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Abstract 

Objectives The World Health Organization/International Society of Urological Pathology (WHO/ISUP) grading 
of clear cell renal cell carcinoma (ccRCC) is crucial for prognosis and treatment planning. This study aims to predict 
the grade using intratumoral and peritumoral subregional CT radiomics analysis for better clinical interventions.

Methods Data from two hospitals included 513 ccRCC patients, who were divided into training (70%), validation 
(30%), and an external validation set (testing) of 67 patients. Using ITK-SNAP, two radiologists annotated tumor regions 
of interest (ROI) and extended surrounding areas by 1 mm, 3 mm, and 5 mm. The K-means clustering algorithm 
divided the tumor region into three sub-regions, and the Least Absolute Shrinkage and Selection Operator (LASSO) 
regression identified the most predictive features. Various machine learning models were established, including radi-
omics models, peritumoral radiomics models, models based on intratumoral heterogeneity (ITH) score, clinical mod-
els, and comprehensive models. Predictive ability was evaluated using receiver operating characteristic (ROC) curves, 
area under the curve (AUC) values, DeLong tests, calibration curves, and decision curves.

Results The combined model showed strong predictive power with an AUC of 0.852 (95% CI: 0.725–0.979) 
on the test data, outperforming individual models. The ITH score model was highly precise, with AUCs of 0.891 (95% 
CI: 0.854–0.927) in training, 0.877 (95% CI: 0.814–0.941) in validation, and 0.847 (95% CI: 0.725–0.969) in testing, prov-
ing its superior predictive ability across datasets.

Conclusion A comprehensive model combining Habitat, Peri1mm, and salient clinical features was significantly 
more accurate in predicting ccRCC pathologic grading.

Key points 

Question: Characterize tumor heterogeneity to non-invasively predict WHO/ISUP pathological grading preoperatively.

Findings: An integrated model combining subregion characterization, peritumoral characteristics, and clinical fea-
tures can predict ccRCC grade preoperatively.

Clinical relevance: Subregion tumor characterization outperforms the single-entity approach. The integrated model, 
compared with the radiomics model, boosts grading and prognostic accuracy for more targeted clinical actions.
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Critical relevance statement
The non-invasive preoperative pathological grading 
methods for ccRCC are still imperfect. This study sig-
nificantly improves the prediction accuracy of ccRCC 
pathological grading by integrating intratumoral and 
peritumoral habitat imaging with significant clinical 
features.

Introduction
Renal cell carcinoma (RCC) is the most frequently 
encountered malignant neoplasm of the urinary tract, 
with clear cell renal cell carcinoma (ccRCC) being 
the predominant histological subtype, accounting for 
70–90% of all RCC diagnoses [1]. ccRCC is notable for 
its elevated propensity for metastasis and a less favora-
ble prognosis compared to other RCC subtypes [2, 3], 
thereby significantly impacting patient survival out-
comes. Therapeutic approaches for ccRCC encompass a 
range of interventions, including surgical interventions 
(radical nephrectomy and nephron-sparing surgery), 
radiotherapy, chemotherapy, immunotherapy, and tar-
geted therapy [4–6]. The diverse nature of ccRCC con-
tributes to marked heterogeneity in patient outcomes. 
Empirical studies [7, 8] suggest that histopathological 
grading is a crucial independent prognostic indicator, 
affecting both tumor recurrence and patient survival. The 
World Health Organization/International Society of Uro-
logical Pathology (WHO/ISUP) grading system, as devel-
oped by the World Health Organization (WHO) in 2016, 
is the standard grading system in clinical use, stratifying 
tumors into four distinct grades, with advancing grades 
associated with worsening clinical outcomes [9, 10]. 
Nevertheless, the determination of pathological grade 
is conventionally performed on surgical specimens, and 
preoperative assessment relies on invasive procedures 
such as needle biopsy, which are fraught with limitations 
including procedural invasiveness and the risk of sam-
pling error, potentially leading to misclassification due 
to tumor heterogeneity [11]. Therefore, the identification 
of non-invasive techniques for the preoperative evalua-
tion of the WHO/ISUP grade in ccRCC is of paramount 
importance for accurately assessing tumor biology, 
informing therapeutic decision-making, and prognosti-
cating patient outcomes.

Among the various preoperative screening modali-
ties for renal cancer, computed tomography (CT) is the 
most extensively utilized. Nonetheless, CT alone is not 
yet capable of predicting pathologic grading or provid-
ing comprehensive prognostic assessments. Radiomics, 
as a non-invasive research approach, offers the ability to 
delve into tumor heterogeneity by extracting a wealth of 
features from medical images, thereby increasingly dem-
onstrating its advantage in the diagnosis and pathologic 

grading of ccRCC [12, 13]. However, conventional radi-
omics typically treats the tumor as a monolithic entity, 
overlooking the regional phenotypic diversity within the 
tumor [14]. Intratumoral heterogeneity pertains to the 
genetic and phenotypic discrepancies among distinct 
tumor regions. These disparities result from repeated cell 
division and proliferation during tumor development, 
which alter the molecular biology or genetic profile of 
tumor subclones [15]. ccRCC, being a tumor with high 
heterogeneity, encompasses varied components such as 
necrosis, cystic degeneration, and hemorrhage. These 
distinct regions may exhibit different biological behav-
iors, which can influence the tumor’s growth, response to 
treatment, and ultimate prognosis [16].

