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Abstract 

Background Undifferentiated pleomorphic sarcoma (UPS) is the largest subgroup of soft‑tissue sarcomas. It demon‑
strates post‑therapeutic hemosiderin deposition, granulation tissue formation, fibrosis, and calcification. Our research 
aims to establish the multiparametric MRI (mp‑MRI) value for predicting UPS treatment response.

Methods An IRB‑approved retrospective study included 33 extremity UPS patients with pre‑operative mp‑MRI, 
including diffusion‑weighted imaging (DWI), contrast‑enhanced susceptibility‑weighted imaging (CE‑SWI), and per‑
fusion‑weighted imaging with dynamic contrast‑enhancement (PWI/DCE), and surgical resection between Febru‑
ary 2021 and May 2023. Lesions were visually classified on CE‑SWI into one of 6 morphology patterns. On PWI/DCE, 
lesions were classified into one of 6 patterns, and time‑intensity curves (TICs) were classified as types I‑V. Patients were 
categorized into three groups based on the percentage of pathology‑assessed treatment effect (PATE) in the surgical 
specimen: Responders (> = 90% PATE, n = 16), partial‑responders (31–89% PATE, n = 10), and non‑responders (< = 30% 
PATE, n = 7).

Results At post‑radiation therapy (PRT), a CE‑SWI Complete‑Ring pattern was observed in 71% of responders 
(p = 7.71 ×  10–6). On PWI/DCE images, 79% of responders displayed a Capsular pattern (p = 1.49 ×  10–7), and 100% 
demonstrated a TIC‑type II (p = 8.32 ×  10–7). ROC analysis comparing responders (n = 14) vs. partial/non‑responders 
(n = 16) at PRT showed that the model combining PWI/DCE TIC‑type II, PWI/DCE Capsular pattern, and CE‑SWI 
Complete‑Ring pattern yielded the highest classification performance (AUC = 0.99), outperforming PWI/DCE Capsu‑
lar + TIC‑type II (AUC = 0.97), PWI/DCE Capsular (AUC = 0.89), PWI/DCE TIC‑type II (AUC = 0.88), and CE‑SWI Complete 
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Ring (AUC = 0.79). Contrary to prior reports, DWI/ADC played a secondary role in predicting response: ADC mean & 
skewness (AUC = 0.63). RECIST demonstrated 100% stability at PRT and 100% pseudo‑progression at PC in responders 
and partial/non‑responders (AUC = 0.47).

Conclusion Mp‑MRI‑derived features are valuable in assessing UPS treatment response. A pre‑operative model 
that combines PWI/DCE TIC‑type II, PWI/DCE Capsular pattern, and CE‑SWI Complete Ring pattern can reliably pre‑
dict successfully treated UPS with > = 90% PATE, outperforming RECIST, which was proven unreliable in separating 
responders from partial/non‑responders. Institutions that have not yet implemented CE‑SWI can rely on a single‑
sequence approach based on PWI/DCE, combining the presence of TIC II and Capsular enhancement as criteria 
for response prediction.

Keywords Soft tissue sarcoma (STS), Undifferentiated pleomorphic sarcoma (UPS), Pathology‑assessed treatment 
effect (PATE), Multiparametric MRI, Radiomics

Introduction
Undifferentiated pleomorphic sarcoma (UPS) is the 
largest soft-tissue sarcoma (STS) subgroup, represent-
ing approximately 20% of all cases. UPS is considered a 
diagnosis of exclusion when all identifiable lines of his-
topathologic differentiation have been excluded. It can 
arise anywhere in the body and any age group, although 
it is more common in older patients [1, 2]. UPS repre-
sents an archetypical cellular STS imaging tumor model 
significantly different from primary myxoid, chondroid, 
lipomatous, or fibrous-rich STS [2, 3].

The Response Evaluation Criteria in Solid Tumors 
(RECIST) version 1.1 [4] is mainly based on the size meas-
urement of lesions. Using RECIST for treatment response 
assessment provides standardized lesion size metrics that 
enable interobserver reliability and facilitate data com-
parison from different trials [5]. Nevertheless, RECIST 
is relatively insensitive to detecting early tumor response 
and incapable of characterizing lesion composition, viabil-
ity, and tumor-associated inflammation or immune cell 
infiltration [5]. After treatment, UPS shows reduced cel-
lularity with degenerative cytological changes, necrosis, 
and hyalinization. Hemorrhage, hemosiderin deposition, 
and foamy macrophages can also be observed. These find-
ings help determine the percentage of pathology-assessed 
treatment effect (PATE) [6, 7]. A high percentage of PATE 
is a strong indicator of a favorable prognosis in sarcomas 
[7]. Increased histologic necrosis after neoadjuvant therapy 
may lead to higher rates of R0 resection and facilitate limb 
salvage in tumors deemed unresectable [7, 8]. STS patients 
often receive systemic treatment with anthracyclines and 
alkylating agents. In our institution, systemic therapy most 
commonly includes doxorubicin and ifosfamide, frequently 
preceding radiation therapy, typically before surgery.

