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Abstract
Background  As body mass index (BMI) increases, the quality of 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG) 
positron emission tomography (PET) images reconstructed with ordered subset expectation maximization (OSEM) 
declines, negatively impacting lesion diagnostics. It is crucial to identify methods that ensure consistent diagnostic 
accuracy and maintain image quality. Deep progressive learning (DPL) algorithm, an Artificial Intelligence(AI)-based 
PET reconstruction technique, offers a promising solution.

Methods  150 patients underwent 18F-FDG PET/CT scans and were categorized by BMI into underweight, normal, 
and overweight groups. PET images were reconstructed using both OSEM and DPL and their image quality was 
assessed both visually and quantitatively. Visual assessment employed a 5-point Likert scale to evaluate overall 
score, image sharpness, image noise, and diagnostic confidence. Quantitative assessment parameters included 
the background liver image-uniformity-index ( IUILiver) and signal-to-noise ratio ( SNRLiver). Additionally, 466 
identifiable lesions were categorized by size: sub-centimeter and larger. We compared maximum standard uptake 
value ( SUVLesion

max ), signal-to-background ratio ( SBRLesion), SNRLesion, contrast-to-background ratio ( CBRLesion

), and contrast-to-noise ratio ( CNRLesion) of these lesions to evaluate the diagnostic performance of the DPL and 
OSEM algorithms across different lesion sizes and BMI categories.

Results  DPL produced superior PET image quality compared to OSEM across all BMI groups. The visual quality of 
DPL showed a slight decline with increasing BMI, while OSEM exhibited a more significant decline. DPL maintained a 
stable SNRLiver across BMI increases, whereas OSEM exhibited increased noise. In the DPL group, quantitative image 
quality for overweight patients matched that of normal patients with minimal variance from underweight patients. 
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Background
Positron emission tomography integrated with computed 
tomography (PET/CT) is a noninvasive molecular imag-
ing technique valuable in various medical fields, includ-
ing oncology, neurology, and cardiology [1–5]. This 
modality facilitates early tumor detection, staging, and 
treatment monitoring. The image quality and accuracy 
of PET/CT imaging are crucial for quantifying tumor 
metabolism, making it superior to traditional diagnostic 
methods [1–3]. The PET reconstruction algorithm sig-
nificantly affects the standardized uptake value (SUV), 
reflecting the tumor’s radiotracer uptake [6–8]. The 
most widely used reconstruction method is the ordered 
subset expectation maximization (OSEM) algorithm, 
introduced by Hudson in 1994 [7]. While OSEM pro-
cesses images quickly, its image quality may be inferior in 
patients with high body mass index (BMI). Post-smooth-
ing filters are often used to mitigate noise, yet these can 
lower spatial resolution and potentially underestimate 
the SUV [9, 10]. Therefore, developing new image recon-
struction algorithms to enhance image quality and diag-
nostic precision is essential.

Wu Z et al. [11] found that the Q.Clear algorithm pro-
duced the highest SUV values for all nodule sizes. Sui 
X et al. [12] found that the HYPER Iterative algorithm 
improved image quality and quantitative assessment in 
patients with a BMI of 30 or higher. However, the efficacy 
of these methods can be influenced by their penalty func-
tions, necessitating adjustments based on clinical expe-
rience [13]. Recent advancements in deep learning have 
shown promises in enhancing PET image quality and 
reducing noise [13–16]. Hu Y et al. [17].demonstrated 
that deep-learning techniques facilitated precise tumor 
assessment and quantification using low-dose 18F-FDG 
PET imaging in lymphoma patients.

The deep progressive learning (DPL) algorithm, driven 
by artificial intelligence, has been shown to reduce 
noise and enhance PET contrast [18, 19]. Wang T et 
al. [18] reported that DPL could cut the required 18F-
FDG activity by up to two-thirds while maintaining 
image quality. Xing Y et al. [20] observed that the deep-
learning approach improved both the signal-to-noise 
ratio ( SNRLiver) and the lesion-to-background ratio 

( SBRLesion), indicating better image quality and lesion 
detectability compared to Gaussian filtering. Our previ-
ous research [21] demonstrated that the DPL algorithm 
significantly enhances PET image quality, allowing for 
more accurate quantification of sub-centimeter lesions in 
overweight patients. However, further studies are needed 
to assess the DPL algorithm’s effectiveness across varying 
BMI categories.