In pursuit of advancing personalized treatment strat-
egies, the advent of habitat imaging has introduced a 
groundbreaking approach. This radiomics-based tech-
nique involves the detailed extraction and systematic 
analysis of imaging features from medical imaging data-
sets, with the aim of characterizing and quantifying the 
intrinsic heterogeneity of tissues, as well as elucidating 
the interactions among distinct tumor compartments 
[17]. The primary intent of habitat imaging is to strat-
ify the tumor into various subregions, each exhibiting 
homogeneous characteristics [18], thereby facilitating 
a more nuanced understanding of tumor heterogeneity 
[19]. Previous studies have focused on the relationship 
between intra-tumoral heterogeneity and clinical out-
comes [20, 21]. However, the application of this concept 
to tumor grading has been less extensively investigated. 
Moreover, the majority of these studies have predomi-
nantly employed magnetic resonance imaging (MRI) as 
the imaging modality [14, 22], with few studies in the 
application of habitat analysis to renal cancer using CT 
scans—despite CT being the preferred imaging technique 
for the clinical evaluation of ccRCC. Therefore, our study 
aims to identify subregions with similar characteristics 
from multiphase contrast-enhanced CT images, evaluat-
ing the predictive utility of a radiomics model that incor-
porates the heterogeneity features of these subregions for 
the preoperative pathological grading of ccRCC patients. 
Furthermore, we propose to synthesize a comprehensive 
model by amalgamating habitat imaging with the peritu-
moral attributes of ccRCC patients, thereby assessing the 
predictive strength of an integrated dataset on the patho-
logical grading of ccRCC. Figure 1 provides an illustrative 
outline of our methodological workflow.

Methods
Patients
We retrospectively collected CT imaging data and related 
clinical information of patients diagnosed with ccRCC 
at the Second Affiliated Hospital of Anhui Medical 
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University in China from August 2012 to August 2023. 
This study was approved by the Ethics Committee (No. 
YX2024-219). Since this study is a retrospective analysis, 
informed consent was waived. The inclusion criteria for 
this study were: pathologically confirmed ccRCC; com-
plete preoperative CT examination; no previous surgery 
or other interventional treatment. The exclusion criteria 
were: incomplete clinical data; CT images that could not 
be further analyzed; presence of malignancies in other 
organs. Patients were grouped according to the postop-
erative pathological WHO/ISUP results, with grades I-II 
classified as the low-grade group and grades III-IV as the 
high-grade group. A total of 446 patients were included, 
comprising 294 males and 152 females. These patients 
were divided into two groups: a training cohort (70%) 
and a validation cohort (30%). Additionally, to assess 
the generalizability of the model, we included data from 
67 ccRCC patients from the First Affiliated Hospital of 
Anhui Medical University in China as an external vali-
dation set. The gold standard adopted in this study was 
the histopathological diagnosis of the tissue after surgi-
cal resection. All the included cases were pathologically 
confirmed as ccRCC after the operation, and then were 
graded by pathologists according to the WHO/ISUP 
grading criteria.

Image acquisition
CT scans with Siemens SOMATOM Force, Definition 
AS40 and Philips Brilliance iCT. Patients were positioned 
in the supine position and instructed to hold their breath 
during the scan. The scanning range extended from 
the xiphoid process to the anterior superior iliac spine. 
The scan parameters were as follows: 120 kV, adaptive 

current, 5 mm slice (thickness and interval), 512 × 512 
matrix. The protocol included an initial non-contrast 
abdominal scan, followed by contrast administration. A 
total of 80 mL of iodixanol (300 mgI/mL) was adminis-
tered intravenously into the median cubital vein at a rate 
of 2.5 mL/s using an injector. Subsequent scans were 
performed during the cortical (with a delay of 25–30 
s), parenchymal (60–70 s), and secretory (120–150 s) 
phases, respectively, and covered the same range as the 
initial non-contrast scan.

Image segmentation
Two experienced radiologists (HQ. Z and ZH. C), with-
out prior knowledge of the pathological conditions, 
independently used ITK-SNAP software to manually 
delineate the entire tumor region layer by layer to obtain 
the region of interest (ROI). The delineation range does 
not include perirenal and renal sinus fat. In instances 
where divergences in delineation occurred, a radiologist 
(WJ. Y) with twenty years of experience resolved these 
discrepancies, ensuring the accuracy and reliability of the 
regions of interest (ROI) identification process.

