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Abstract 

Background  To perform a systematic review and meta-analysis that assesses the diagnostic performance of deep 
learning algorithms applied to breast MRI for predicting axillary lymph nodes metastases in patients of breast cancer.

Methods  A systematic literature search in PubMed, MEDLINE, and Embase databases for articles published from Jan‑
uary 2004 to February 2025. Inclusion criteria were: patients with breast cancer; deep learning using MRI images 
was applied to predict axillary lymph nodes metastases; sufficient data were present; original research articles. Quality 
Assessment of Diagnostic Accuracy Studies-AI and Checklist for Artificial Intelligence in Medical Imaging was used 
to assess the quality. Statistical analysis included pooling of diagnostic accuracy and investigating between-study het‑
erogeneity. A summary receiver operating characteristic curve (SROC) was performed. R statistical software (version 
4.4.0) was used for statistical analyses.

Results  A total of 10 studies were included. The pooled sensitivity and specificity were 0.76 (95% CI, 0.67–0.83) 
and 0.81 (95% CI, 0.74–0.87), respectively, with both measures having moderate between-study heterogeneity 
(I2 = 61% and 60%, respectively; p < 0.01). The SROC analysis yielded a weighted AUC of 0.788.

Conclusion  This meta-analysis demonstrates that deep learning algorithms applied to breast MRI offer promising 
diagnostic performance for predicting axillary lymph node metastases in breast cancer patients. Incorporating deep 
learning into clinical practice may enhance decision-making by providing a non-invasive method to more accurately 
predict lymph node involvement, potentially reducing unnecessary surgeries.

Introduction
Breast cancer is a significant global health concern, being 
the most commonly diagnosed cancer and the leading 
cause of cancer-related death among women worldwide. 
In 2020, there were an estimated 2.3 million new cases 
of female breast cancer, representing 11.7% of all can-
cer cases, with 685,000 deaths recorded [1]. Staging of 
the axillary lymph nodes (ALNs) is crucial in managing 
breast cancer, as it guides the clinical stages, treatment 
planning, and prognosis. The most precise method to 
assess the status of ALN in breast cancer patients is by 
performing a surgical lymph node biopsy, which can be 
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performed by axillary lymph node dissection (ALND) or 
sentinel lymph node biopsy (SLNB) [2, 3].

The use of surgical axillary lymph node staging among 
older women with early breast cancer remains contro-
versial. Based on the findings of the ongoing randomized 
controlled trials such as SOUND, INSEMA, BOOG 
2013–08, and NAUTILUS, the omission of SLNB was 
safe in selected patients with small breast cancers, favora-
ble hormone receptor-positive status, and clinically nega-
tive axillary lymph nodes [4–11]. These findings indicate 
that axillary surgery can be safely avoided in such patients 
when the absence of pathological information does not 
affect the postoperative treatment plan. However, despite 
this evidence, concerns remain among surgeons regard-
ing these recommendations. Given the lack of survival 
benefit from axillary clearance in SLN-positive patients, 
the key question is: Should SLNB be omitted in selected 
low-risk patients with early breast cancer, or does it still 
provide enough therapeutic value to justify its routine 
use?

Pre-operative axillary ultrasound has a variable sen-
sitivity, with a standard identification rate of metastatic 
axillary lymph nodes at 40–50% in breast cancer patients 
prior to SLNB [11, 12]. However, it is operator-depend-
ent, and scanning deep areas is difficult, especially in 
obese patients [13, 14]. Given the MRI’s ability to evalu-
ate all axillary LNs regardless of the depth of nodes and 
body status of patients, preoperative breast MRI has 
emerged as a valuable tool for assessing axillary lymph 
node metastases in breast cancer patients. At the lymph 
node level, MRI demonstrated the highest sensitivity at 
0.70 (95% CI: 0.58–0.80) and the highest specificity at 
0.89 (95% CI: 0.85–0.92) compared to ultrasound or PET-
CT [15–18].

