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Abstract
Objectives  The International Association for the Study of Lung Cancer (IASLC) grading system for invasive non-
mucinous adenocarcinoma (ADC) incorporates high-grade patterns (HGP) and predominant subtypes (PS). Following 
the system, this study aimed to explore the feasibility of predicting HGP and PS for IASLC grading.

Materials and methods  A total of 529 ADCs from patients who underwent radical surgical resection were randomly 
divided into training and validation datasets in a 7:3 ratio. A two-step model consisting of two submodels was 
developed for IASLC grading. One submodel assessed whether the HGP exceeded 20% for ADCs, whereas the other 
distinguished between lepidic and acinar/papillary PS. The predictions from both submodels determined the final 
IASLC grades. Two variants of this model using either radiomic or clinical-semantic features were created. Additionally, 
one-step models that directly assessed IASLC grades using clinical-semantic or radiomic features were developed for 
comparison. The area under the curve (AUC) was used for model evaluation.

Results  The two-step radiomic model achieved the highest AUC values of 0.95, 0.85, 0.96 for grades 1, 2, 3 among 
models. The two-step models outperformed the one-step models in predicting grades 2 and 3, with AUCs of 0.89 and 
0.96 vs. 0.53 and 0.81 for radiomics, and 0.68 and 0.77 vs. 0.44 and 0.63 for clinical-semantics (p < 0.001). Radiomics 
models showed better AUCs than clinical-semantic models for grade 3 regardless of model steps.

Conclusions  Predicting HGP and PS using radiomics can achieve accurate IASLC grading in ADCs. Such a two-step 
radiomics model may provide precise preoperative diagnosis, thereby supporting treatment planning.
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Introduction
Lung cancer continues to be the foremost cause of can-
cer-related deaths globally [1]. Among its various forms, 
lung adenocarcinoma is the most prevalent histologi-
cal subtype and has become the primary driver of lung 
cancer mortality. Although curative intent surgery can 
substantially improve survival rates or disease-specific 
outcomes [2–4], more than 30% of lung cancer patients 
still suffer from recurrence or die from their disease after 
surgery [5, 6].

The histological grading system is crucial for assess-
ing the prognosis of patients with lung adenocarcinoma. 
The 2015 World Health Organization classification pro-
posed five main histological subtypes that were closely 
associated with prognosis for grading lung adenocar-
cinoma patients [7–10]. However, this grading system 
may underestimate the impact of minor percentages of 
micropapillary, secondary subtypes and complex glan-
dular patterns which can also significantly influence 
patient outcomes [10–12]. Considering this limitation, 
the International Association for the Study of Lung Can-
cer (IASLC) introduced a novel grading system that con-
sidered both predominant subtypes and the proportion 
of high-grade patterns regarding micropapillary, solid, 
and complex glandular [13]. Recent studies had evalu-
ated this new grading system [14, 15]. Deng et al. found 
that patients with stage IB to III high-grade invasive 
non-mucinous adenocarcinomas exhibited an improved 
survival rate when treated with adjuvant chemotherapy 
[14]. The study by Rokutan-Kurata et al. showed a con-
cordance index of 0.77 for assessing recurrence risk in 
stage I-IIIA lung adenocarcinoma patients using the 
IASLC grading system [15]. These results indicated that 
the IASLC system, which used primary subtypes with a 
threshold of 20% to define high-grade patterns, was supe-
rior for guiding postoperative prognosis.

In addition to the benefits of analysing postopera-
tive pathology for prognosis, understanding histological 
subtypes before surgery is also of importance to guide 
preoperative treatment planning [16]. However, preop-
erative biopsy is limited by tumour heterogeneity and 
sampling constraints, making it challenging to compre-
hensively assess pathological subtypes. As the most com-
monly used method for preoperative evaluation of lung 
nodules, CT imaging can provide detailed morphologi-
cal information. Building on this, the development of an 
accurate preoperative imaging-based model using CT 
scans to predict IASLC grades might serve as a valu-
able reference for clinical decisions regarding neoadju-
vant therapy and lymph node dissection before surgery, 
potentially improving patient outcomes. For example, in 

patients with stage IB lung adenocarcinoma, those clas-
sified as IASLC grade 3 postoperatively are often advised 
to undergo chemotherapy or radiotherapy to reduce the 
risk of recurrence. By identifying patients who are likely 
to have IASLC grade 3 before surgery, the model can 
support clinical decision-making regarding neoadjuvant 
therapy.

