (B), sensitivity (C), specificity (D) of LVI prediction using multiple machine 
learning classifiers and various feature selection algorithms, with (RobFea) and without (OriFea) considering the robustness of radiomic features
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through the lens of motion artifact resilience and theirs 
through segmentation method consistency. Our study 
identified a set of robust features consistently selected by 
multiple feature selection algorithms, highlighting their 
potential predictive power and stability, similar to the 
emphasis on features’ concordance correlation coefficient 
in the summarized study. In both studies, the feature 
Original_glszm_GrayLevelNonUniformity was identi-
fied as robust and bold feature and was selected by RFE 
and Boruta algorithms in our analysis. Pasini et  al. [50] 
delved into the challenges and potential of radiomics in 
classifying the histopathological subtypes of NSCLC by 
extracting 1781 radiomics features from multicenter CT 
images across four NSCLC subtypes using IBSI-com-
pliant tool. They investigated batch effects, feature har-
monization’s impact on model performance, and how 
training dataset composition affects feature selection and 
model accuracy. The emphasized importance of texture 
features and the challenges in multiclass classification 
resonate with our findings, suggesting that both stud-
ies contribute to a growing understanding of the use of 
radiomics in cancer classification and prognosis. Tan-
aka et al. [51], in an interesting deep learning radiomics 
study, predicted head and neck tumor regression. They 
extracted radiomic features with a deep learning method 
and selected robust features with ICC>0.7 against various 
segmentation methods, followed by using them as input 
of feature selection algorithms. Next, five feature selec-
tion algorithms and five machine learning classifiers were 
used, including RF, KNN, LDA, NB, and SVM with 1000 
bootstrap. The highest reported AUC, according to their 
results, was 84%.

The use of robust features in our study yielded an 
interesting shift in performance metrics. Specifically, we 
observed an increase in sensitivity at the cost of a slight 
reduction in accuracy and AUC. The incorporation of 
robust features is likely to contribute to this phenom-
enon due to their resilience against motion artifacts in 
the phantom study, which could be particularly effec-
tive in capturing the nuances required to correctly iden-
tify positive LVI cases, thus improving sensitivity. In the 
medical context, high sensitivity is often desirable, as it 
reduces the likelihood of false negatives, which is criti-
cal in cancer diagnosis and prognosis [52]. However, 
robust features are, by design, less sensitive to variations 
in data that may not be due to artifacts. This could mean 
that while they are excellent for detecting true positive 
cases (thereby increasing sensitivity), they might be less 
adept at distinguishing between true negatives and false 
positives, which could explain the observed decrease in 
specificity and, subsequently, accuracy and AUC. Addi-
tionally, feature selection algorithms (RFE and Boruta) 
and machine learning classifiers (particularly Naive 

Bayes) likely interact differently with robust features. For 
example, Naive Bayes assumes independence between 
features, an assumption that may or may not hold with 
robust features [53]. The performance gains or losses 
observed could partly be due to how well these algo-
rithms leverage the unique properties of robust features.

Although in a few radiomics-based studies, the repeat-
ability and reproducibility of radiomic features have been 
evaluated, there is a lack of studies using robust features 
against lung motion from a phantom study and utilizing 
them through machine/deep learning evaluation. To the 
best of our knowledge, there is no similar study compar-
ing the results of multiple machine learning algorithms 
and various feature selection methods with and without 
considering the robustness of radiomics features for the 
same problem. Furthermore, in line with IBSI guidelines 
[32, 33], it is advisable to employ radiomic features that 
exhibit high repeatability and reproducibility for more 
reliable and consistent outcome prediction.

The selection of robust features in the prediction of LVI 
in NSCLC underscores a pivotal advancement in enhanc-
ing the accuracy and reliability of radiomics-based prog-
nostic models. The identification of a core set of radiomic 
features, such as original_glrlm_RunLengthNonUniform-
ity, original_shape_MeshVolume, and original_ngtdm_
Coarseness by multiple feature selection algorithms 
(MRMR, RFE, Boruta) highlights their potential robust-
ness and predictive power in the context of NSCLC 
LVI prediction. These features, selected consistently 
across different algorithms, signify a critical intersec-
tion between mathematical robustness and clinical rel-
evance, suggesting that they capture fundamental aspects 
of tumor biology that are minimally affected by external 
variabilities, such as imaging technique or patient move-
ment. This consistency not only reinforces the validity 
of these features as biomarkers for LVI but also reflects 
on the sophistication of feature selection methodologies 
in distinguishing the most predictive and stable features 
amidst a plethora of radiomic data.

Conversely, the finding that only a limited number 
of robust features were selected when all features were 
inputted into the selection algorithms raises concerns 
about the current capabilities of these methodologies to 
fully appreciate the importance of feature robustness. 
This observation suggests a potential gap in the fea-
ture selection process, where algorithms may prioritize 
statistical relevance over clinical utility and reproduc-
ibility. The reliance on non-robust features could lead 
to models that perform well in controlled or specific 
datasets but fail to generalize across different clini-
cal settings or imaging protocols. This issue highlights 
a critical area for future research and development in 
radiomics: the need for feature selection algorithms 
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that are inherently designed to consider the robustness 
of features, ensuring that the selected features are not 
only predictive but also reliably reproducible across 
diverse clinical conditions. Addressing this challenge is 
essential for the progress of radiomics from a research 
tool to a standard component of precision oncology in 
NSCLC, particularly for critical prognostic indicators, 
such as LVI.

Phantom studies allow for controlled and reproduc-
ible motion simulations, ensuring that the impact of 
motion on radiomic features can be systematically 
analyzed without biological variability. Unlike patient 
studies, phantom studies provide ground-truth meas-
urements, eliminating inter-subject anatomical varia-
tions and ensuring that the observed effects are purely 
due to motion rather than other confounding factors.

Our study inherently bears some limitations. The sam-
ple size used in our study set is the foremost limitation 
and future studies with a larger dataset is needed to vali-
date these results and investigate hybrid feature selection 
approaches that integrate multiple selection strategies to 
enhance model robustness and performance. Radiomic 
features are vulnerable against various factors. Other 
effective factors, specially multi center data should also 
be examined in future studies. The use of robust features 
in deep learning or deep radiomics was not considered in 
the current study and will be evaluated in future studies. 
Future studies will explore alternative methods, includ-
ing retrospective correction techniques or motion-gated 
acquisitions, to complement our current findings. Addi-
tionally, this study considered only two-dimensional 
motion and a single tumor size. Future studies should 
explore three-dimensional motion dynamics and differ-
ent lesion sizes to better reflect clinical scenarios.

Conclusion
Our study underscores the benefits and trade-offs 
of employing robust features for LVI prediction in 
NSCLC. While the use of robust features improves the 
model’s sensitivity, which is often crucial in medical 
applications, it does so at the expense of accuracy and 
AUC. Given the high stakes involved in accurate can-
cer diagnosis and treatment, the increase in sensitiv-
ity might be clinically more valuable, even if it comes 
at the cost of other performance metrics. Therefore, 
the adoption of robust features could be a promising 
avenue for future research, particularly for applications 
where high sensitivity is a priority.
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