Data preprocessing
In our research work, we implemented a fixed-resolution 
resampling method to standardize the voxel intervals for 
all analyzed samples. At the same time, we set the display 
range of Hounsfield units (HUs). Specifically, the window 
width was set to 300 and the window position was set 
to 25. This standardized processing of data was done to 
ensure accurate comparative analysis between images.

Fig. 1 Overall workflow of this study. ROI: regions of interest; LASSO: Least Absolute Shrinkage and Selection Operator; MSE: Mean Standard Error; 
Peri: Peritumoral; DCA: Decision Curves Analysis
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Intratumor heterogeneity analysis
We used four unique imaging sequences during our 
study: the non-contrast phase, the renal cortical phase, 
the renal parenchymal phase, and the excretory phase. 
These sequences were analyzed independently, with each 
phase employing specific clustering analysis and work-
flows for constructing peritumoral regions for our study.

Peritumoral region dilation
The peritumoral area surrounding the tumor is of sig-
nificant importance for specific medical research. 
Using a platform’s mask filling toolkit, we systemati-
cally expanded the original ROI mask by incrementally 
increasing the radial distance to evaluate the impact of 
these expanded areas on the predictive performance of 
our model. We set expansion intervals of 1 mm, 3 mm, 
and 5 mm to investigate the effects of different extents of 
the peritumoral region on predictive accuracy. Figure  2 
illustrates these expanded peritumoral regions, vividly 
depicting the step-by-step expansion process.

Subregion generation
In this study, we extracted local features like entropy 
and energy from each voxel in the VOI via CT images. 
We used a 5 × 5 × 5 moving window method to calculate 
them, getting a 19-dimensional feature vector per voxel, 
as detailed in Supplementary 1A. Then, we applied the 
K-means clustering algorithm to divide the VOI into sev-
eral discrete subregions (with 3 to 10 clusters). To opti-
mize the segmentation, we used the Calinski-Harabasz 
(CH) score to find the best number of clusters. This 
helped us detail the tumor’s heterogeneity and under-
stand its structural complexity better.

Feature extraction
Handcrafted radiomics features are grouped into geo-
metric (tumor shape/size), intensity (voxel brightness), 

and texture (GLCM, GLRLM, GLSZM, and NGTDM 
etc. for spatial patterns). Analyzed VOI and tumor sub-
regions. KNN managed clustering gaps for label consist-
ency. Extracted features per IBSI with pyradiomics 3.0.1. 
Pre-fusion combined subregion features for better tumor 
grading prediction.

Feature selection
We used the Intraclass Correlation Coefficient (ICC) to 
evaluate the consistency of ROI delineation. In the exper-
iment, we retained features with ICC > 0.8 to reduce the 
impact of delineation on the features.

For relevance analysis, first used Pearson’s correlation 
coefficient to eliminate highly correlated features (0.9 
threshold). Then, mRMR method reduced feature set to 
64 by balancing correlation and independence. Finally, 
obtained radiomic signature via Least Absolute Shrink-
age and Selection Operator (LASSO) regression. LASSO 
penalizes regression coefficients to filter out unneces-
sary features. Optimal regularization parameter λ deter-
mined by ten-fold cross-validation to keep only the most 
predictive features in the model. The steps from initial 
screening to LASSO-based model simplification ensure 
radiomics markers are predictive and stable.

Signature building
In our research work, we constructed a series of machine 
learning models designed to predict Radiomics Signa-
ture, Peritumoral Signature, and ITH score, which utilize 
features screened by the LASSO technique. We opti-
mized the parameters of the models through a five-fold 
cross-validation and Grid-Search algorithm. In addition, 
during the training process, the Synthetic Minority Over-
sampling Technique (SMOTE) was employed to sample 
the training set, to solve the class imbalance problem. At 
the same time, as an essential metric for evaluating the 
predictive performance of a model, the Area Under the 

Fig. 2 Presents the Peritumoral and Intratumor Heterogeneity regions generated. Red indicates the intra-tumoral region, and green represents 
the peritumoral region. The peritumoral region was expanded at intervals of 1 mm, 3 mm, and 5 mm
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Receiver Operating Characteristic Curve is independ-
ent of the proportion of positive and negative samples, 
making it particularly suitable for addressing scenarios 
involving class imbalance.

Radiomics Signature: we used logistic regression for 
linear modeling and combined algorithms such as Ran-
dom Forest, XGBoost, and LightGBM to deal with more 
complex data structures, and constructed a risk assess-
ment model that accurately captures the details of the 
data through a selected set of features.

Peri-tumor radiomics Signature (PeriXmm): The “X” 
here refers to the peri-tumor region. We combine intra- 
and peri-tumor features, applying the same feature 
screening and machine learning algorithms as for the 
intra-tumor radiomics signature.

Intra-Tumor Heterogeneity Score (ITH Score): Our 
clustering algorithm has an unsupervised feature, which 
allows us to avoid Intraclass Correlation Coefficient 
(ICC) analysis, thus ensuring model stability and effec-
tively assessing intra-tumor heterogeneity.