To this end, recent studies have focused on using CT-
based models for non-invasive IASLC grading [17, 18]. 
For instance, Yang et al. combined radiomics and seman-
tic features on CT scans to create a nomogram that 
distinguished IASLC grades 1 and 2 from high-grade 
patients, achieving an AUC of 0.84 on the validation 
set [17]. Another study employed radiomic features to 
develop a model that attained an AUC of 0.90 in differ-
entiating grade 1 from grades 2 and 3 [18]. These mod-
els classified patients into IASLC grades directly without 
predicting predominant subtypes and the proportion 
of high-grade patterns. While they showed accept-
able performance in IASLC grading, incorporating the 
classification of predominant subtypes and estimating 
the proportion of high-grade patterns according to the 
IASLC system might further enhance grading accuracy.

Therefore, our research aimed to explore the effective-
ness of predicting high-grade patterns and predominant 
subtypes in two steps for IASLC grading in invasive non-
mucinous pulmonary adenocarcinoma using radiomic or 
clinical-semantic features. The study was also designed 
to compare these two-step models with one-step mod-
els that directly assessed IASLC grades using clinical-
semantic or radiomic features. The ultimate goal was to 
accurately identify high-grade patients, thereby support-
ing preoperative treatment planning.

Materials and methods
Study participants
This retrospective study involved 958 consecutive 
patients who underwent radical surgical resection and 
presented with lung adenocarcinoma from Tianjin Medi-
cal University Cancer Institute and Hospital between 
April 2022 and December 2023. The study received 
approval from the medical ethical committee of the hos-
pital (EK2023044). The inclusion criteria were: (1) thin-
slice, plain chest CT images taken within one month 
before surgery; (2) detailed postoperative pathology 
reports with information on the proportion of patho-
logical subtypes; (3) having received no treatment before 
surgery. The exclusion criteria were: (1) poor quality CT 
images; (2) without preoperative CT images within one 
month; (3) without clear histopathological subtypes; 
(4) precursor glandular lesions, minimally invasive 
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adenocarcinoma or invasive mucinous adenocarcinoma 
[13].

Histopathology assessment
Two pathologists were involved in assessing and classify-
ing invasive non-mucinous pulmonary adenocarcinoma, 
one with 3 years of experience and the other with 10 
years of experience. The initial pathological analysis was 
performed by the junior pathologist, followed by a review 
and final confirmation by the senior pathologist to ensure 
diagnostic accuracy. The pathological classification fol-
lowed the 5th edition of the World Health Organization 
classification of thoracic tumours [19]. Specifically, the 
diagnosis of invasive non-mucinous pulmonary adeno-
carcinoma involved a detailed examination of histologic 
patterns, categorized into lepidic, acinar, papillary and 
high-grade patterns including micropapillary, solid, and 
complex glandular [20]. They documented the propor-
tion of each pathological subtype in increments of 5% 
and assigned grades based on the IASLC grading system 
[15]. Grade 1 represented a lepidic predominant pat-
tern with no or less than 20% of high-grade components; 
Grade 2 denoted an acinar or papillary predominant pat-
tern with no or less than 20% of high-grade components; 
Grade 3 corresponded to any tumour with 20% or more 
of high-grade components.