Over the past years, significant advancements in AI 
algorithms have transformed the medical imaging land-
scape, particularly in enhancing diagnostic precision 
and efficiency. Deep learning, distinct from traditional 
machine learning and radiomics, operates as an end-to-
end model that automatically learns and extracts intrinsic 
features from medical images, eliminating human inter-
vention and bypassing traditional, complex processes 
[19]. Deep learning models, particularly convolutional 
neural networks (CNNs), making them ideal for com-
plex tasks like predicting axillary lymph node metastases 
from breast MRI [20–31]. Given the rapid advancement 
of deep learning applications, different AI algorithms 
and the target of prediction, whether the focus is on the 
tumor itself or the axillary lymph nodes, leading to vary-
ing accuracy.

While previous sparse systematic reviews/meta-anal-
ysis has covered AI techniques, including both machine 
learning and deep learning [32, 33], their findings remain 

sparse and lack a focused evaluation of deep learning’s 
potential. Therefore, this study aimed to conduct a sys-
tematic review and meta-analysis to evaluate the diag-
nostic accuracy of deep learning-based MRI in predicting 
lymph node metastases in breast cancer, offering a com-
prehensive assessment of its clinical efficacy.

Materials and methods
Study design and eligibility criteria for study selection
This study was conducted in adherence to the Preferred 
reporting items for systematic review and meta-analysis 
of diagnostic test accuracy studies (PRISMA-DTA) 2020 
guidelines [34]. The PRISMA checklists are provided in 
supplementary material (Tables S1 and S2). The study 
protocol was registered with the International Platform 
of Registered Systematic Review and Meta-analysis 
Protocols (INPLASY) under the registration number 
INPLASY202520053.

Search strategy and literature screening
Two authors, C.F.L. and W.P.W., with 6 and 10 years of 
experience in breast imaging, respectively, conducted 
a comprehensive literature search to gather relevant 
research data. We searched PubMed, MEDLINE and 
Embase databases for English-language articles published 
from January 2004 to February 2025. The predefined 
search terms included "artificial intelligence," "breast," 
"breast cancer," "lymph nodes," and "magnetic resonance 
imaging." The two authors independently screened titles 
and abstracts for eligibility and reviewed the full text of 
potentially relevant articles. The detailed search strategy 
is presented in Supplementary Text S1.

Articles were included based on the satisfaction of all 
the following criteria: (I) inclusion of patients diagnosed 
with breast cancers; (II) deep learning using breast MRI 
images were applied to predict axillary lymph nodes 
metastases; (III) sufficient data were present in terms of 
predictive performance of the deep learning algorithms; 
(IV) original research articles. Studies without enough 
information to calculate true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN) values 
were excluded.

Study selection, data collection, and quality assessment
Data from relevant studies were extracted and recorded 
in a predefined Microsoft Excel spreadsheet. For each 
analyzed study, the following information was collected: 
first author, publication year, number of patients in each 
dataset, specific AI algorithm model, MRI sequence 
used, reference standard, diagnostic accuracy, valida-
tion method, and AUC value. Diagnostic accuracy met-
rics, including TP, FP, TN, and FN, were either manually 
derived or reconstructed. These values were directly 



Page 3 of 9Lee et al. Cancer Imaging           (2025) 25:44 	

entered into contingency tables and used to calculate sen-
sitivity and specificity. In cases where external validation 
was conducted, this data was prioritized. For studies that 
examined multiple algorithms, data from the algorithm 
demonstrating the best performance were extracted.

Finally, study quality assessment was performed by the 
same two readers according to the Checklist for Artificial 
Intelligence in Medical Imaging (CLAIM) and Quality 
Assessment of Diagnostic Accuracy Studies (QUADAS)-
AI [35, 36]. Discrepancies were resolved in consensus.