Advantages of multiparametric MRI (mp‑MRI)
Traditional methods of assessing tumor response, such 
as RECIST, the World Health Organization (WHO) cri-
teria, and volumetric measurements, have limitations 

in accurately evaluating tumor response [1, 4]. Typically 
based on conventional imaging, these methods focus on 
the tumor size and morphology. UPS generally appears 
as a heterogeneously enhancing mass in the soft tissues 
and displays a similar signal to muscle on T1-weighted 
sequences, representing a diagnostic challenge. On 
T2-weighted sequences, central hyperintense regions can 
indicate necrosis or hemorrhage and could lead to a mis-
diagnosis of a benign hematoma [9]. To overcome such 
limitations, mp-MRI, including diffusion-weighted imag-
ing (DWI) and perfusion-weighted imaging with dynamic 
contrast-enhanced imaging (PWI/DCE), provides a 
more comprehensive assessment of the tumor’s biology, 
including its cellularity and vascularity [10]. Susceptibil-
ity-weighted imaging (SWI) is sensitized to T2*-related 
signal contrast, adding valuable information about hem-
orrhage, fibrosis, and calcifications [11]. Hence, mp-MRI 
can help identify post-therapeutic histologic changes, 
such as the development of granulation tissue and fibro-
sis, which may be difficult to distinguish from viable 
tumor tissue using conventional imaging methods [5, 12].

Diffusion-weighted imaging and apparent diffusion 
coefficient (DWI/ADC) are sensitive to the density of 
tumor cells within soft tissue sarcomas (STS). DWI uti-
lizes the random movement of water molecules to char-
acterize the cellularity of malignant tumors. Malignant 
tumors generally have fewer extracellular spaces and 
less cytoplasm than benign tissues [13–15]. The appar-
ent diffusion coefficient (ADC) values can be computed 
using either a simple mono-exponential model or more 
sophisticated models to quantify the degree of diffu-
sion [15, 16]. Malignancies typically exhibit restricted 
diffusion, resulting in lower ADC values, which helps 
to distinguish them from benign lesions that usually 
demonstrate higher ADC values. Effective therapy lead-
ing to cell death increases water diffusion and results 
in higher ADC values. DWI/ADC has shown value as 
a potential biomarker of response in sarcoma patients 
undergoing neo-adjuvant therapy (NAT) [17–19].
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Perfusion-weighted imaging with dynamic contrast 
enhancement (PWI/DCE) acquires a series of rapid scans 
after injecting an intravenous contrast agent. It allows for 
the analysis of tissue perfusion kinetics [3] by qualitative, 
semi-quantitative, or quantitative [3, 10] approaches. It 
helps identify viable malignant tumor tissue by show-
ing distinct perfusion patterns. Malignant tissues usu-
ally show rapid early enhancement compared to benign 
tumors [12, 20]. PWI/DCE can assist in guiding biopsies 
and identifying histologic changes after therapy. When 
combined with DWI, PWI/DCE increases the accuracy 
of diagnosing therapeutic responses compared to con-
ventional, anatomic post-contrast imaging alone [3, 5].

Susceptibility-weighted imaging (SWI) is a 3D high-
spatial-resolution, velocity-corrected gradient-echo MRI 
sequence. It creates images with magnitude and filtered-
phase information [11] and uses tissue magnetic suscep-
tibility differences to generate signal contrast. The signal 
arises from paramagnetic (hemosiderin), diamagnetic 
(minerals and calcifications), and ferromagnetic (metal) 
molecules, resulting in a loss of signal [11, 21] that can be 
analyzed for patterns. Contrast-enhanced susceptibility-
weighted imaging (CE-SWI) can simultaneously detect 
the hemorrhage-related T2* susceptibility effect, the 
necrotic fluid T2 signal, and contrast-induced T1 short-
ening from the viable enhancing tumor [22, 23]. Recent 
studies have shown that CE-SWI can differentiate viable 
tissue from hemorrhagic/necrotic components in soft tis-
sue sarcomas, potentially providing valuable biomarkers 
for tumor treatment response assessment [22, 23].

An mp-MRI-based model capable of replacing RECIST 
for local tumor evaluation can contribute to a more accu-
rate prediction of UPS treatment response. This could 
help reduce patients’ unnecessary treatment toxicity and 
increased risk for resistance to future chemotherapeutic 
agents and allow them to transition to surgery sooner 
and with potentially improved outcomes. This could 
enable building a theranostic/predictive model, allowing 
therapy modifications or adjustments during NAT.