CT examination and clinical-semantic features
Low-dose chest CT scans were performed using GE 
Discovery CT750 HD, GE LightSpeed 16, and Siemens 
Somatom Sensation 64 CT devices. The scanning range 
was from the lung apex to below the diaphragm. The tube 
voltage was 120 kV, and the tube current was automati-
cally adjusted. The reconstruction thickness was 1.25 mm 
with a spacing of 0.984  mm in the GE CT system, 
whereas the reconstruction thickness was 1.5  mm with 
a spacing of 0.95  mm for the Siemens CT device. Lung 
nodules on CT scans for each patient were independently 
evaluated by two experienced radiologists. During the 
evaluation, the radiologists were blinded to the histo-
pathological results, and any discrepancies were resolved 
through mutual consultation. After evaluation, fourteen 
clinical-semantic features were recorded. The specific 
characteristics were as follows: (1) age, (2) gender, (3) 
nodule diameters averaged from the long-axis and short-
axis diameters, (4) nodule types, (5) nodule location, (6) 
shape, (7) lobulation, (8) spiculation, (9) cavitation, (10) 
vacuole, (11) air bronchograms, (12) pleural traction, (13) 
vascular convergence, and (14) obstructive pneumonia.

Nodule delineation and radiomics feature extraction
The region of interest for each pulmonary lesion was 
semi-automatically delineated using the Samm Base plu-
gin (​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​b​i​n​g​​o​g​​o​m​e​/​s​a​m​m) in 3D Slicer 

software (Version 5.6.2). The examples of delineations are 
shown in Fig. 1. Two radiologists evaluated the segmen-
tation results and manually adjusted the delineations. 
Before radiomics feature extraction, delineated CT data 
was resampled to 1 × 1 × 1 mm voxel size to ensure con-
sistent spatial resolution and improve the robustness of 
the extracted features. Pyradiomics (Version 3.1.0) was 
then applied to extract radiomics features including first-
order features, shape features, grey level co-occurrence 
matrix features, grey level size zone matrix features, grey 
level run length matrix features, grey level dependence 
matrix features, and neighbourhood grey tone differ-
ence matrix features. As a consequence, a total of 1834 
radiomics features were obtained after extraction. To 
find robust radiomics features for model development, 
we conducted a consistency evaluation between radiolo-
gists using the intraclass correlation coefficient (ICC). A 
subset comprising one-third of the cases was randomly 
selected. After two month, intra-observer and inter-
observer segmentation reproducibility were performed 
on the subset by two radiologists separately [17]. Ulti-
mately, 1465 radiomics features with an ICC > 0.75 were 
retained for the experiment [21].

Model development
In order to explore the feasibility of predicting high-
grade patterns and predominant subtypes for IASLC 
grading, we developed two distinct two-step models, 
with one based on radiomic features and the other on 
clinical-semantic features. To further evaluate model 
effectiveness, we compared these two-step models with 
two one-step models that directly assessed IASLC grades 
using either clinical-semantic or radiomic features. The 
detailed development process of the two-step and one-
step models is outlined below. The basic concepts of the 
four models are shown in Fig. 2.

Development of two-step models  the two-step model 
for IASLC grading was developed using two submod-
els. The first submodel assessed whether the proportion 
of high-grade patterns was ≥ 20%, while the second sub-
model differentiated between lepidic and acinar/papillary 
predominant subtypes. The IASLC grading of invasive 
pulmonary adenocarcinoma was then determined based 
on the estimations from these two submodels. In this 
analysis, two types of two-step models were established. 
One model consisted of two submodels that used clinical-
semantic features as input, whereas the other type also 
comprising two submodels relied on radiomic features 
derived from nodule delineation.
The submodels using clinical-semantic were built using 
weighted logistic regression, where the class weight was 
calculated as the total sample size divided by the product 
of the sample size of a specific class and the total number 
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of classes. Classes with larger quantities were assigned 
smaller weights, while those with smaller quantities were 
assigned larger weights. The introduced class weights can 
mitigate the impact of the data imbalance on model per-
formance. Variates including age, gender, diameter and 
semantic CT features were used. Univariate analysis was 
applied to preliminarily identify potential predictive fea-
tures. Any input feature with a p-value smaller than 0.1 in 
the univariate analysis was included for further analysis 
[22]. Subsequently, we conducted a multivariate analysis 
using the backward likelihood ratio method to construct 
the final submodels.