Statistical analysis
Statistical analysis was performed by the author (C.F.L.) 
using package meta (v 8.0–2), package lme4 (v 1.1–36), 
package mada (v 0.5.11), package emmeans (v 1.10.1), 
package rje (v 1.12.1) in R version 4.4.0 (RStudio, Boston, 
MA). The pooled proportion analysis of detectability esti-
mates with 95% confidence intervals (CI) was performed 
using a random-effects model. This model assumes sig-
nificant diversity among different studies and accounts 
for both intra-study sampling errors and inter-study 
variances. It typically provides wider confidence intervals 
than the fixed effects model. The predictive accuracy was 
quantified using pooled sensitivity, specificity with 95% 
CI. A p-value < 0.10 indicates the presence of heterogene-
ity. To quantify the effect of heterogeneity, the inconsist-
ency index (I2) was used. I2 values of 25%, 50%, and 75% 
are interpreted as low, moderate, and high, respectively 
[37]. A cross-hairs plot was also generated to better dis-
play the variability in sensitivity and specificity estimates 
[38].

Summary receiver-operating characteristic curves 
using the bivariate method were constructed to display 
the mean value. The area under the curve (AUC) and 
the partial area under the curve (pAUC), which is cal-
culated by restricting the computation of the AUC to 
the observed false positive rates, were also calculated. 
To ensure a more accurate summary estimation, weight-
ing based on study sample size was applied, giving larger 
studies greater influence on the final SROC curve. An 
AUC of 0.9∼1 is considered excellent, 0.8∼0.9 very good, 
0.7∼0.8 good, 0.6∼0.7 sufficient, and 0.5∼0.6 bad in 
terms of diagnostic accuracy [38].

Results
Literature search
Figure  1 summarizes the search and screening results 
for the relevant studies. Initially, we identified a total of 
2667 articles through the literature review, with 524 arti-
cles found in PubMed, 205 articles from MEDLINE and 
1938 articles from Embase. After removing 638 duplicate 
articles, 2029 unique studies remained. These records 
underwent screening by title and abstract, resulting in 
the exclusion of 1981 studies that did not meet the inclu-
sion criteria. A total of 48 full-text articles were assessed 
for eligibility. During full-text reading, we excluded 38 
articles because their study structures or incomplete data 
were not relevant to our study. Finally, 10 studies were 
included for meta-analysis.

Quality assessment
The QUADAS-AI tool consists of four domains, includ-
ing patient selection, index test, reference standard, and 