In this paper, PET image quality was assessed using 
both visual and quantitative analyses, with 466 lesions 
identified and classified into larger (over 1 cm) and sub-
centimeter categories. The primary objective was to eval-
uate the performance of DPL across different BMI levels 
and lesion sizes, which is crucial for the early detection of 
malignant tumors and the timely initiation of treatment.

Methods
Patient selection and lesion distribution
This study was approved by the Medical Ethics Com-
mittee of Fudan University Shanghai Cancer Cen-
ter (FUSCC) and adhered to its ethical standards. All 
patients provided written informed consent before the 
injection.

We enrolled 150 oncology patients (82 males and 68 
females, aged 20 to 83 years) who underwent clinical 
18F-FDG PET/CT scans at the FUSCC from March to 
October 2023. The scans identified 466 distinct lesions 
across 21 cancer types, located in various regions: head 
and neck (n = 17), chest (n = 84), abdomen (n = 36), and 
pelvis (n = 17). Patients were classified into BMI catego-
ries according to World Health Organization (WHO) 
guidelines [24]: underweight (BMI < 18.5), normal weight 
(18.5 ≤ BMI < 25.0), and overweight/obese (BMI ≥ 25.0). 
Baseline characteristics of the patients between the BMI 
groups, including age, sex, blood glucose levels, injec-
tion dose per kilogram and the uptake time between 
injection and imaging, showed no significant statistical 
variance (H-values ranging from 0.17 to 4.70, χ2 = 3.08; 
all P > 0.05). Besides, lesions were categorized by size, 
distinguishing between sub-centimeter lesions (maxi-
mum diameter ≤ 1  cm) and larger lesions (maximum 
diameter > 1 cm).The lesions were distributed as follows: 
the underweight group had 118 lesions (62 larger, 56 

In contrast, OSEM demonstrated significant declines in quantitative image quality with rising BMI. DPL yielded 
significantly higher contrast ( SBRLesion , SNRLesion, CBRLesion, CNRLesion) and SUVLesion

max  than OSEM for all 
lesions across all BMI categories.

Conclusion  DPL consistently provided superior image quality and lesion diagnostic performance compared to OSEM 
across all BMI categories in 18F-FDG PET/CT scans. Therefore, we recommend using the DPL algorithm for 18F-FDG 
PET/CT image reconstruction in all BMI patients.

Keywords  PET image quality, Deep progressive learning (DPL), Ordered subset expectation maximization (OSEM), 
BMI, Lesion diagnostic performance
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sub-centimeter), the normal group had 207 lesions (139 
larger, 68 sub-centimeter) and the overweight group had 
141 lesions (81 larger, 60 sub-centimeter). A summary of 
patients’ characteristics and lesion distribution is shown 
in Table 1.

All patients were referred by clinicians for 18F-FDG 
PET/CT scans based on clinical indications. Eligibil-
ity criteria included a pathological report confirming 
malignant tumors and adequate cooperation during the 
examination. Participants fasted for at least six hours to 
maintain blood glucose levels below 11.1 mmol/L. The 
radiotracer dosage was set at 3.7 MBq/kg, based on body 
weight to balance radiation exposure and image quality, 
with imaging performed approximately one-hour post-
injection. During the 60-minute uptake phase, patients 
were instructed to drink 500 mL of water and rest quietly.

PET/CT acquisition and reconstruction
PET/CT imaging was performed using a digital PET/CT 
scanner (uMI 780, United Imaging Healthcare, Shanghai, 
China), which features a sensitivity of 16 kcps/MBq, a 
spatial resolution of 2.9 mm, a time-of-flight (TOF) reso-
lution of 450 ps, an axial field of view (FOV) of 26.4 cm, 
and a scanning range from the skull base to the upper 
thighs. The protocol began with a TOMO scan for accu-
rate patient positioning, followed by a low-dose diag-
nostic CT acquired at a fixed tube voltage of 120 kV. CT 
was carried out by utilizing automatic exposure control 
with a dynamic range of 15–100 mA to provide essential 
anatomical details and attenuation correction for PET 
images.