Regarding the submodels using radiomics features, 
minimum redundancy maximum relevance (mRMR), 
least absolute shrinkage and selection operator (LASSO), 
and logistic regression methods were applied. Initially, all 
radiomics features were standardized using the Z-score 
normalization method. The mRMR approach was then 
employed to process the radiomics features, identifying 
the top 30 most significant features with the highest cor-
relation to the outcomes. Subsequently, the LASSO algo-
rithm, combined with ten-fold cross-validation, was used 
to determine the optimal subset of predictive features 

and their corresponding coefficients. These optimal fea-
tures were used to construct the radiomics submodels via 
weighted binary logistic regression. For each lung nodule, 
the radiomics feature score (Rad-score) of a submodel 
was derived by linearly combining the selected features, 
weighted by their respective coefficients.

Development of one-step models  for comparisons, we 
also developed two types of one-step models that used 
only clinical-semantic or radiomics features for IASLC 
grading. The model using clinical-semantic features was 
built using ordinal logistic regression with class weights 
to alleviate data imbalance. Univariate ordinal logis-
tic regression with a proportional odds ratio was first 
applied to select potential features for predicting IASLC 
grades. Then the multivariate ordinal logistic regression 
with stepwise selection was employed to construct the 
final one-step clinical-semantic model. In contrast, the 
one-step model using radiomics features was developed 
by using the mRMR, LASSO, and multivariate ordinal 
logistic regression methods with class weights to mitigate 
data imbalance. Compared to the two-step models, the 
one-step models directly assessed IASLC grades without 

Fig. 1  Examples of invasive non-mucinous pulmonary adenocarcinoma with delineations. (a) A 72-year-old patient classified as IASLC 1; (b) A 43-year-old 
female patient classified as IASLC 2; (c) A 56-year-old male patient classified as IASLC 3; (d)-(f ) Delineation examples corresponding to (a)-(c)
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predicting the proportion of high-grade patterns or pre-
dominant subtypes.

Statistical analysis and evaluation metrics
Statistical analyses were conducted using Python (ver-
sion 3.11.7). Group comparisons for categorical variables 
in the training and validation sets were performed using 
the chi-squared test, while continuous variables were 
analyzed using either the t-test or the Kruskal-Wallis H 
test [23–25], depending on the data distribution. Model 
performance was evaluated by comparing the area under 
the curve (AUC), sensitivity, specificity and F1 scores. 
The optimal threshold in the receiver operating char-
acteristic curve for classification was determined by 
selecting the threshold that maximized the sum of sen-
sitivity and specificity. At this optimal threshold, sensi-
tivity was calculated as the ratio of true positives to the 
sum of true positives and false negatives, while specific-
ity was calculated as the ratio of true negatives to the 
sum of true negatives and false positives. The DeLong 
test applied to assess differences in AUC between mod-
els [26]. The Cohen’s kappa test was used to assess the 
classification agreement between the models and the 
pathologist’s IASLC grading. The clinical utility of the 
model was evaluated through decision curve analysis, 
which involved assessing net benefits across a range of 

threshold probabilities in the validation cohort. A two-
tailed p-value of less than 0.05 was considered statisti-
cally significant.

Results
Patient characteristics
After data selection, 529 lung nodules remained in the 
study. The lung nodules were randomly divided into 
training and validation sets in a 7:3 ratio. The detailed 
flow chart for data selection is shown in Fig.  3. Patient 
characteristics in the training and validation sets for 
IASLC grading are shown in Table  1. Patient character-
istics for the prediction of high-grade patterns and pre-
dominant subtypes are described in Tables S1 and S2. 
The inter-reader agreement for semantic feature clas-
sifications are shown in Table S3. For IASLC grading, 
significant differences were observed in diameter, types, 
spiculation, air bronchograms, pleural traction and 
obstructive pneumonia among the three groups in the 
training and validation datasets. There was no significant 
difference found in cavitation and vascular convergence 
among the groups in both datasets.