Fig. 1  A flowchart of the literature review and study selection



Page 4 of 9Lee et al. Cancer Imaging           (2025) 25:44 

Ta
bl

e 
1 

C
ha

ra
ct

er
is

tic
s 

of
 th

e 
in

cl
ud

ed
 s

tu
di

es

AU
C 

ar
ea

 u
nd

er
 th

e 
re

ce
iv

er
 o

pe
ra

tin
g 

cu
rv

es
, S

EN
 se

ns
iti

vi
ty

, S
PE

 sp
ec

ifi
ci

ty
, P

PV
 p

os
iti

ve
 p

re
di

ct
iv

e 
va

lu
e,

 N
PV

 n
eg

at
iv

e 
pr

ed
ic

tiv
e 

va
lu

e,
 C

N
N

 c
on

vo
lu

tio
na

l n
eu

ra
l n

et
w

or
k,

 R
CN

et
 R

es
N

et
 a

nd
 c

on
vo

lu
tio

na
l b

lo
ck

 
at

te
nt

io
n 

m
od

ul
e,

 2
D

 C
on

vR
N

N
 c

on
vo

lu
tio

na
l n

eu
ra

l n
et

w
or

k 
an

d 
re

cu
rr

en
t n

eu
ra

l n
et

w
or

k,
 D

LW
PS

 d
ee

p 
le

ar
ni

ng
-b

as
ed

 w
ho

le
 p

ro
ce

ss
 s

ys
te

m
, R

es
N

eX
t1

01
 m

od
ifi

ed
 v

er
si

on
 o

f R
es

N
et

10
1,

 D
CE

-M
RI

 d
yn

am
ic

 c
on

tr
as

t-
en

ha
nc

ed
 m

ag
ne

tic
 re

so
na

nc
e 

im
ag

in
g,

 T
1W

I T
1-

w
ei

gh
te

d 
im

ag
in

g,
 T

2W
I T

2-
w

ei
gh

te
d 

im
ag

in
g,

 D
W

I d
iff

us
io

n-
w

ei
gh

te
d 

im
ag

in
g

St
ud

ie
s

N
 o

f P
at

ie
nt

s
A

I A
lg

or
ith

m
M

RI
 S

eq
ue

nc
es

Re
fe

re
nc

e 
St

an
da

rd
Va

lid
at

io
n 

m
et

ho
d

Ex
te

rn
al

 
Va

lid
at

io
n

AU
C​

TP
FP

FN

N
gu

ye
n,

 2
02

0 
[3

1]
35

7
C

N
N

D
C

E-
M

RI
H

is
to

pa
th

ol
og

y
N

es
te

d,
 s

tr
at

ifi
ed

 g
ro

up
 te

nf
ol

d 
cr

os
s-

va
lid

at
io

n
N

o
0.

71
10

10
4

Re
n,

 2
02

0 
[2

5]
99

C
N

N
T1

W
I (

po
st

 c
on

tr
as

t)
18

FD
G

-P
ET

fiv
ef

ol
d 

cr
os

s-
va

lid
at

io
n

N
o

0.
91

20
6

2

Re
n,

 2
02

2 
[2

6]
56

C
N

N
T1

W
I +

 T2
W

I
18

FD
G

-P
ET

th
re

ef
ol

d 
cr

os
s-

va
lid

at
io

n
N

o
0.

88
20

4
5

Sa
nt

uc
ci

, 2
02

2 
[2

4]
15

3
C

N
N

D
C

E-
M

RI
H

is
to

pa
th

ol
og

y
te

nf
ol

d 
cr

os
s-

va
lid

at
io

n
N

o
0.

77
4

2
1

Zh
an

g,
 2

02
2 

[3
0]

25
2

Re
sN

et
50

M
ul

tip
ar

am
et

ric
 M

RI
m

od
el

H
is

to
pa

th
ol

og
y

Sp
lit

 tr
ai

ni
ng

-t
es

t
N

o
0.

91
17

3
3

G
ao

, 2
02

3 
[2

3]
94

1
Re

sN
et

, R
C

N
et

, S
VM

D
C

E-
M

RI
H

is
to

pa
th

ol
og

y
fiv

ef
ol

d 
cr

os
s-

va
lid

at
io

n
Ye

s
0.

85
38

10
10

G
uo

, 2
02

4 
[2

8]
20

63
Co

nv
RN

N
, C

N
N

D
C

E-
M

RI
H

is
to

pa
th

ol
og

y
Sp

lit
 tr

ai
ni

ng
-t

es
t

Ye
s

0.
81

45
11

35

Po
la

t, 
20

24
 [2

7]
35

0
C

N
N

D
C

E-
M

RI
M

RI
, a

xi
lla

ry
 U

S,
 U

S-
gu

id
ed

 
ne

ed
le

 b
io

ps
y,

 H
is

to
pa

th
ol

og
y

N
es

te
d 

fiv
ef

ol
d 

cr
os

s-
va

lid
at

io
n

N
o

0.
87

27
5

3

Zh
ou

, 2
02

4 
[2

9]
12

59
D

LW
PS

 (R
es

N
et

10
1,

 
Re

sN
eX

t1
01

, D
en

se
N

et
)

D
C

E-
M

RI
H

is
to

pa
th

ol
og

y
fiv

ef
ol

d 
cr

os
s 

va
lid

at
io

n
Ye

s
0.

92
29

11
9



Page 5 of 9Lee et al. Cancer Imaging           (2025) 25:44 	

flow and timing [39]. For individual studies, each domain 
was assessed for applicability concerns, categorized as 
high, low, or unclear. Two reviewers independently con-
ducted the quality assessments, and any discrepancies 
were resolved by a third reviewer to achieve consensus. 
Most studies were rated as the unclear risk. The detailed 
risk of bias information on each enrolled study can be 
found in supplemental Fig. 1.

The meta-analysis of the quality assessment, based on 
the CLAIM criteria and presented in Table S3, revealed 
an average total score of 34.1 across these studies, with a 
standard deviation of 3.67 [40]. This indicates a moderate 
level of variability in the overall quality of the included 
research.