Clinical Signature: we screened clinical features with 
p-values less than 0.05 by univariate and multivariate 
analyses, which were used to construct clinical prediction 
models.

Integrated model: we further validated our integrated 
model by univariate and stepwise multivariate analyses 
that included only clinical features with p-values less 
than 0.05 and combined them with the best Peritumoral 
Signature and Habitat Signature to form the final inte-
grated model. This approach ensured a comprehensive 
assessment and integration of clinical predictors, thereby 
improving the predictive accuracy of the model.

Statistical analysis
We applied the Shapiro–Wilk test to check the clinical 
data’s normal distribution. For continuous variables, we 
chose the t-test or Mann–Whitney U-test based on data 
distribution to assess statistical significance. P-values 
over 0.05 between groups indicated no significant dif-
ference and verified fair grouping. All statistical analyses 
were done on the OnekeyAI platform (version 3.5.12) in 
Python 3.7.12. We used Statsmodels (version 0.13.2) for 
calculations, PyRadiomics (version 3.0.1) for extracting 
radiomics features, and Scikit-learn (version 1.0.2) for 
implementing machine learning algorithms like Support 
Vector Machines (SVM).

Results
This study included an aggregate of 513 patients with 
ccRCC, among which 403 patients were classified as low-
grade according to WHO/ISUP criteria, and 110 patients 
were classified as high-grade.

Clinical features
We collected clinical data, including demographic infor-
mation, clinical manifestations, laboratory tests, tumor 
imaging and morphology (Supplementary Table), to iden-
tify clinical features associated with tumor grading and 
to construct a clinical prediction model. After univari-
ate and multivariate analyses, the characteristics of gen-
der, age, and platelets showed significant differences with 
p-values below 0.05 in the statistical analysis (Table  1). 
Gender differences can affect tumor biological behavior 
and treatment response. Age is a key prognostic factor, 
and higher age may mean a poorer prognosis. Platelet 
count changes may relate to tumor aggressiveness and 
the patient’s coagulation function. Based on these find-
ings, we’ll include these indicators as clinical control fac-
tors in later studies to analyze their impact further.

Habitat generation and feature extraction
We evaluated the impact of clustering centers (3 to 10) 
on results. Based on the highest CH index (Fig.  3a), 3 
was the optimal number as all sequences had the high-
est CH index with it (Fig.  3b). 1,106 unique radiomic 
features were extracted and grouped into shape, first-
order, and texture types (216 first-order, 14 shape, oth-
ers texture). The final ITH score combines features from 
3 sub-regions (13,272 features in total). Radiomics and 
Peri-Tumor features each have 4,424 features. Feature 
extraction was performed using a custom Pyradiomics 
tool. See its documentation for details. Our study has a 
chart showing feature category distribution for an over-
view of their proportions (Supplementary Fig. 1).

The results of feature selection
In our study, we used the Lasso method for feature 
selection, in particular to identify the non-zero coeffi-
cients of the Rad-score using the LASSO logistic regres-
sion model. Figure  4 illustrates these coefficients and 
the Mean Standard Error (MSE) was obtained by a ten-
fold cross-validation procedure.

ITH score
The LightGBM model exhibits the highest area under 
the curve (AUC) values in all datasets (Fig. 5a-c), spe-
cifically, 0.891 for the training set, 0.877 for the vali-
dation set, and 0.847 for the test set (Table  2). These 
results show that the algorithm has excellent discrimi-
native ability in recognizing different categories. In 
particular, LightGBM’s strong AUC performance on 
both the validation and test sets implies that it has a 
stable generalization ability. Overall, LightGBM out-
performs other algorithms in terms of AUC on all 
datasets, which confirms its superiority in prediction 
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Table 1 Univariable and multivariable analysis of clinical features

R = maximum tumor diameter, E = exophytic/endophytic, N = distance between the tumor and the renal sinus and collecting system, A = tumor located on the ventral 
or dorsal side of the kidney, L = tumor location along the longitudinal axis of the kidney, H = whether the tumor invades the renal pedicle vessels, Map1 = posterior 
perirenal fat thickness at the level of the renal vein, Map2 = perirenal fat involvement, MVD = intratumoral blood vessels, Enhancement2 = fast in and fast out

Feature_name OR OR lower95%CI OR upper95%CI p_value OR OR lower95%CI OR upper95%CI p_value

Sex(female/male) 1. 113 1. 022 1. 212  < 0. 05 1. 132 1. 034 1. 24  < 0. 05

Age(mean ± SD) 1. 004 1. 001 1. 008  < 0. 05 1. 005 1. 001 1. 008  < 0. 05

Hematuria
(absent/present)

1. 311 1. 14 1. 508  < 0. 05 1. 161 1. 011 1. 332 0. 075

Abdominalpain
(absent/present)