Two-step models
In the development of clinical-semantic submodels in 
two-step models, univariable analysis showed that age, 

Fig. 2  Concepts of two-step and one-step models. Two-step models using radiomics features (RF) or clinical-semantic features (CF) to classify IASLC 
grades through the prediction of high-grade patterns and predominant subtypes, whereas one-step models directly assessed IASLC grades using RF or 
CF

 



Page 6 of 12Zheng et al. Cancer Imaging           (2025) 25:42 

gender, diameter, types, nodule location, spiculation, cav-
itation, vacuole, pleural traction, obstructive pneumonia 
had the potential to be predictive in assessing whether 
the proportion of high-grade patterns was greater than 
or equal to 20% in invasive non-mucinous pulmonary 
adenocarcinoma. In contrast, age, diameter, types, and 
air bronchograms had potential be predictive for the 
discrimination between lepidic and acinar/papillary 
predominant subtypes. After performing multivariate 
logistic regression analysis, diameter, types, spiculation 
and vacuole emerged as statistically significant features 
for high-grade pattern prediction, whereas types was 
the only significant feature for predominant subtype 

prediction. The detailed feature selection results univari-
ate and multivariate analysis are shown in Tables S4 and 
S5.

In the development of radiomics submodels in two-
step models, the analysis of the mRMR, LASSO and 
multivariate binary logistic regression approaches found 
four features (wavelet-LLL_gldm_LargeDependence-
HighGrayLevelEmphasis, lbp-2D_firstorder_Entropy, 
logarithm_ngtdm_Strength, exponential_firstorder_
RobustMeanAbsoluteDeviation) were identified as sta-
tistically significant for the prediction of high-grade 
patterns greater than or equal to 20%. In contrast, 
a similar set of six features (exponential_firstorder_
RobustMeanAbsoluteDeviation, wavelet-LLL_

Fig. 3  Flow chart of data selection in the study
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gldm_LargeDependenceHighGrayLevelEmphasis . 
logarithm_firstorder_Skewness, logarithm_glcm_Dif-
ferenceAverage, square_gldm_LargeDependenceLow-
GrayLevelEmphasis, logarithm_glcm_Idn) were selected 
to construct the radiomics submodel for the prediction 
of predominant subtypes. These radiomics features were 
used to build calculation equations for the prediction 
scores of high-grade patterns and predominant subtypes, 
which were presented in the supplementary file. Besides, 
we also tried to combine both significant clinical-seman-
tic features and radiomic prediction scores to build sub-
models for both tasks employing using logistic regression 

with backward selection. However, only radiomics pre-
diction scores were retained.

One-step models
For the one-step model using clinical-semantic fea-
tures, the univariable ordinal logistic regression analysis 
showed that age, gender, diameter, types, nodule loca-
tion, spiculation, cavitation, vacuole, air bronchograms, 
pleural traction, obstructive pneumonia were indepen-
dent variables for differentiating IASLC grading. The 
final model only included types after the stepwise mul-
tivariable ordinal logistic regression analysis. Regarding 
the one-step model using radiomics features, the analysis 

Table 1  Patient characteristics in the training and validation sets for IASLC grading
Variables Training set (n = 370) Validation set (n = 159)