PET images were obtained in 3–5 bed positions (35% 
overlap), depending on patient height, employing a step-
and-shoot mode with a 1.5-minute duration per posi-
tion. Image reconstruction utilized both OSEM and DPL 

Table 1  Enrolled patients’ clinical characteristics and lesion distribution
Characteristics Underweight (n = 42) Normal (n = 66) Overweight (n = 42) P
Age(years) 63.4 ± 13.8 61.2 ± 10.7 63.5 (51.5,70.0) 0.23
Sex 0.22
  Male 19 41 22
  Female 23 25 20
BMI (kg/m²) 17.3 (16.6,17.7) 22.1 (20.8,23.1) 27.5 ± 2.9 <0.001
Blood glucose (mmol/L) 5.9 ± 1.1 5.7 ± 1.3 5.5 (4.8,6.5) 0.54
Injected dose (MBq) 171.1 (163.9,190.2) 223.9 (210.2,243.8) 276.9 ± 41.3 <0.001
Injected dose/weight (MBq/kg) 3.8 ± 0.3 3.8 ± 0.3 3.7 ± 0.2 0.26
Uptake time (min) 68.0 (55.1,79.3) 65.1 (58.7,75.4) 69.5 ± 16.2 0.92
Primary cancer type*
  Bone cancer 0/1 1/1 0/1
  Breast cancer 2/12 6/12 4/12**

  Cervical cancer 2/5 2/5 1/5
  Colorectal cancer 4/11 2/11** 5/11
  Duodenal cancer 0/1 1/1 0/1
  Epithelial cancer 1/3 0/3 2/3
  Esophageal cancer 6/23 13/23** 4/23
  Gastric cancer 6/7** 1/7 0/7
  Hypopharynx cancer 1/2 1/2 0/2
  Kidney cancer 0/2 2/2 0/2
  Liver cancer 1/3 1/3 1/3
  Lung cancer 11/45 18/45** 16/45**

  Lymphoma 3/17 7/17 7/17
  Malignant melanoma 1/2 0/2 1/2
  Nasopharynx cancer 1/6 3/6 2/6
  Ovarian cancer 0/3 3/3 0/3
  Pancreatic cancer 1/6 5/6** 0/6
  Sarcoma 1/2 1/2 0/2
  Spindle cell tumor 1/1 0/1 0/1
  Squamous cell carcinoma 0/1 1/1 0/1
  Thyroid cancer 1/1** 0/1 0/1
* The fraction’s denominator represents the number of patients with the primary type of tumor, while the numerator represents the number of patients with the 
primary type of tumor in the corresponding different BMI groups. ** Indicates that four patients had dual cancers: one with pancreatic and lung cancer, one with 
esophageal and colorectal cancer, one with breast and lung cancer and one with thyroid and gastric cancer
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algorithms. OSEM reconstruction was performed with 
2 iterations and 20 subsets, a 3  mm full-width at half-
maximum Gaussian filter [18, 20–23], a 150 × 150 image 
matrix, a 600 mm FOV, a transverse pixel size of 4 mm, 
an axial slice thickness of 2 mm, and included TOF and 
point spread function (PSF) corrections. DPL was recon-
structed using the same FOV, image matrix, and slice 
thickness parameters as OSEM, along with a smoothing 
factor of 3. Standard corrections for scatter, randomness, 
dead time, decay, attenuation, and normalization were 
applied during reconstruction.

DPL reconstruction algorithm
This study employs the DPL algorithm detailed in [19], 
which also describes the network training and testing 
processes. The DPL network comprises two components: 
a denoising network (CNN-DE) which can remove the 
noise from the input image and an enhancement net-
work (CNN-EH) which maps from a low convergent 
image to a high convergent image, both operating in a 
2D environment. These networks were trained on a data-
set of 161,040 image slice pairs including 53,680 pairs of 
2.4 mm slices and 107,360 pairs of 1.2 mm slices. For test-
ing, the dataset included 40,260 image slice pairs from 20 
patients: 13,420 pairs of 2.4 mm slices and 26,840 pairs of 
1.2 mm slices. The CNN-DE network utilized PET images 
down-sampled by 10%, while the CNN-EH network used 
images with incomplete iterations. Target images for both 
networks were full-count, complete-iteration images 
with dimensions of 249 × 249 × 671 pixels and a voxel size 
of 2.4 × 2.4 × 2.68 mm³. The DPL network utilized Kaim-
ing initialization for parameters, with back propagation 
updating them via the adaptive moment estimation opti-
mization algorithm based on a loss function. A triangular 
cyclic learning rate policy was implemented, where the 
learning rate progressively increases from a minimum 
of 1 × 10⁻⁵ (1e–5) to a maximum of 1 × 10⁻⁴ (1e–4) dur-
ing the ascending phase, then gradually decreases back 
to the minimum in the descending phase. The training 
was conducted on a cluster of four NVIDIA Quadro RTX 
6000 GPUs using Pytorch 1.5.0, initially on the uExplorer 
whole-body scanner, and subsequently adapted for other 
scanners. We utilized binary images as inputs for all net-
works. To ensure consistency and reliability across differ-
ent scans, we applied z-score normalization to account 
for variations in intensity. This normalization process 
is essential for enabling the network to generalize effec-
tively across diverse datasets.