1. 071 0. 969 1. 184 0. 258

Abdominalmass
(absent/present)

0. 947 0. 685 1. 31 0. 784

Tumorhistory
(absent/present)

1. 207 1. 026 1. 419 0. 056

Location
(left/right)

1. 039 0. 958 1. 127 0. 435

eGFR
(ml/(min·1. 73 m2))

0. 998 0. 995 1. 001 0. 188

BUN(mmol/L) 1. 025 1. 001 1. 049 0. 085

Cr(umol/L) 1 0. 999 1. 001 0. 773

CHO(mmol/L) 0. 957 0. 908 1. 009 0. 169

ALB(g/L) 0. 988 0. 979 0. 996  < 0. 05 0. 998 0. 989 1. 007 0. 683

Hb(g/L) 0. 996 0. 994 0. 999  < 0. 05 0. 999 0. 996 1. 002 0. 6

PLT(g/L) 1. 001 1. 001 1. 002  < 0. 05 1. 001 1 1. 002  < 0. 05

NE(10 × 10^9) 1. 037 1. 012 1. 063  < 0. 05 1. 001 0. 975 1. 026 0. 974

LYM(10 × 10^9) 1. 021 0. 989 1. 055 0. 285

MO(10 × 10^9) 1. 185 0. 956 1. 471 0. 194

R(mm) 1. 004 1. 002 1. 006  < 0. 05 1. 001 0. 999 1. 003 0. 621

E 0. 961 0. 896 1. 031 0. 358

N 1. 099 1. 042 1. 16  < 0. 05 1. 067 0. 992 1. 147 0. 142

A 1. 064 1. 013 1. 116  < 0. 05 1. 009 0. 963 1. 059 0. 745

L 1. 071 1. 02 1. 125  < 0. 05 0. 995 0. 931 1. 063 0. 895

H(no/yes) 1. 376 1. 239 1. 528  < 0. 05 1. 168 1. 022 1. 335 0. 056

Renal_score 1. 051 1. 028 1. 074  < 0. 05 1. 005 0. 966 1. 046 0. 848

Map1 1. 002 0. 944 1. 063 0. 965

Map2 1. 047 1. 01 1. 084  < 0. 05 0. 984 0. 946 1. 022 0. 488

Map_score 1. 027 0. 998 1. 055 0. 128

Cystic
(absent/present)

0. 963 0. 868 1. 068 0. 552

Capsule
(absent/present)

1. 014 0. 929 1. 108 0. 79

MVD(absent/present) 1. 016 0. 932 1. 106 0. 765

Calcification
(absent/present)

1. 127 1. 015 1. 251 0. 061

Invasion(no/yes) 1. 39 1. 247 1. 548  < 0. 05 1. 097 0. 96 1. 255 0. 254

Cavainvolvement
(absent/present)

1. 373 1. 165 1. 618  < 0. 05 1. 032 0. 85 1. 254 0. 79

Lymphnodes
(absent/present)

1. 459 1. 194 1. 784  < 0. 05 1. 054 0. 831 1. 338 0. 715

Metastasis(absent/present) 2. 136 1. 556 2. 933  < 0. 05 1. 277 0. 894 1. 824 0. 259

Enhancement1
(heterogeneous/homogeneous)

1. 121 0. 972 1. 292 0. 186

Enhancement2(absent/present) 0. 924 0. 847 1. 007 0. 132
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Fig. 3 a Presents the Calinski-Harabasz (CH) scores for different numbers of clusters, illustrating the impact of the number of clusters 
on the segmentation effect for each pattern. b provides a visualization of the DCE features, segmented into three distinct clusters. DCE: Dynamic 
Contrast-Enhanced

Fig. 4 a Coefficients of ten-fold cross validation; b MSE of ten-fold cross validation; c The histogram of the Rad-score based on the selected features. 
MSE: Mean Standard Error
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accuracy. This suggests that LightGBM is able to effi-
ciently recognize patterns in data and provide accurate 
predictions on both training and new data, making it 
the best model for this classification task.

Model evaluation
AUC value analysis: In the peri-tumor region, Peri1 mm 
had the best performance in training (AUC = 0.856), 
validation (AUC = 0.836), and test sets (AUC = 0.738) 

Fig. 5 Grading prediction results of ccRCC. ROC Curves of Different Models in each cohort (a-c). Different signatures’AUROC on all cohort(d-f ). LR: 
Logistic Regression; AUC: area under the curve; Peri: Peritumoral: ROC: receiver operating characteristic

Table 2 Model performance of different machine learning algorithms in each cohort