Study objective
Following a 3-year effort to separately validate the use of 
DWI/ADC, PWI/DCE, and CE-SWI in predicting UPS 
treatment response [19, 24], we now aim to determine the 
best predictive model and its clinical relevance and utility 
by comparing the performance of multiparametric MRI-
derived morphologic, qualitative, semiquantitative, first- 
and high-order radiomics features. Analysis of this data 
will be used to identify the highest-performing combina-
tion of parameters to create a clinically usable model that 
can reliably predict PATE and overall therapeutic effec-
tiveness, potentially replacing RECIST for local tumor 
evaluation. This study represents the first demonstration 

of mp-MRI feature-based predictive modeling, including 
DWI, PWI/DCE, and CE-SWI, for extremity UPS treat-
ment response assessment, which could potentially be 
generalized to other types of STS.

Methods
Disclosures and statements
Ethics and methodology
The current research article does not include animal or 
human experimentation and is not part of a clinical trial. 
All included authors have contributed to the current 
article and all data collection, management, and process-
ing methods were performed by all the institutional and 
generally accepted relevant clinical, research and ethical 
guidelines and regulations, including but not limited to 
the protection of data veracity and personal health infor-
mation (PHI).

IRB and waiver of consent
Due to the study’s retrospective nature, The UT MD 
Anderson Cancer Center Institutional Review Board 
waived the need to obtain informed consent and gave 
ethical and administrative approval to our research under 
the IRB identifier PA16 - 0857 Protocol Name: “Utility of 
imaging of bone and soft tissue tumors and disease and 
treatment-related changes for diagnosis, prognosis, treat-
ment response, and outcome.”

Data availability
The datasets used and analyzed during the current study 
are available from the corresponding author upon rea-
sonable request.

Funding
Charitable funding sources of our research include 
The John S. Dunn, Sr. Distinguished Chair in Diagnos-
tic Imaging, and the M.R. Evelyn Hudson Foundation 
Endowed Professorship funds.

Institutional MRI protocol
We performed functional MRI sequences, including 
DWI/ADC, CE-SWI, and PWI/DCE [3, 5]. Parameters 
were tailored according to MRI vendor and field strength. 
During the pre-operative treatment, multiple scans were 
acquired for each patient and compiled into three time 
points: Baseline (BL, pre-therapy), post-systemic chemo-
therapy (PC), and pre-operative/post-radiation (PRT) 
time points. For patients with STS, we typically conduct 
a pre-therapy baseline study, one to three MRIs during 
systemic chemotherapy, and at least one post-radiation 
study one to two months after radiation therapy and 
immediately before surgical resection.
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Patient population, patient inclusion, and exclusion
This retrospective study analyzed a total of 5,135 mul-
tiparametric MRI (mp-MRI) scans performed for extrem-
ity soft tissue sarcomas (STS) using our institutional 
fleet of 29 magnets, which includes both 1.5 T and 3.0 
T scanners from two different manufacturers, between 
February 2021 and May 2023. During this period, 643 
UPS mp-MRI studies were completed, encompassing 
pre-operative assessments of primary tumors and post-
operative surveillance studies. We excluded all myxoid-
UPS and post-operative surveillance cases. We focused 
our study on 33 surgically resected cases of undifferen-
tiated pleomorphic sarcomas (UPS) that had undergone 
presurgical mp-MRI. The following cases were excluded 
from the analysis:

• 18 cases that did not receive neoadjuvant chemother-
apy before surgical resection (excluded from the PC 
analysis only).

• 3 cases that did not receive neoadjuvant radiotherapy 
before surgical resection (excluded from the PRT 
analysis only).

• One case did not include post-radiotherapy contrast-
enhanced susceptibility-weighted imaging (CE-SWI) 
(excluded only from the CE-SWI PRT analysis).

The study population of 33 patients ranged in age from 
36 to 85 (the average age was 64, Table 1). Twenty were 
male (61%), and 13 were female (39%).

Surgical specimen pathology assessment
Following our institution’s standard of practice report-
ing pathology treatment effects, patients were catego-
rized into three groups based on the surgical specimen’s 
pathology-assessed treatment effect (PATE) percentage. 
Tumors demonstrating over 90% PATE were classified 
as responders (R, n = 16), tumors with a PATE in the 
31–89% range were labeled as partial responders (PR, n = 
10), and tumors with a PATE of 30% or less were consid-
ered non-responders (NR, n = 7).

MRI exams
Of the 33 patients, 10 underwent BL MRI studies out-
side of our institution without mp-MRI, while their 
subsequent PC and PRT mp-MRIs were obtained at our 
institution. These 10 BL patients were excluded from 
the multiparametric analysis although included in the 
conventional size-based RECIST, WHO, and volume 
analysis. For the remaining 23 patients, a complete set 
of advanced MRI studies, including PC and PRT, was 
performed at our institution. 23 patients were included 
in the BL group, 15 in the PC group, and 30 in the PRT 
group (Table 1).