Visual image analysis
Two experienced nuclear medicine physicians, each 
with over five years of clinical experience, visually ana-
lyzed PET images reconstructed using both OSEM and 
DLP algorithms. They evaluated transverse sequence and 

maximum intensity projection (MIP) images in random 
order by using a dedicated reporting system. To elimi-
nate bias, patient information and reconstruction algo-
rithms remained anonymous. Image quality was assessed 
using a five-point Likert scale (1: poor to 5: excellent) for 
overall quality, sharpness, noise, and diagnostic confi-
dence. Scores of 3 to 5 were considered clinically accept-
able, while scores of 1 and 2 were deemed suboptimal for 
diagnosis. Higher scores reflected superior image quality 
based on visual assessment [24].

Quantitative image quality analysis
A third, blinded physician conducted a quantitative anal-
ysis by selecting three homogeneous areas within the 
liver parenchyma, located 2  cm from the liver edge to 
avoid intrahepatic lesions and large blood vessels. Within 
each area, a circular region of interest (ROI) with a radius 
of 1  cm was marked. The mean SUV ( SUVLiver

mean), stan-
dard deviation (SD) of SUV ( SUVLiver

SD ) and maximum 
SUV ( SUVLiver

max ) of the ROI for both OSEM and DPL 
reconstructions were measured using the scanner ‘s built-
in software The SUV value is calculated by multiplying 
the final reconstructed image by a quantification factor 
that accounts for patient weight and injected dose. The 
image uniformity index ( IUILiver) and signal-to-noise 
ratio ( SNRLiver) were calculated as follows:

	
IUILiver = SUV Liver

max

SUV Liver
mean

,� (1)

	
SNRLiver = SUV Liver

mean

SUV Liver
SD

.� (2)

The closer the IUILiver value is to 1, the better the 
image uniformity and quality. Conversely, a value further 
from 1 indicates greater image noise and lower quality. 
Additionally, a higher SNRLiver reflects better image 
quality.

Lesion diagnostic performers analysis
All pathologically confirmed positive lesions on PET 
were included in the analysis. For each patient, a maxi-
mum of 10 lesions were selected. If there were more than 
10 lesions in one patient, 10 target lesions (five maxi-
mum and five minimum FDG-avid lesions) were defined 
for further analysis. All selected lesions were identified 
in both DPL and OSEM reconstructions, with no dis-
crepancies in lesion detection between the two recon-
struction methods. Lesion size was measured using CT 
images, focusing on the largest diameter for solid tumors 
across multiple slices and short axis for metastatic lymph 
nodes and primary lymphomas. Lesions larger than 
1  cm were classified as larger lesions, while those 1  cm 
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or smaller were categorized as sub-centimeter lesions. 
A larger spherical volume of interest (VOI) was drawn 
on PET images to encompass the entire lesion while 
excluding high uptake areas. The SUVmax of the lesions 
( SUVLesion

max ) was obtained automatically using the sys-
tem built-in software. The signal-to-background ratio 
( SBRLesion), signal-to-noise ratio ( SNRLesion), contrast-
to-background ratio ( CBRLesion) and contrast-to-noise 
ratio ( CNRLesion) were calculated according to Formula 
3, Formula 4, Formula 5 and Formula 6, respectively. 
Higher values of these parameters indicate better image 
quality and improved detectability of the lesions.

	
SBRLesion = SUV Lesion

max

SUV Liver
mean

,� (3)

	
SNRLesion = SUV Lesion

max

SUV Liver
SD

,� (4)

	
CBRLesion =

SUV Lesion
max − SUV

Liver
mean

SUV Liver
mean

,� (5)

	
CNRLesion =

SUV Lesion
max − SUV

Liver
mean

SUV Liver
SD

.� (6)

where SUV Lesion
max  and SUV Lesion

mean  denote the maxi-
mum and mean SUV of the lesion, while SUV Liver

mean and 
SUV Liver

SD  denote the mean and standard deviation SUV 
of the liver.