IASLC 1 IASLC 2 IASLC 3 P value IASLC 1 IASLC 2 IASLC 3 P value
Age (years) 56.512 ± 9.02 58.877 ± 8.878 60.521 ± 9.806 0.017 56.933 ± 10.826 57.543 ± 8.831 58.939 ± 8.119 0.716
Gender 0.046 0.288
  Male 22 51 127 6 13 41
  Female 19 63 88 9 33 57
Diameter (cm) 1.82 ± 0.697 1.864 ± 0.973 2.445 ± 1.102 <0.001 1.377 ± 0.365 1.792 ± 0.922 2.368 ± 0.991 <0.001
Types <0.001 <0.001
  Solid 3 85 187 1 30 80
  Subsolid 38 29 28 14 16 18
Nodule location 0.035 0.051
  Peripheral 41 110 196 15 46 89
  Central 0 4 19 0 0 9
Shape 0.179 0.002
  Irregular 18 35 63 11 16 27
  Regular 23 79 152 4 30 71
Lobulation 0.343 0.001
  No 16 40 63 12 15 30
  Yes 25 74 152 3 31 68
Spiculation 0.001 <0.001
  No 26 59 77 13 24 29
  Yes 15 55 138 2 22 69
Cavitation 0.088 0.231
  No 41 108 196 15 40 91
  Yes 0 6 19 0 6 7
Vacuole 0.017 0.162
  No 33 101 162 11 42 79
  Yes 8 13 53 4 4 19
Air bronchograms 0.003 0.048
  No 39 79 152 14 40 71
  Yes 2 35 63 1 6 27
Pleural traction 0.004 0.010
  No 18 49 57 9 17 23
  Yes 23 65 158 6 29 75
Vascular convergence 0.357 0.926
  No 14 53 98 7 20 46
  Yes 27 61 117 8 26 52
Obstructive pneumonia 0.001 0.018
  No 41 109 184 15 46 86
  Yes 0 5 31 0 0 12
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of the mRMR, LASSO and multivariate ordinal logistic 
regression methods selected the predictive radiomics 
features including exponential_firstorder_Robust-
MeanAbsoluteDeviation, wavelet-LLL_glrlm_HighGray-
LevelRunEmphasis, and logarithm_firstorder_Skewness 
to construct the final model for IASLC grading. The par-
allel regression assumption was also not violated. The 
Rad-score in the one-step model using radiomics features 
was shown in the supplementary.

Performance of submodels in two-step models
The AUC performance of the clinical-semantic and 
radiomics submodels in the two-step models are shown 
in Fig. 4. The radiomics submodel had significantly higher 
AUCs than the clinical-semantic submodel for high grade 
pattern prediction (0.95 vs. 0.77, p < 0.001; 0.96 vs. 0.77, 
p < 0.001) in both the training and validation sets. For 
the prediction of predominant subtypes, the radiomics 

submodel significantly outperformed the clinical-seman-
tic submodel in the training set and showed no significant 
difference in performance on the validation set (p = 0.52).

Performance comparison between two-step and one-step 
models
We calculated the performance of the two-step and 
one-step models using either radiomics features or clin-
ical-semantic features for IASLC grading, as shown in 
Table  2. When differentiating IASLC grades, the two-
step model using radiomics features yielded the highest 
AUC values. The AUCs for the models using radiomics 
features in grade 3 were higher than those for the models 
using clinical-semantic features regardless of the model 
steps. In the comparison of one-step and two-step mod-
els using radiomics features for IASLC grading, the two-
step model was found to outperform the one-step model 
in predicting grades 2 and 3 (0.88 vs. 0.63, p < 0.001, 0.95 

Fig. 4  Receiver operating characteristic curves of the submodels for predicting high-grade patterns ≥ 20% and predominant subtypes in invasive non-
mucinous pulmonary adenocarcinoma
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vs. 0.82, p < 0.001; 0.85 vs. 0.53, p < 0.001; 0.96 vs. 0.81, 
p < 0.001) in both datasets. Similarly, the two-step model 
had significantly better performance than the one-step 
model when using clinical-semantic features as input for 
the classification of grades 2 and 3 (all p < 0.001). We also 
assessed the classification agreement between the models 
and the pathologist’s IASLC grading in Table 2. The table 
showed that compared to the two-step model using clin-
ical-semantic features or the one-step models, the two-
step model using radiomics achieved an overall higher 
classification agreement with the pathologist in IASLC 
grading. The agreement value of the two-step radiomics 
model exceeded 0.7 for grade 3, indicating the potential 
of the model for accurately identifying high-grade cases 
and assisting in preoperative treatment planning.

For the three IASLC grades, the two-step radiomics 
model showed better net benefit than the other models, 
as shown in Fig. 5. In particular, the two-step radiomics 
model for grade 3 achieved good net benefits across vari-
ous thresholds, highlighting its potential to identify high-
grade patients and providing valuable insights for clinical 
decisions regarding neoadjuvant therapy and lymph node 
dissection before surgery. Additionally, the two-step 

models, whether using radiomics or clinical-semantics 
features, outperformed the one-step models when using 
the same input features. This may reflect the superiority 
of predicting high-grade patterns and predominant sub-
types in two steps for IASLC grading.