MRI storage and post‑processing
MRI data sets were transferred to the institutional Pic-
ture Archiving and Communication System (IntelliSpace 
PACS, Philips, Amsterdam, Netherlands). MR images 
were retrieved from the institutional database, and each 
tumor was manually contoured in three dimensions, 
creating a tumor Volume of Interest (VOI) segmenta-
tion. MIM software version 7.1.4 (MIM Software Inc., 
Cleveland, USA) was used to outline, process, and gen-
erate VOIs from mp-MRI. VOI segmentation provided 
total tumor representation, including all areas of necro-
sis and enhancing tumor, allowing a more reliable tumor 
mapping than an arbitrary 2-D region of interest (ROI) 
segmentation. Although manual segmentation is time-
consuming and requires expert Research Assistant (RA) 
contouring and oversight by a senior radiologist, it is our 
preferred method. No alternative effective automated 
segmentation method is currently available in our insti-
tution. This manual 3-D tumor segmentation process 
took approximately 60 min per patient. The segmented 
tumor VOI files were subsequently exported from MIM 
as RT-Struct files for further analysis using an in-house 
developed Python-based vendor-and sequence-neutral 
application: Cancer Radiomic and Perfusion Imaging 
(CARPI) automated framework [17], capable of inten-
sity histogram-based first-and high-order radiomic fea-
ture extraction from advanced MRI sequences. A total 
of 107 radiomic features were extracted from the CE-
SWI and DWI/ADC tumor VOIs, including shape (14 

Table 1 Summary of the UPS patient population included in the 
study

Total UPS Patients 33

Total Male 20 (61%)

Total Female 13 (39%)

Average Age 64 years 
(range 36–85 
years)

Responders (≥ = 90% PATE) 16

Partial Responders (Between 89 and 31% PATE) 10

Non‑Responders (≤ 30% PATE) 7

Total External Baseline (Conventional Imaging) 10

Total CE‑SWI Baseline Studies 23

Total PWI/DCE Baseline Studies 23

Total DWI/ADC Baseline Studies 23

Total CE‑SWI Post‑Chemo Studies 15

Total PWI/DCE Post‑Chemo Studies 14

Total DWI/ADC Post‑Chemo Studies 15

Total CE‑SWI Post‑Radiation Studies 29

Total PWI/DCE Post‑Radiation Studies 30

Total DWI/ADC Post‑Radiation Studies 30
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features), first-order statistics (18 features), and texture 
(75 features). Specific details on the 107 volumetric radi-
omic features extracted by CARPI have been previously 
presented [17]. CARPI also extracted semi-quantitative 
PWI/DCE parameters from time-intensity curves (TICs): 
Wash-in rate (WiR), wash-out-rate (WoR), peak enhance-
ment (PE), wash-in area under the curve (WiAUC), time-
to-peak (TTP), wash-out area under the curve (WoAUC), 
and total area under the curve (AUC) [17, 25]. Tumor 
size for all three orthogonal planes was registered for all 
time points and used to estimate RECIST, WHO, and 
volume data.

Conventional size‑based response assessment metrics
Maximum diameter (RECIST), multiplication of the 
longest and perpendicular cross-sectional diameters 
(WHO), and volumetric measurements were meas-
ured for all 33 patients at PC and PRT with respect to 
BL, comparing responders and partial/non-responders. 
RECIST, WHO, and volume criteria for partial response 
(PR) threshold were set at 30, 50, and 50% decrease, 
respectively. Progressive disease (PD) threshold was set 
at 20, 25, and 25% increase, respectively [26, 27]. 

PWI/DCE morphologic patterns and TICs
PWI/DCE images observed at PRT were categorized into 
six groups: Capsular, Unipolar, Bipolar, Non-Nodular, 
Semi-Lunar, and Solid Enhancement (Table  2). In PWI/
DCE, the TIC usually displays three stages of perfusion: 
1) upslope, which reflects contrast wash-in; 2) plateau, 
which represents the steady state of contrast within the 
interstitial fluid but may not be visible in all lesions; and 
3) downslope, which reflects contrast wash-out as gado-
linium passes out of the tissues under examination. The 
TIC shape was subjectively assigned to one of five curve 
types based on their morphology by an experienced radi-
ologist: Types I, II, III, IV, and V (Table 3). Lesions were 
categorized into TIC III, IV, and V when displaying a 
rapid wash-in/early upstroke curve [5, 10].

CE‑SWI morphologic patterns
CE-SWI images were categorized into six T2* morpho-
logical patterns observed at PRT as Complete-Ring, Full-
Blooming, Globular, Incomplete-Ring, Interstitial, and 
No-Blooming (Table  4) [22, 23]. These morphological 
patterns were compared among R, PR, and NR to deter-
mine each category’s most frequently recurring patterns.