LR：Logistic Regression

model_name Cohort Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

LR Training 0. 740 0. 852 0. 805 - 0. 898 0. 772 0. 730 0.492 0. 904

LR Validation 0. 724 0. 774 0. 684 - 0. 863 0. 652 0. 739 0.341 0. 911

LR Testing 0. 642 0. 720 0. 553 - 0. 888 0. 750 0. 627 0.214 0. 949

RandomForest Training 0. 798 0. 896 0. 861 - 0. 930 0. 810 0. 794 0.571 0. 925

RandomForest Validation 0. 806 0. 852 0. 781 - 0. 924 0. 783 0. 811 0.462 0. 947

RandomForest Testing 0. 687 0. 835 0. 717 - 0. 953 0. 750 0. 678 0.240 0. 952

XGBoost Training 0. 840 0. 893 0. 857 - 0. 929 0. 810 0. 850 0.646 0. 930

XGBoost Validation 0. 776 0. 846 0. 777 - 0. 915 0. 696 0. 793 0.410 0. 926

XGBoost Testing 0. 731 0. 841 0. 734 - 0. 948 0. 625 0. 746 0.250 0. 936

LightGBM Training 0. 814 0. 891 0. 854 - 0. 927 0. 861 0. 798 0.591 0. 944

LightGBM Validation 0. 828 0. 877 0. 814 - 0. 941 0. 826 0. 829 0.500 0. 958

LightGBM Testing 0. 687 0. 847 0. 725 - 0. 969 0. 875 0. 661 0.259 0. 975
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(Fig. 5d-f ). As the region expanded to Peri3 mm and Peri5 
mm, the AUC values declined, indicating that a broader 
peritumoral range led to reduced prediction efficiency. 
The Habitat signature beat the radiomics signature in all 
datasets (training: AUC = 0.891; validation: AUC = 0.877; 
test: AUC = 0.847) (Table  3), suggesting detailed subre-
gion characterization is better than treating the tumor as 
one entity. The DeLong test (Supplementary Fig. 2) com-
pared feature improvement significance in each dataset. 
The results show that the comprehensive model with 
Habitat, Peri1 mm, and key clinical features usually per-
forms better than individual models in most cases.

Use calibration curves (Supplementary Fig. 3) and deci-
sion curves (Supplementary Fig. 4) to assess the model’s 
predictive capabilities. The Hosmer–Lemeshow (HL) 
test compares predicted probabilities with actual out-
comes to measure calibration performance; a lower HL 
value means better calibration. The nomogram (Fig.  6) 
was well-calibrated, with HL values of 0.920 in the train-
ing dataset, 0.824 in the validation dataset, and 0.812 in 
the test dataset. The decision curve analysis shows our 
comprehensive model has a significant net benefit advan-
tage in predicted probabilities. These results highlight 
the model’s excellent predictive accuracy and reliability. 
In summary, integrating detailed subregional features 
with optimal peritumoral configurations and clinical 

characteristics can significantly enhance the precision of 
predictions, highlighting the advantage of a comprehen-
sive fusion approach in robust outcome prediction.

Discussion
In the present investigation, we amalgamated radiomics 
with habitat imaging methodologies, incorporating the 
examination of peritumoral areas and clinical character-
istics, to develop a suite of predictive models. The find-
ings revealed that the LightGBM model demonstrated 
the most robust performance, yielding the highest AUC 
values across all datasets: 0.891 for the training set, 0.877 
for the validation set, and 0.847 for the test set. The inte-
grated model achieved an AUC of 0.852 on the test set, 
which represented a statistically significant enhancement 
over the individual models. Consequently, the model we 
have developed facilitates a nuanced analysis of different 
regions of the tumor, markedly enhancing the precision 
of grading and prognostic evaluation when compared to 
radiomics models employed in isolation. This advance-
ment supports the deployment of more precision-based 
clinical strategies.

In recent years, habitat imaging technology has drawn 
much attention. It uses differences in histopathology 
and molecular biology to divide regions with differ-
ent imaging features into multiple subregions of similar 

Table 3 Prediction performance of Intratumor Heterogeneity Region based rad signatures