Statistical analysis
Statistical analysis was conducted using SPSS 27.0 
(IBM SPSS Inc., Armonk, NY, USA). Data were initially 
assessed for normal distribution with the Shapiro-Wilk 
test. Quantitative data with normal distribution were 
expressed as mean ± SD, while non-normally distrib-
uted data were expressed as median M (Q1, Q3). Paired 
normally distributed data were analyzed with the paired 
sample t-test, and non-normally distributed data with the 
Wilcoxon signed-rank test. For comparisons among dif-
ferent BMI groups, one-way ANOVA was used for nor-
mally distributed data, while the Kruskal-Wallis H test 
was applied for non-normally distributed data. Lesion 
categories were compared using the independent-sam-
ples t-test for normal distribution and the Mann-Whit-
ney U test for non-normal distribution. A P-value of less 
than 0.05 was deemed statistically significant.

Results
Visual image analysis
DPL outperformed OSEM in overall scores, image sharp-
ness, image noise, and diagnostic confidence across all 

BMI categories (Fig. 1). In the underweight group, DPL 
improved by 13.23%, 11.67%, 20.73% and 8.11%, respec-
tively (z-values: -4.91 to -2.54, all P < 0.05). For the nor-
mal group, the improvements were 17.71%, 12.41%, 
32.71% and 11.07%, respectively (z-values: -6.92 to -3.12, 
all P < 0.05). In the overweight group, the improvements 
were 31.82%, 29.38%, 51.69% and 18.96%, respectively 
(z-values: -5.42 to -3.44, all P < 0.001). Both the DPL and 
OSEM exhibited significant declines in overall scores, 
image sharpness, image noise, and diagnostic confidence 
with increasing BMI (P < 0.05 for DPL and P < 0.001 for 
OSEM). In the DPL group, compared to the underweight 
group, the overweight group demonstrated reductions 
of 10.64%, 13.51%, 10.55%, and 7.84%, respectively, while 
the normal weight group showed decreases of 6.09%, 
5.34%, 8.72%, and 4.23%, respectively. The overweight 
group also had reductions of 4.85%, 8.63%, 2.00%, and 
3.77%, respectively compared to the normal group. Simi-
lar patterns were observed in the OSEM group, where 
the overweight group had reductions of 23.24%, 25.35%, 
28.80%, and 16.25%, respectively compared to the under-
weight group, while the normal group had decreases of 
9.66%, 5.96%, 16.96%, and 6.78%, respectively. Addition-
ally, the overweight group showed reductions of 15.03%, 
20.62%, 14.26%, and 10.15%, respectively compared to 
the normal group.

Figure  2 compares typical PET MIP images from 
underweight, normal and overweight patients, reveal-
ing that DPL images consistently exhibit superior visual 
quality across all BMI categories compared to OSEM. 
Notably, while the quality of OSEM images decreases 
with higher BMI, DPL maintains high image quality.

Quantitative image quality analysis
DPL consistently maintained high quantitative image 
quality across all BMI groups, whereas OSEM recon-
structions significantly degraded as BMI increased 
(Table  2; Fig.  3). In DPL images, IUILiver significantly 
decreased compared to OSEM, while SNRLiver showed 
a significant increase. In the underweight group, IUILiver 
decreased notably by 7.69% (z-value: -5.58, P < 0.001), and 
SNRLiver increased by 44.62% (t-value: 8.125, P < 0.001) 
relative to the OSEM group. Similar trends were 
observed in the normal and overweight groups, with 
IUILiver decreasing by 9.18% (z-value: -7.06, P < 0.001) 
and 9.91% (z-value: -5.65, P < 0.001), respectively, while 
SNRLiver increasing by 65.36% (z-value: -7.02, P < 0.001) 
and 80.11% (z-value: -5.65, P < 0.001), respectively. In 
addition, there were significant differences in SNRLiver 
across BMI categories in the OSEM group (P < 0.001), 
whereas DPL showed no significant difference (P = 0.08). 
Both reconstruction methods displayed significant dif-
ferences in IUILiver across BMI categories (OSEM: 
P < 0.001; DPL: P < 0.001), but there was no significant 
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difference between the normal and the overweight group 
for the DPL reconstruction. For DPL reconstructions, 
IUILiver was increased by only 0.28% and SNRLiver 
remained stable for the overweight group compared to 
the normal group, while for the normal group compared 
to the underweight group, IUILiver increased by 2.91% 
and SNRLiverdecreased by 7.48%. For OSEM reconstruc-
tions, IUILiver was increased by 1.09% and SNRLiverwas 
decreased by 8.2% for the overweight group compared to 
the normal group, while IUILiver was increased by 4.30% 
and SNRLiveras decreased by 19.08% for the normal 
group compared to the underweight group.