Statistical analysis
One-way chi-squared tests were performed to assess 
the association of CE-SWI morphologic patterns, TIC 

Table 2 PWI/DCE morphologic pattern definitions
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Table 3 PWI/DCE time‑intensity curve types
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Table 4 CE‑SWI morphologic pattern definitions
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curves, and PWI/DCE morphologic patterns with 
response. The radiomic features and semi-quantitative 
variables were compared in responders vs. partial/non-
responders using two-tailed non-parametric Wilcoxon 
rank-sum tests. A receiver operating characteristic 
(ROC) analysis of the most relevant mp-MRI features 
was performed for discriminating responders from par-
tial/non-responders. All statistical analyses were imple-
mented in Python 3.10.13 using the SciPy library version 
1.12.0 and the Scikit-Learn library version 1.4.1. Statisti-
cal significance was assessed at 5% (P < 0.05).

Results
RECIST, WHO, and volume metrics
All patients displayed size changes at the post-radia-
tion time point that when compared to their respective 
BL, fell within the range of stability, namely between 
+ 20% and − 30% for RECIST and + 25% and − 50% for 
WHO and volume (Fig.  1) [26]. Pseudo-progression 
occurs when a tumor increases in size from its origi-
nal baseline, followed by a reduction in size on subse-
quent imaging or pathological assessment, without any 
change in therapy or indication of progression [5, 28]. 
All PR/NR cases demonstrated pseudo-progression at 

the end of systemic treatment, crossing the threshold 
of + 20% for RECIST and + 25% for WHO and volume 
assessments. All R presented WHO and volumetric 
pseudo-progression at PC (Fig. 1).

DWI/ADC radiomics at PRT
First-order radiomics: Responders displayed a 35% 
increase in ADC mean (P = 0.0034), a 136% decrease 
in skewness (P = 0.0001), and a 363% increase in 90 
th percentile proportion (P = 0.0009) with respect to 
BL (Fig.  2). Partial/non-responders displayed a 25% 
increase in ADC mean (P = 0.0136), 154% decrease in 
skewness (P = 0.0136), 4% increase in 10 th percen-
tile proportion (P = 0.0257), and a 184% increase in 90 
th percentile proportion (P = 0.0257). No statistically 
significant differences in high-order radiomic features 
were observed in R vs. PR/NR at PRT.

PWI/DCE morphologic patterns, qualitative 
and semiquantitative parameters at PRT
On PWI/DCE images, 79% of R displayed a Capsular pat-
tern (P = 1.49 ×  10–7), and 100% demonstrated a TIC-type 
II (P = 8.32 ×  10–7) (Fig. 3). 80% of PR showed a Unipolar 

Fig. 1 Conventional sized‑based response assessment metrics in responders and partial/non‑responders comparing changes in diameter (RECIST), 
multiplication of the longest and perpendicular cross‑sectional diameters (WHO), and volume at post‑chemo (PC) and post‑radiation (PRT) 
with respect to baseline (BL). The green and red vertical lines indicate partial response and progression thresholds, respectively, for RECIST, WHO, 
and volume. RECIST, WHO and Volume analysis all show universal pseudo progression at PC and stability at PRT, rendering these size‑based metrics 
useless to separate R vs PR/NR
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pattern (P = 1.03 ×  10–5), 60% expressed a TIC-type V 
(P = 0.06). 50% of NR displayed a Bipolar pattern (P = 
0.1562), and 83% expressed a TIC-type V (P = 0.0302). 
Statistical significance for wash-in rate (WiR; P = 0.0078) 
and wash-out rate (WoR; P = 0.023) was observed, sepa-
rating responders vs. partial/non-responders (Fig. 4).

CE‑SWI morphologic patterns and radiomics at PRT
A CE-SWI Complete Ring pattern was observed in 71% 
of R (P = 7.71 ×  10–6), an Incomplete Ring pattern was 
observed in 33% of PR (P = 0.2751), and a Globular 
Pattern in 50% of NR (P = 0.1562) (Fig.  3). Post-radi-
ation/Pre-operative CE-SWI derived GLRLM texture 

Fig. 2 Scatter plots showing means with 95% confidence intervals of ADC first‑order radiomics at baseline (BL) vs. post‑chemo (PC) vs. 
post‑radiation (PRT) in responders and partial/non‑responders. a.u.: Arbitrary Units. ADC mean and ADC skewness demonstrated the highest 
performance discriminating R vs PR/NR

Fig. 3 Frequency of CE‑SWI morphological patterns, PWI/DCE morphological patterns, and PWI/DCE time‑intensity curves (TICs) observed 
in responders, partial responders, and non‑responders at post‑radiation (PRT). Please refer to Tables 2–4 for examples of these patterns. CE‑SWI 
Complete‑Ring, PWI/DCE Capsular pattern, and PWI/DCE TIC type II are the most prevalent patterns observed in responders, while PWI/DCE 
Unipolar enhancement and PWI/DCE TIC type V are often seen in PR/NR
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radiomic features, including GLRLM Low Gray Level 
Run Emphasis (P = 0.004), GLRLM Short Run Low 
Gray Level Emphasis (P = 0.006) and GLRLM Long 
Run Low Gray Level Emphasis (P = 0.0088) signifi-
cantly discriminated R from PR/NR (Fig. 5).