Peri：Peritumoral

Signature Cohort Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

Clinic Training 0. 830 0. 896 0. 8567 - 0. 9362 0. 810 0. 837 0. 627 0. 929

Radiomics Training 0. 788 0. 879 0. 8405 - 0. 9171 0. 861 0. 764 0. 553 0. 942

Peri1mm Training 0. 798 0. 856 0. 8071 - 0. 9054 0. 785 0. 803 0. 574 0. 917

Peri3mm Training 0. 718 0. 824 0. 7713 - 0. 8771 0. 734 0. 712 0. 464 0. 888

Peri5mm Training 0. 811 0. 874 0. 8311 - 0. 9170 0. 722 0. 841 0. 606 0. 899

Habitat Training 0. 814 0. 891 0. 8539 - 0. 9274 0. 861 0. 798 0. 591 0. 944

Combined Training 0. 846 0. 914 0. 8812 - 0. 9477 0. 658 0. 910 0. 712 0. 887

Clinic Validation 0. 560 0. 636 0. 5184 - 0. 7534 0. 565 0. 559 0. 210 0. 861

Radiomics Validation 0. 716 0. 819 0. 7436 - 0. 8952 0. 652 0. 730 0. 333 0. 910

Peri1mm Validation 0. 761 0. 836 0. 7522 - 0. 9195 0. 739 0. 766 0. 395 0. 934

Peri3mm Validation 0. 709 0. 761 0. 6523 - 0. 8706 0. 739 0. 703 0. 340 0. 929

Peri5mm Validation 0. 754 0. 789 0. 6981 - 0. 8804 0. 565 0. 793 0. 361 0. 898

Habitat Validation 0. 828 0. 877 0. 8141 - 0. 9407 0. 826 0. 829 0. 500 0. 958

Combined Validation 0. 858 0. 904 0. 8455 - 0. 9618 0. 652 0. 901 0. 577 0. 926

Clinic Testing 0. 597 0. 660 0. 4816 - 0. 8384 0. 625 0. 593 0. 172 0. 921

Radiomics Testing 0. 612 0. 779 0. 6286 - 0. 9286 0. 750 0. 593 0. 200 0. 946

Peri1mm Testing 0. 582 0. 738 0. 5550 - 0. 9217 0. 750 0. 559 0. 187 0. 943

Peri3mm Testing 0. 522 0. 684 0. 4783 - 0. 8903 0. 625 0. 508 0. 147 0. 909

Peri5mm Testing 0. 612 0. 609 0. 3707 - 0. 8475 0. 500 0. 627 0. 154 0. 902

Habitat Testing 0. 687 0. 847 0. 7255 - 0. 9694 0. 875 0. 661 0. 259 0. 975

Combined Testing 0. 881 0. 852 0. 7249 - 0. 9785 0. 000 1. 000 0. 000 0. 881
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or identical heterogeneity [23, 24]. Analyzing the sub-
regions of intratumoral heterogeneity is important for 
many clinical applications like diagnosis and prognosis. 
Such analyses usually depend on imaging techniques like 
CT and MRI [25, 26]. The application of habitat imag-
ing technology in the field of renal cancer has gradually 
emerged. However, the current research [15, 26] primar-
ily focuses on predicting renal cancer metastasis and 
patient survival prognosis. Yang et al. [26] predicted the 
metastatic risk in ccRCC through sub-regional radiom-
ics analysis. The study found that a model combining 
CT and ultrasound imaging features with clinical vari-
ables was better at predicting the metastasis of ccRCC. 
Shan et  al. [15] developed and validated a clinical radi-
omics model based on intra-tumor habitat imaging to 
predict the progression-free survival of ccRCC patients 
before surgery. This model had high predictive accu-
racy in the tested dataset and might be useful in clinical 
decision-making. However, there are relatively few stud-
ies [27] that use CT images combined with habitat imag-
ing technology for the grading of renal cancer. Alhussaini 
et  al. [27] extracted radiomics features from CT images 
to distinguish between high- and low-grade ccRCC in 
the preoperative stage and incorporated tumor subregion 
heterogeneity analysis. The results support that tumor 
subregions are important factors to consider in the grad-
ing of ccRCC.

Therefore, the focus of our study is to improve the 
accuracy of preoperative grading prediction for ccRCC 
by adopting a tumor habitat segmentation approach. 

Initially, we extracted local features, such as entropy and 
energy, from individual voxels within CT images. Utiliz-
ing the K-means clustering algorithm, we grouped these 
features into clusters, ranging in number from 3 to 10. 
The optimal cluster count was identified as 3, based on 
the CH index, which enhances our ability to delineate the 
intricate heterogeneity within tumors. Following this, we 
employed the pyradiomics toolkit to extract a wealth of 
subregion-specific features, encompassing geometric, 
intensity, and textural attributes. These features provided 
insights into the tumor’s shape, size, luminosity, and spa-
tial distribution patterns. We then leveraged machine 
learning techniques, including Logistic Regression, Ran-
dom Forest, XGBoost, and LightGBM, to build predic-
tive models. Our findings revealed that the subregion 
features we developed significantly outperformed con-
ventional radiomics features across all evaluated datasets, 
underscoring the utility of our approach in refining the 
prediction of ccRCC pathological grading. The previous 
research [28, 29] on kidney cancer grading mainly uti-
lized radiomics methods. Yi et  al. [28] developed a CT-
based radiomics and machine learning model to predict 
the pathological grade of ccRCC, which achieved AUC 
values of 0.8170 and 0.8017 for the training and valida-
tion cohorts, respectively. Wang et  al. [29] proposed a 
model based on CT radiomics features for predicting 
WHO/ISUP grade of ccRCC, which achieved an AUC of 
0.89 in the training set and 0.81 in the independent exter-
nal validation set. In contrast, our study integrated radi-
omics techniques to perform subregion analysis of tumor 

Fig. 6 Shows the nomogram for clinical use
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heterogeneity and developed a corresponding model. 
The results demonstrated that the model achieved AUC 
scores of 0.891, 0.877 and 0.847 in the training set, valida-
tion set, and test set, respectively, confirming the supe-
rior predictive performance of the habitat-based model.