Lesion diagnostic performances
The values of SBRLesion, SNRLesion, CBRLesion

, CNRLesion and SUVLesion
max  across BMI and lesion sizes, 

obtained using OSEM and DPL reconstructions, are pre-
sented in Table 3. The DPL algorithm consistently yielded 
significantly higher values for SBRLesion, SNRLesion

, CBRLesion, CNRLesion and SUVLesion
max  compared to 

OSEM across all lesion sizes and BMI groups (z-values: 
-10.13 to -5.74, P < 0.001). The diagnostic performance 
of OSEM and DPL for both large and sub-centimeter 
lesions across different BMI categories is presented in 
Fig. 4 (Fig. 4).

Fig. 1  Visual image quality parameters of PET images reconstructed by using OSEM and DPL across different BMI categories. a–d represent the values of 
the overall score, image sharpness, image noise and diagnostic confidence, respectively, which are the four criteria for assessing PET visual image quality. 
Each criterion is rated on a 5-point scale, where 1 indicating poor image quality and 5 indicating excellent image quality. UW = underweight, N = normal 
and O = overweight. * indicates P < 0.05 and *** indicates P < 0.001
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Representative clinical cases
Representative PET/CT images of patients in the differ-
ent BMI groups with large and sub-centimeter lesions, 
reconstructed with OSEM and DPL, are presented in 
Fig.  5. For instance, in Fig.  5a-d, a female underweight 
patient with cervical cancer has a larger lesion, with 
SUVLesion

max  values of 11.2 for OSEM and 17.6 for DPL. 

Figure  5e-h, a normal-weight male lung cancer patient 
has a larger lesion with SUVLesion

max  values of 13.7 for 
OSEM and 16.9 for DPL. Figure  5i-l, an overweight 
female with malignant melanoma has a larger lesion, 
with SUVLesion

max  values of 12.4 for OSEM and 16.8 for 
DPL. In Fig.  5m-p, a female underweight patient with 
lung cancer shows a sub-centimeter lymph node metas-
tasis, with SUVLesion

max  values of 3.9 for OSEM and 6.3 

Table 2  Quantitative image quality parameters ( IUILiver and SNRLiver) comparing OSEM and DPL reconstructions across all BMI 
categories
Quantitative parameters Underweight Normal Overweight

OSEM DPL OSEM DPL OSEM DPL
IUILiver 1.20

(1.18, 1.25)
1.12 ± 0.03 1.25

(1.23, 1.30)
1.14
(1.12, 1.17)

1.28 ± 0.06 1.15
(1.12, 1.18)

SNRLiver 12.75 ± 3.32 18.44 ± 3.08 9.83
(8.67, 11.58)

17.06 ± 2.86 8.94
(7.81, 10.79)

17.06 ± 4.07

Fig. 2  Typical PET MIP images reconstructed with OSEM and DPL across BMI categories. The DPL images exhibit significantly better visual quality com-
pared to those reconstructed with OSEM. From left to right, the BMIs are 17.58, 23.73, and 33.25, respectively
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for DPL. Figure  5q-t depict a normal-weight female 
patient with a sub-centimeter lymph node metastasis, 
showing SUVLesion

max  values of 2.9 for OSEM and 3.8 for 
DPL. Finally, Fig. 5u-x illustrate an overweight male liver 
cancer patient with a sub-centimeter lesion, showing 
SUVLesion

max  values of 8.1 for OSEM and 9.8 for DPL.

Discussion
In this study, we compared PET scans reconstructed 
using OSEM and DPL through visual and quantitative 
analysis of patients in different BMI categories (under-
weight, normal and overweight). DPL significantly 
improved visual image quality across all BMI catego-
ries compared to OSEM, particularly in the overweight 
group.