ROC analysis of CE‑SWI and PWI/DCE morphologic patterns 
and qualitative features
ROC analysis comparing R (n = 14) and PR/NR (n = 
16) at PRT demonstrated that the model combining 
the PWI/DCE TIC-type II, PWI/DCE Capsular pattern 
and CE-SWI Complete Ring pattern yielded the highest 
classification performance (AUC = 0.99) (Fig. 6A), out-
performing models based on PWI/DCE Capsular and 
TIC-type II (AUC = 0.97), PWI/DCE Capsular (AUC 
= 0.89), PWI/DCE TIC-type II (AUC = 0.88), and CE-
SWI Complete Ring (AUC = 0.79).

ROC analysis of DWI/ADC and CE‑SWI radiomic features
ROC analysis comparing the most significant radi-
omic features in R (n = 14) vs. PR/NR (n = 16) at PRT 
showed that the model based on CE-SWI GLRLM 
Low Gray Level Run Emphasis, which measures the 

concentration of low gray-level values in the image, 
yielded the best classification performance (AUC 
= 0.81) (Fig.  6B), outperforming models based on 
PWI/DCE WiR (AUC = 0.79), CE-SWI skewness 
(AUC = 0.69), ADC mean (AUC = 0.61), ADC skew-
ness (AUC = 0.47), CE-SWI mean (AUC = 0.41) and 
RECIST (AUC = 0.47).

A comparison of the ROC curves of all morpho-
logic, qualitative, and radiomic features is presented 
in Fig. 6C. In addition, a comparison of the best-per-
forming models based on the most relevant features 
from DWI/ADC, PWI/DCE, and CE-SWI against 
RECIST is presented in Fig. 6D. Finally, Fig. 6E dem-
onstrates that the model with the best performance 
combines the PWI/DCE TIC-type II, PWI/DCE Cap-
sular pattern, and CE-SWI Complete Ring pattern 
(AUC = 0.99), significantly outperforming RECIST 
(AUC = 0.47).

Discussion
Treatment effect in UPS
After treatment, undifferentiated pleomorphic sarcoma 
(UPS) can show hemosiderin deposition (TIH), granu-
lation tissue formation, fibrosis (TIF), and sometimes 

Fig. 4 Violin plots of seven PWI/DCE semi‑quantitative parameters comparing responders (R) vs. partial/non‑responders (PR/NR) at post‑radiation 
(PRT). Significant differences (P < 0.05) were observed in WiR and WoR. a.u.: Arbitrary Units
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Fig. 5 Violin plots of the top 10 CE‑SWI radiomic features comparing responders (R) vs. partial/non‑responders (PR/NR) at post‑radiation (PRT). 
Statistically significant differences (P < 0.05) were observed in nine out of 10 radiomic features. s.v.: Standardized Value

Fig. 6 Receiver operating characteristic curves of classification models comparing responders vs. partial/non‑responders at post‑radiation based 
on (A) morphologic and qualitative features, (B) radiomic features, and (C) morphologic, qualitative, and radiomic features, (D) best performing 
DWI/ADC, PWI/DCE, and CE‑SWI models, and (E) best‑performing model overall. AUC: Area Under Curve
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calcification. Evaluating the response of soft tissue sar-
comas (STS) can be difficult after systemic or radiation 
therapy, as most treated STSs contain a mix of tissue 
components, including tumor cells, TIH, and TIF. Addi-
tionally, viable tumor cells may be replaced with benign 
tissue, such as fibrosis (TIF) and granulation tissue, 
rather than undergoing liquefaction or hemorrhagic 
necrosis, which challenges conventional imaging-based 
determination of the degree of treatment response. Con-
versely, the tumor may decrease, increase, or remain the 
same size. Response criteria such as RECIST require a 
significant reduction in tumor size to indicate a positive 
response. Our study results revealed pseudo-progres-
sion at PC and universal stability at PRT by RECIST in 
both responders and partial/non-responders. This sug-
gests the unreliability of RECIST, WHO, and volumetric 
measurements for predicting histopathological effects, 
distinguishing between responders and partial/non-
responders, and assessing overall treatment effectiveness.