Basic characteristics of the included literature
The characteristics of each eligible study are detailed 
in Table  1. All studies used a retrospective design, six 
involving internal validation [24–27, 30, 31] and four 
with external validation [23, 28, 29, 41].

Most studies used the primary tumor as the target 
lesion for predicting axillary lymph node metastases. 
However, three studies included both the primary tumor 
and axillary lymph nodes as targets [23, 25, 26].

Seven of these studies reported the best model perfor-
mance using DCE-MRI images [23–25, 27–29, 31, 41]. 
In 10 eligible studies, different AI algorithms were used 
for modeling. Two of these studies incorporated clini-
cal information in addition to images [27, 31], and one 
used ensemble learning [30]. Most studies identified 
lymph node metastases through pathological examina-
tion, including surgical resection or needle biopsy. How-
ever, one study relied on clinical node status [31] and two 
studies employed 18FDG-PET for indirect assessment 
[25, 26].

Diagnostic accuracy and heterogeneity
Figure  2 presents forest plots illustrating sensitivities 
(Fig.  2a) and specificities (Fig.  2b), each with the corre-
sponding 95% confidence intervals. The overall pooled 
sensitivity and specificity were 0.76 (95% CI, 0.67–0.83) 
and 0.81 (95% CI, 0.74–0.87), respectively, with both 
measures having moderate between-study heterogene-
ity (I2 = 61% and 60%; p < 0.01 and p < 0.01, respectively). 
In the subgroup analysis, studies using only the primary 
tumor as the target reported an overall pooled sensitivity 
of 0.73 (95% CI, 0.61–0.82) and specificity of 0.78 (95% 
CI, 0.69–0.86). In contrast, studies using both the axillary 
lymph nodes and the primary tumor as targets showed 
slightly higher overall pooled sensitivity and specificity 
of 0.81 (95% CI, 0.72–0.88) and 0.86 (95% CI, 0.77–0.92), 
respectively, as illustrated in Fig. 3.

Figure  4 depicts a cross-hair plot that visualizes the 
sensitivity and specificity estimates for each study 
included in the meta-analysis.

The pooled SROC curve by the bivariate approach 
showed good diagnostic accuracy with a weighted AUC 
of 0.79 and a weighted pAUC value of 0.76. The Diag-
nostic Odds Ratio (DOR) across studies was 14.7 (95% 
CI 7.6–28.3), with heterogeneity observed at 64.1% 
(I2 = 64.%, p = 0.003), suggesting moderate to high hetero-
geneity (Fig. 5).

Discussion
The transition from traditional machine learning to deep 
learning marks a major milestone in the evolution of arti-
ficial intelligence, enabling more complex data-driven 
decision-making and predictive analytics across vari-
ous domains, particularly in medical imaging [42]. Deep 
learning leverages deep neural networks with multiple 
layers to automatically analyze complex and diverse data 
[43]. This advancement has driven significant progress in 
areas such as image processing and predictive modeling, 
highlighting deep learning’s pivotal role in personalized 
treatments and diagnostic tools to identify diseases more 
accurately and quickly.

This meta-analysis is to evaluate the diagnostic per-
formance of deep learning-based algorithms applied 
to breast MRI for predicting lymph node metastasis in 
breast cancer patients. Breast MRI is increasingly rec-
ognized as a crucial imaging modality for pre-operative 
staging [44]. However, variations in image quality and 
the subjectivity of radiological interpretation can lead 
to false positives and false negatives, potentially result-
ing in unnecessary surgeries for breast cancer patients. 
From the radiologists’ perspective, the role of breast 
MRI in determining axillary lymph nodes metastases 
has shown moderate sensitivity and negative predictive 
value, but only low-to medium specificity [45]. This can 
lead to either overestimation or underestimation of nodal 
staging (N staging). Therefore, a non-invasive and highly 
accurate method to predict axillary lymph node metasta-
sis before surgery is essential to guide clinical decision-
making effectively.