Additionally, another significant advantage of this 
study lies in constructing a comprehensive grading model 
based on clustering analysis, which combines tumor 
peripheral region characteristics and significant clinical 
features. Previous studies [30, 31] have demonstrated that 
the performance of the fusion prediction model integrat-
ing intra-peritumoral features is superior to that of only 
a single model. Huang et al. [30] utilized a habitat-based 
radiomics approach to evaluate the immediate efficacy 
of radiofrequency ablation in patients with colorectal 
cancer lung metastases, which showed that the predic-
tive model combining intratumoral and peritumoral (5 
mm dilation) features demonstrated the highest perfor-
mance. Shi et  al. [31] discovered that when predicting 
lymph node metastasis status in early-stage cervical can-
cer, peritumoral radiomics features showed higher pre-
dictive performance compared to intratumoral features. 
These results indicate that the peritumoral region con-
tains tumor-related information, which may be related to 
the invasive growth pattern of malignant tumors into the 
surrounding tissue. As a type of malignant tumor, ccRCC 
also has the characteristic of infiltrating into the peritu-
moral region. Therefore, we incorporated intra-peritu-
moral features into our study, and results showed that the 
peritumoral features can effectively improve the predic-
tive performance of the model.

In addition, we extended the peritumoral region by 
1  mm (Peri1mm), 3  mm (Peri3mm), and 5  mm (Per-
i5mm). The results showed that the Peri1 mm configu-
ration exhibited the best performance in the training 
set (AUC = 0.856), the validation set (AUC = 0.836), 
and the test set (AUC = 0.738), which indicate that the 
information of Peri1mm configuration may contain 
more useful information to distinguish the degree of 
tumor invasion. Tang et al. [32] used radiomics to dis-
tinguish non-small cell lung cancer. They divided the 
peritumoral region into an inner ring (0–5 mm) and an 
outer ring (5–10 mm) to study its impact on classifica-
tion. They found more features in the inner ring, mean-
ing the area closer to the tumor has more information, 
which agrees with our study. Braman et al. [33] studied 
whether imaging features inside and around the tumor 
could show the biological traits of HER2-positive breast 
cancer. They divided the peritumoral region (extending 
15 mm from the tumor margin) into five rings at 3 mm 
intervals to evaluate patients’response to targeted 
therapy. The results showed that features 9–12  mm 
from the tumor edge were better at distinguishing 

HER2-enriched tumors, and features in the 0–3  mm 
peritumoral region were related to the density of 
tumor-infiltrating lymphocytes. This result is different 
from our study, showing that the usefulness of peritu-
moral features depends on the analysis goals and the 
biological nature of the tumor.

Our current research has several limitations. First, 
although LightGBM showed strong AUC performance 
in the validation set, the external validation dataset in 
this study was only sourced from one hospital, which 
may have certain limitations. In future research, we will 
enhance the generalization performance of the model 
from the following aspects: (1) We plan to expand the 
sample size and increase the diversity of the data. For 
example, we will include data from different hospitals, 
various regions, and even different ethnic groups. (2) 
Establish a standardized set of protocols for data collec-
tion, and at the same time, adopt a complete and refined 
automatic segmentation method to avoid the interference 
caused by manual segmentation. Second, the delineation 
of regions of interest depends on radiologists’expertise, 
which may bring subjective biases. In the future, using 
deep learning algorithms for automated segmentation 
can reduce medical professionals’workload and improve 
image segmentation precision. Third, multiple machine 
learning models may create overly complex frameworks 
that are hard to apply in clinical practice. To promote the 
model’s wide application, simpler and more interpretable 
models should be preferred when possible. Finally, we 
did not incorporate molecular markers into the model. 
We will regard this issue as a key direction for future 
research, striving to broaden and deepen the scope of our 
studies. In our follow-up work, we aim to deliver more 
comprehensive and profound results to advance this field.

In conclusion, the radiomics grading prediction model 
for ccRCC, which integrates habitat imaging with peri-
tumoral features, outperforms conventional radiomics 
approaches. This suggests that subregion analysis effec-
tively mitigates the impact of tumor heterogeneity, ena-
bling precise preoperative tumor grading. Such precision 
aids clinicians in more accurately evaluating patient con-
ditions, devising tailored treatment strategies, and ulti-
mately enhancing patient outcomes. In the future, we 
plan to expand the sample size and enhance multicenter 
studies to improve the robustness of the model. Addi-
tionally, we will establish a dynamic feedback mechanism 
that enables real-time comparison with pathological 
results, allowing continuous optimization of the model 
in clinical settings. Within clinical workflows, we aim 
to integrate the model into radiology reporting systems. 
This integration will enable direct output of grading 
probabilities in imaging reports, thereby assisting diag-
nostic decision-making.
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