Discussion
We developed a two-step radiomics model for the dif-
ferentiation of IASLC grades in invasive non-mucinous 
pulmonary adenocarcinoma. The model yielded accurate 
results on the prediction of high grade patterns > 20% and 
predominant subtypes, which results in high AUC scores 
of 0.95, 0.85 and 0.96 on the validation set for three cat-
egory IASLC grading. The results suggested that the pro-
posed model may assist radiologists in the stratification 
of patients according to different IASLC grades, thereby 
supporting treatment planning prior to surgery.

Studies have shown that radiomics features on CT 
images can describe predict the presence of high-grade 
patterns [8, 27]. For example, Chen et al. utilized cases 
with nearly pure lung adenocarcinoma to develop a 
radiomics method [27]. The method can assess micro-
papillary and solid components using patch-wise image 

Table 2  Diagnostic performance of one-step and two-step models for IASLC grading. One-step and two-step models used either 
radiomics features (RF) or clinical-semantic features (CF) as input. The highest AUC values along with 95% their confidence intervals (CI) 
are shown in bold. The Cohen’s kappa test was used to assess the classification agreement between the models and the pathologist’s 
IASLC grading
Model variants IASLC grades Training set Validation set

AUC(95%CI) Sensitivity Specificity F1 Kappa AUC(95%CI) Sensitivity Specificity F1 Kappa
Two-step (RF) 1 0.96(0.94–0.98) 0.98 0.87 0.65 0.58 0.95(0.91–0.99) 0.87 0.85 0.53 0.46

2 0.88(0.84–0.91) 0.47 0.92 0.57 0.44 0.85(0.80–0.91) 0.37 0.89 0.45 0.30
3 0.95(0.93–0.97) 0.88 0.85 0.89 0.73 0.96(0.94–0.98) 0.89 0.85 0.90 0.74

One-step (RF) 1 0.95(0.91–0.97) 0.93 0.90 0.68 0.63 0.92(0.85–0.98) 0.80 0.88 0.55 0.48
2 0.63(0.57–0.69) 0.36 0.83 0.41 0.20 0.53(0.42–0.64) 0.37 0.79 0.39 0.16
3 0.82(0.77–0.86) 0.78 0.70 0.78 0.48 0.81(0.73–0.88) 0.74 0.74 0.78 0.47

Two-step (CF) 1 0.91(0.87–0.95) 0.93 0.84 0.58 0.50 0.92(0.87–0.97) 0.74 1.00 0.44 0.34
2 0.66(0.60–0.72) 0.66 0.59 0.51 0.21 0.68(0.58–0.77) 0.86 0.50 0.54 0.38
3 0.77(0.71–0.81) 0.82 0.60 0.78 0.43 0.77(0.68–0.84) 0.67 0.78 0.78 0.44

One-step (CF) 1 0.90(0.85–0.94) 0.90 0.88 0.64 0.58 0.88(0.80–0.93) 0.93 0.76 0.44 0.35
2 0.53(0.47–0.58) 0.31 0.75 0.33 0.05 0.44(0.35–0.53) 0.07 0.94 0.11 0.00
3 0.67(0.62–0.73) 0.93 0.38 0.78 0.33 0.63(0.54–0.72) 0.82 0.49 0.77 0.32

Fig. 5  Decision curve analysis for different models. 2-R, 1-R, 2-C, 1-C represent two-step radiomics, one-step radiomics, two-step clinical-semantics and 
one-step clinical-semantics models
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analysis with an AUC of 0.86. Another study built 
and compared four machine learning algorithms with 
radiomics features for the prediction of presence of 
micropapillary or solid patterns [28]. The best performed 
algorithm achieved an AUC of 0.75 in the internal vali-
dation. Compared to their studies, our radiomics sub-
model yielded a higher AUC of 0.96 on the validation 
set. This might be explained by the fact that predicting 
high-grade patterns > 20% was easier than assessing the 
presence of high-grade patterns. Other researchers also 
studied if the radiomics method was able to predict pre-
dominant subtypes. The research from Yang et al. showed 
radiomics features can be used to stratify near-pure lep-
idic, papillary, acinar, micropapillary, and solid subtypes 
in lung adenocarcinoma [29]. Similarly, Park et al. found 
that using CT-based radiomics features differentiated 
the predominant lepidic subtype from acinar or papillary 
subtypes [30], achieving an AUC of 0.86, which was com-
parable to the AUC of our radiomics submodel at 0.78. 
Unlike their studies, we further utilized the prediction 
results of predominant subtypes along with the infor-
mation regarding whether high-grade patterns exceeded 
20% to achieve IASLC grading.