Previous studies consistently indicate that higher BMI 
correlates with reduced image quality in OSEM recon-
structions [25, 26]. Our study supports this finding, 

Table 3  Lesion diagnostic performances parameters of different reconstruction and different BMI (n = 466)
BMI categories Parameters Larger lesions (OSEM)

(n = 282)
Larger lesions (DPL)
(n = 282)

Sub-centimeter lesions 
(OSEM)
(n = 184)

Sub-centi-
meter le-
sions (DPL)
(n = 184)

Underweight (n = 118) SUVLesion
max 12.2(9.9,16.7) 14.4(10.8,18.4) 6.1(4.9,7.6) 7.6(5.9,9.2)

SBRLesion 7.0(5.5,10.3) 7.6(6.2,10.9) 3.2(2.6,4.4) 4.1(3.2,5.4)
SNRLesion 79.4(54.7,118.5) 133.0(102.3,183.5) 36.9(30.2,43.3) 67.0(55.3,91.8)
CBRLesion 6.0(4.5,9.3) 6.6(5.2,9.9) 2.2(1.6,3.4) 3.1(2.2,4.4)
CNRLesion 68.3(43.3,106.9) 118.1(85.5,164.9) 25.4(18.6,31.0) 49.0(37.8,71.5)

Normal (n = 207) SUVLesion
max 11.2(7.9,15.3) 12.1(8.8,17.1) 5.9(4.6,7.7) 7.5(6.0,9.9)

SBRLesion 6.1(4.1,8.2) 6.3(4.3,8.9) 3.0(2.4,4.5) 4.0(3.0,5.5)
SNRLesion 46.5(33.4,71.6) 88.5(63.0,141.0) 28.7(22.4,41.5) 60.5(46.5,91.0)
CBRLesion 5.1(3.1,7.2) 5.3(3.3,7.9) 2.0(1.4,3.5) 3.0(2.0,4.5)
CNRLesion 37.8(24.5,63.6) 72.8(48.0,121.3) 18.7(13.8,32.8) 43.5(30.8,73.8)

Overweight (n = 141) SUVLesion
max 12.0(8.2,17.3) 12.9(9.3,20.5) 6.0(4.8,8.5) 7.8(6.0,10.8)

SBRLesion 5.0(3.1,7.1) 5.2(3.4,8.0) 2.4(2.0,3.7) 3.1(2.5,4.6)
SNRLesion 43.1(27.5,61.2) 84.8(49.5,123.7) 22.0(17.9,33.7) 47.1(37.3,69.6)
CBRLesion 4.0(2.1,6.1) 4.2(2.4,7.0) 1.4(1.0,2.7) 2.2(1.5,3.6)
CNRLesion 37.1(24.0,59.4) 74.8(44.2,109.9) 17.1(11.4,27.9) 39.4(28.6,63.9)

Fig. 3  Comparison of quantitative image quality parameters ( IUILiver and SNRLiver) of different PET reconstruction algorithms (OSEM and DPL) in 
patients with varying BMI categories. a–b indicates the value of IUILiver and SNRLiver in underweight, normal and overweight patients, respectively. 
The closer the IUILiver value is to 1, the better the uniformity of the image, indicating higher image quality. Conversely, the farther the IUILiver value 
is from 1, the greater the image noise and the poorer image quality. In addition, a higher SNRLiver indicates better image quality. UW = underweight, 
N = normal and O = overweight. *** indicates P < 0.001
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showing a significant decline in OSEM image quality 
with increasing BMI. The overweight group experienced 
significant reductions in overall image score, image 
sharpness, noise suppression and diagnostic confidence 
compared to the normal group. In contrast, the normal 
group showed reductions compared to the underweight 
group.

However, DPL imaging was less sensitive to BMI 
changes. DPL consistently offers superior quantita-
tive image quality compared to OSEM, particularly as 
BMI increases, and demonstrates minimal or insig-
nificant variation in quantitative image quality across 
BMI groups, while OSEM shows a notable decline with 
increasing BMI. The overweight group had minor image 
quality decreases compared to the normal group. Simi-
larly, the normal group exhibited slight declines rela-
tive to the underweight group. This confirms that while 
OSEM image quality significantly declines with increas-
ing BMI, DPL remains relatively stable. PET images 
reconstructed by DPL exhibited superior noise reduction 

and image quality enhancement compared to those 
reconstructed by OSEM across all BMI categories.

Quantitative analysis corroborated the visual findings. 
Significant improvements in IUILiver were observed 
with DPL across various BMI categories, indicating supe-
rior uniformity compared to OSEM. Minimal variations 
in IUILiver and SNRLiver across BMI categories sug-
gest that DPL ensures comparable image quality in over-
weight patients to that of normal patients, with slight 
deviations noted in the underweight group.