DWI/ADC features in UPS treatment assessment
Our results indicated that from BL to PRT, the ADC 
mean significantly increased by 35% in responders, con-
sistent with previously reported findings [3, 18, 19]. This 
increase in ADC mean was accompanied by a significant 
reduction in skewness (− 136%) and a significant increase 
in the 90 th percentile proportion (+ 363%). In sum-
mary, the post-therapeutic first-order radiomic trends 
displayed by responders, including high ADC mean, low 
skewness, and high 90 th percentile proportion, were in 
agreement with the right-sided displacement of the ADC 
histogram typically observed in successfully treated UPS 
with > = 90% PATE [18, 19].

PWI/DCE features in UPS treatment assessment
Our results have shown that a Capsular pattern is a typi-
cal PWI/DCE morphologic feature in the responder 
group (P = 1.49 ×  10–7). A clinical radiologist can read-
ily recognize this pattern without the need for post-pro-
cessing software as is required for first- and high-order 
radiomic feature extraction. However, suboptimal 
responders tend to display a Unipolar or Bipolar pattern 
at PRT. The finding of the described patterns appears to 
follow an evolution where Bipolar seems to be a base-
line default appearance of untreated or unsuccessfully 
treated tumors. Following a partial treatment effect, a 
unipolar pattern becomes prevalent. When successful 
therapy is completed, a capsular pattern emerges, indi-
cating a natural sequence of events going from bipolar to 
capsular, rooted in the vascular organ-like anatomy of the 
tumor, where a dominant arterial pole and a non-domi-
nant arterial opposite pole display maximum vascularity 

in opposition with a central/equatorial area of decreased 
perfusion and spontaneous necrosis and hemorrhage. In 
other words, the capsular pattern represents the com-
plete ablation of dominant and non-dominant vascular 
poles. [24]. Our results also demonstrated that the TIC-
type II displayed the strongest statistical association with 
response at PRT (P = 8.32 ×  10–7). At the same time, TIC-
types III, IV, and V were associated with ineffective treat-
ment of UPS. The TIC universally transitions to type II 
following successful therapy with greater than 90% PATE. 
Therefore, after adequate treatment, there is significant 
resolution of the arterial hypervascularity previously rep-
resented as the rapid early uptake seen in TICs III, IV, 
and V, converting into a slow-ascending curve without 
the early rapid uptake characterized by TIC II. This tran-
sition is highly associated with successful therapy at PRT 
in responders. Finally, our findings demonstrated that 
both qualitative and semi-quantitative parameters, which 
represent a biomarker of arterial flow in active tumors, 
show the potential to distinguish between responders 
and partial/non-responders.

CE‑SWI features in UPS treatment assessment
The relatively recent and novel incorporation of CE-
SWI in MSK oncologic imaging has helped to differenti-
ate between benign and malignant soft tissue tumors, 
as high-grade tumors tend to have spontaneous central 
hemorrhage patterns [29]. In our institution, we have 
found that the CE-SWI sequence can demonstrate the 
viable enhancing portions of an STS separately from T2* 
hypointense hemorrhagic components (both of which 
can demonstrate high T1 signal), suggesting its utility as 
a helpful mechanism for evaluating treatment response. 
TIH is typically associated with low SWI-mean values and 
left-sided intensity histogram displacement with positive 
skewness. Our results have shown that a complete T2* 
hypointense ring is a typical CE-SWI morphologic pat-
tern in the responder group [11, 21, 22, 29]. It is a finding 
readily recognized by the clinical radiologist without the 
need for post-processing software. The results observed 
within the high-order radiomic analysis of R vs. PR/NR 
highlight the value of the grey-level run length matrix 
(GLRLM). The GLRLM was introduced to define texture 
features and assess the distribution of discretized grey lev-
els in an image or a stack of images. The GLRLM indicates 
a highly organized/concentrated pattern of T2* hypoin-
tense/low-intensity voxels representing the hemosiderin 
wall impregnation observed in responding UPS.

Selection of the best UPS response model
Combining features from different sequences
By comparing the diagnostic performance of DWI/
ADC, PWI/DCE, and CE-SWI derived morphologic, 
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qualitative, semiquantitative, and radiomic features by 
ROC analysis, we observed that the model combining 
the pre-operative/PRT PWI/DCE TIC-type II, PWI/DCE 
Capsular and CE-SWI Complete Ring patterns yielded 
the highest area under the curve (AUC = 0.99) in separat-
ing R vs. PR/NR, demonstrating superiority over individ-
ual or combined models based on DWI/ADC, PWI/DCE 
and CE-SWI morphologic, qualitative, semiquantitative, 
and first- and high-order radiomics.

When analyzing models by sequence rather than by 
feature, Perfusion Imaging (PWI/DCE) using TIC-type II 
and Capsular pattern (AUC 0.97) and Contrast-Enhanced 
Susceptibility Imaging (CE-SWI) combining texture radi-
omics/GLRM and complete-ring (AUC 0.89) displayed 
the highest performance when compared with RECIST 
(AUC 0.47), nearly doubling its diagnostic performance.