Accurate IASLC grading of lung adenocarcinoma pre-
operative is essential to patients since it not only helps 
predict patient prognosis but also enables the formu-
lation of the treatment approach. To attain this goal, Li 
proposed an ordinal radiomics method utilizing 682 
nodules for IASLC grading. Their method was consid-
ered as a one-step model and tended to misclassify the 
grade 2 to grades 1 or 3 [18]. This is consistent with the 
results of the one-step radiomics model as illustrated in 
the model performance comparison. However, though 
a two-step strategy, our model using radiomics features 
was able to not maintain the high AUCs of grades 1 
and 3, but also improve the performance in grade 2. In 
addition, our two-step radiomics model outperformed 
another radiomics method that was designed to directly 
select grade 3 patients [17], with AUC values of 0.95 vs. 
0.82 and 0.96 vs. 0.81 on the training and validation sets, 
respectively. These findings somehow showed the supe-
riority of our proposed two-step model with radiomics 
features for IASLC grading. In addition to our two-step 
radiomics model, deep learning can also have good per-
formance in the classification of IASLC grades. For 
example, a study employed deep learning models includ-
ing ResNet, VGG, and InceptionNet to perform IASLC 
grading [31]. Trained on CT data from 339 patients 
with invasive adenocarcinoma, their deep learning sys-
tem achieved AUC values of 0.93, 0.80, and 0.95 for 
grades 1, 2, and 3 on a test set of 76 patients. However, 
deep learning often faces challenges in the interpretabil-
ity of its predictions. In contrast, radiomics can provide 
a rad_score equation incorporating first-order features, 

which describe the statistical distribution of pixel intensi-
ties and transform-based features, such as wavelet-trans-
formed characteristics, which capture multi-scale image 
information. By integrating these features, radiomics 
models can enhance interpretability, making them more 
accessible for both clinicians and patients and facilitating 
their clinical application.

We also explored the impact of CT acquisition vari-
ability on model performance. Table S7 shows that 
there was no difference in the AUC values of the two-
step radiomics model between the two vendor settings. 
However, the F1 score of the model for grade 1 in the 
GE scans was significantly higher than that of the model 
in the Siemens scans. This might suggest that including 
more Siemens scans on grade 1 is needed to improve 
model performance.

The study also had some limitations. First, the data 
used in this study was obtained from a single centre. 
Difference in population, parameters of CT scanners 
and image reconstruction algorithms may affect the 
performance of the model applied on other cohorts. In 
the future study, we will collect data from other institu-
tions to further optimize the model and validate it across 
diverse patient populations. Second, The study retro-
spectively collected data to develop a model for predict-
ing IASLC grading. Further investigation is warranted to 
assess the accuracy of the model in prospective patient 
cohorts and to explore the correlation between grading 
predictions and patient outcomes. Third, we only con-
sidered semantic CT features and patient information 
including age and gender to develop the clinical-semantic 
models. Integrating other data, such as smoking history, 
lymphovascular invasion, and genomic alterations, may 
provide added value for better reflecting the relation-
ship between invasive pulmonary adenocarcinoma and 
IASLC grades [32].

Conclusion
In conclusion, through the prediction of predominant 
subtypes and high-grade patterns, we presented a two-
step radiomics model for the differentiation of IASLC 
grading in invasive pulmonary adenocarcinoma. The 
model had potential to provide accurate IASLC grading 
for patients before surgery.
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