Our meta-analysis demonstrated promising results 
for axillary lymph nodes metastases classification, with 
a pooled sensitivity and specificity of 76% and 81%, 
respectively. The diagnostic performance by radiologists 
reported sensitivities of 77% and 55% and specificities 
of 90% and 86%, as demonstrated in the meta-analysis 
by Zhou et  al. [17](2018) and Zhang et  al. [46](2020). 
Meanwhile, machine learning-based models have shown 
significant potential with pooled sensitivities and spe-
cificities ranging from 76 to 85% and 81% to 83% in the 
meta-analysis by Zhang et al. [47](2022), Chen et al. [33] 
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(2021), and Liu et al. [32] (2023). These findings indicate 
that deep learning-based models offer comparable, if not 
superior, diagnostic performance compared to traditional 
radiologist interpretations and other machine learning 
models to detect axillary lymph node metastasis (ALNM) 
in breast cancer patients.

To date, many meta-analyses have been performed to 
evaluate the diagnostic performance of breast MRI for 
ALNM. Chen et al. found that MRI sequences and algo-
rithms as key factors influencing the diagnostic accuracy 
of machine learning-assisted MRI [33]. Our subgroup 
analysis revealed that studies targeting both the primary 
tumor and axillary lymph nodes demonstrated bet-
ter diagnostic performance compared to those focusing 

solely on the primary tumor. Factors such as differences 
in study populations, imaging protocols, image segmen-
tation methods (eg, included breast lesion or lymph 
nodes) and model architectures may contribute to this 
heterogeneity and should be carefully addressed in future 
research.

A deep learning-based algorithm can enhance the 
speed of image interpretation for detecting lymph node 
metastases in breast cancer and is likely to be integrated 
alongside clinical judgment to optimize decision-mak-
ing. However, challenges and limitations remain. With 
a pooled sensitivity and specificity of approximately 
0.80, the algorithm could potentially miss 1 in 5 women 
with lymph node metastases, which may affect critical 

Fig. 2  Forest plots of pooled sensitivity (a) and specificity(b) for the deep learning model to detect axillary lymph node metastasis in breast cancer

Fig. 3  Forest plots of the sensitivity (a) and specificity (b) for subgroup analysis according to the target of assessment (the primary tumor 
only or the axillary lymph nodes and the primary tumor)
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Fig. 4  Cross-hair plot of studies included in the meta-analysis

Fig. 5  Summary receiver operating characteristic (SROC) curves based on the bivariate approach
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treatment decisions, such as the need for surgery or neo-
adjuvant chemotherapy. On the other hand, the model 
correctly identifies most patients without axillary lymph 
node metastases, helping to minimize unnecessary 
interventions, such as surgical lymph node dissection or 
overtreatment.

Moving forward, while the findings of this meta-anal-
ysis are promising, several considerations should be 
taken into account. First, the heterogeneity observed in 
both sensitivity and specificity underscores the need 
for further investigation into the sources of variability 
across studies. The integration of deep learning in medi-
cal imaging brings several ethical challenges that must be 
addressed to ensure safe and equitable use. Deep learn-
ing models trained on limited or region-specific datasets 
has the possibility to produce biased results, leading to 
reduced diagnostic accuracy in underrepresented popu-
lations. There were relatively few deep learning stud-
ies eligible for inclusion. Due to incomplete reporting 
of results in few studies, estimates of diagnostic perfor-
mance were derived from a limited data set. Finally, the 
diversity in scanner types, imaging protocols, and criteria 
for defining lymph node metastasis across studies may 
have influenced the accuracy of the results.

Conclusions
In conclusion, our meta-analysis demonstrates that deep 
learning-based MRI offers promising diagnostic perfor-
mance for predicting axillary lymph node metastases in 
breast cancer. These results suggest that deep learning 
models have the potential to complement radiologists, 
enhance diagnostic accuracy, and reduce unnecessary 
surgical interventions. However, variability among stud-
ies highlights the need for standardized imaging proto-
cols and larger, multicenter studies to further validate 
their clinical utility. Future research should focus on 
integrating deep learning with clinical and genomic data 
to enable more personalized and precise treatment plan-
ning, ultimately improving patient outcomes.
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