Contrary to prior reports, DWI/ADC played a second-
ary role in predicting response. ADC mean (AUC = 0.61) 
and ADC mean & skewness (AUC = 0.63) showed supe-
rior performance compared with RECIST (AUC = 0.47), 
although inferior to PWI/DCE and CE-SWI when ana-
lyzed independently or combined. The above could, at 
least in part, be explained by the opposing effect of TIH, 
which tends to spuriously lower ADC values in respond-
ing tumors that otherwise could display a more signifi-
cant increase in ADC. Quantifying the magnitude of such 

phenomena and their impact on ADC measurements is a 
subject for a separate and dedicated research analysis.

Figure 7 displays a representative UPS responder case 
demonstrating a TIC-type II, PWI/DCE Capsular pat-
tern, and CE-SWI Complete Ring pattern at PRT, com-
pared to a representative UPS non-responder case. 
Response assessment based on the Capsular pattern, 
Complete Ring pattern, and TIC-type II provides a valua-
ble multiparametric approach to routine clinical practice. 
These features can be identified subjectively and do not 
require post-processing software. Using mp-MRI, includ-
ing DWI/ADC, PWI/DCE, and CE-SWI, demonstrates 
the potential for accurate treatment response assess-
ment in UPS patients, significantly outperforming con-
ventional metrics such as RECIST (Fig.  6). Institutions 
that have not yet developed CE-SWI can rely on a single-
sequence approach using a perfusion-based model with a 
high diagnostic performance.

Study limitations
Our study presented the following limitations: 1) the sam-
ple size included in the analysis was relatively small (n = 
33) and future studies with a significantly larger number 
of UPS patients will be needed to validate these promis-
ing results further; 2) performing mp-MRI in routine 
clinical practice is challenging as it typically requires a 

Fig. 7 Top panels: Representative UPS responder displaying a PWI/DCE type II curve (A), PWI/DCE Capsular pattern (B), and CE‑SWI complete 
ring pattern (C) at PRT. Bottom panels: Representative UPS non‑responder displaying a PWI/DCE type V curve (D), PWI/DCE bipolar pattern (E), 
and CE‑SWI globular pattern (F) at PRT. PATE: Pathology‑Assessed Treatment Effect
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familiarized clinical radiologist and the implementation 
of the DWI/ADC, PWI/DCE, and CE-SWI sequences 
in the MRI protocol. However, in our experience, these 
sequences usually add no more than 15 min to the routine 
MRI exam while adding valuable functional information 
to the study. As a result, mp-MRI has been adopted as 
part of our current institutional routine extremity tumor 
MRI protocol, allowing clinicians and radiologists from 
our institution to become familiar with it over the last 
four years [3, 5]; 3) Our manual volumetric segmentation 
method could be prone to biases from inter- and intra-
rater variability since it was performed by one research 
assistant in consultation with an experienced radiolo-
gist. Ongoing research efforts to overcome this limitation 
aim at developing a deep learning-based semi-automated 
lesion segmentation tool that can expedite this process 
and reduce potential biases in manual segmentation; 4) 
Finally, the relatively large number of radiomic features 
investigated in this study (107 features) added complexity 
and potential redundancy to our statistical analysis. Sub-
sequent studies to improve our statistical methods will 
examine the use of mp-MRI-derived radiomics and mor-
phologic features in machine learning models trained to 
assess UPS response automatically and objectively. Never-
theless, the proposed mp-MRI models demonstrated the 
potential to outperform conventional size-based metrics 
such as RECIST, WHO, and volumetric measurements 
in predicting treatment-induced histopathologic changes 
and overall treatment effectiveness in UPS.

Conclusion
Mp-MRI-derived radiomic features can be used to 
establish predictive models for UPS treatment response 
assessment that outperform RECIST and other conven-
tional size-based response assessment metrics. Observ-
ing a pre-operative/PRT PWI/DCE TIC-type II, PWI/
DCE Capsular pattern and CE-SWI Complete Ring pat-
tern have been shown to predict successfully treated 
UPS patients with > = 90% PATE. This offers a valu-
able and reliable approach primarily built on PWI/DCE 
and CE-SWI for practicing clinical radiologists with-
out the need for complex post-processing or dedicated 
software. Contrary to prior reports, DWI/ADC played 
a secondary role in predicting treatment response in 
UPS. Although superior to RECIST, it underperformed 
compared to PWI/DCE and CE-SWI.

Although the mp-MRI approach provides the highest 
predictive performance when combining Perfusion (PWI/
DCE) and Contrast-enhanced Susceptibility Imaging (CE-
SWI), institutions that have not yet implemented the use 
of CE-SWI can rely on a single sequence approach based 
on PWI/DCE, combining the presence of TIC II and Cap-
sular enhancement as criteria for response prediction.
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