Furthermore, both OSEM and DPL reconstructions 
demonstrated excellent quantitative image quality in 
the underweight group. However, as BMI increased, the 
image quality of OSEM reconstructions significantly 
declined, consistent with previous studies [26], whereas 
DPL maintained stable image quality. The SNRLiver 
values further supported these findings; OSEM values 
gradually decreased with increasing BMI, whereas DPL 
maintained consistent SNRLiver values across BMI cate-
gories, indicating its capability to sustain adequate image 
quality. Previous study [27] suggest that an SNRLiver 

Fig. 4  Diagnostics performances of OSEM and DPL for larger and sub-centimeter lesions in patients with different BMIs. a–e represents the values of 
SBRLesion , SNRLesion , CBRLesion , CNRLesion and SUVLesion

max , respectively. UW = underweight, N = normal, O = overweight, LLO = Larger le-
sions with OSEM, LLD = Larger lesions with DPL, SLO = sub-centimeter lesions with OSEM, SLD = sub-centimeter lesions with DPL. *** indicates P < 0.001
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Fig. 5 (See legend on next page.)
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above 14.0 is necessary for good image quality. Our study 
demonstrated that DPL achieved this threshold across 
all BMI categories with a 1.5-minute bed acquisition 
time. In contrast, OSEM failed to meet this standard for 
all BMI groups, often requiring up to 15 min acquisition 
time for overweight patients [1]. Thus, DPL can shorten 
the PET acquisition time for patients, thereby enhancing 
their comfort while maintaining image quality. Addition-
ally, DPL could reduce the injection dose of 18F-FDG for 
patients while preserving image quality. Wang et al. [18] 
estimated that DPL could potentially reduce the admin-
istered 18F-FDG activity by two-thirds in clinical prac-
tice, thereby lowering radiation exposure and enhancing 
patient comfort.

Accurate lesion diagnosis is essential for tumor staging, 
treatment planning, and monitoring treatment response. 
However, the partial volume effect often obscures sub-
centimeter lesions in the background, reducing diag-
nostic performance. Thus, enhancing the contrast and 
SUVLesion

max  of sub-centimeter lesions is crucial. Prior 
studies show that sensitivity decreases using OSEM 
reconstruction for sub-centimeter lesions, leading to 
potential false negatives [1, 28]. Enhancing SUVLesion

max  
and lesions contrast has become a key metric for assess-
ing the effectiveness of reconstruction methods. Our 
prior study confirmed that DPL improved SUVLesion

max  in 
sub-centimeter lesions among overweight patients. This 
paper further validates this finding with a larger sample 
size. Importantly, we found that the DPL reconstruc-
tion algorithm consistently and significantly enhanced 
contrast parameter values and SUVLesion

max  for all lesions 
across all BMI groups compared to OSEM. This study 
demonstrates that, compared to OSEM, the improve-
ment rate of SUVLesion

max  for sub-centimeter lesions using 
the DPL algorithm is highest in the normal group, fol-
lowed by the overweight group, and lowest in the under-
weight group. Notably, the diagnostic performance 
improvement rate for sub-centimeter lesions was higher 
in normal weight patients than in overweight patients, 
indicating greater benefits for normal weight patients 
from DPL.

Besides enhancing the contrast and SUVLesion
max  values 

of sub-centimeter lesions, DPL significantly improved 
the contrast and SUVLesion

max  of larger lesions. The great-
est SUVLesion

max  enhancements for larger lesions were 
observed in the overweight group, followed by the nor-
mal group, and the underweight group.

Typical cases of PET image reconstruction with OSEM 
and DPL are presented in Fig. 5. These cases demonstrate 
that PET images reconstructed by DPL exhibit superior 
noise reduction and lesion contrast enhancement com-
pared to those reconstructed by OSEM. Additionally, 
DPL consistently showed superior image quality and 
higher lesion contrast and SUV Lesion

max  values compared 
to OSEM, regardless of patient BMI or lesion size.

There are still some limitations in this study. First, in 
the overweight group, we included more patients with a 
BMI < 30 compared to those with a BMI > 30, which may 
affect our results. However, our previous research has 
shown that, compared to the overweight group, the obese 
group exhibited improvements in SBR, SNR, CNR, and 
SUVmax in the DPL average values [21]. Therefore, if more 
individuals with a BMI > 30 were included in our study, 
the superiority of the DPL algorithm over the OSEM 
algorithm would likely be more pronounced. Addition-
ally, body weight-based SUV values may be influenced 
by body weight. Sarikaya et al.‘s [22] study found that 
SUV values of lesions and normal tissues are higher in 
obese individuals. Similarly, in our study, we observed 
an upward trend in SUV Liver

max  and SUV Liver
mean with 

increasing patient BMI. To mitigate this effect, we used 
the ratio of comparative data rather than direct compari-
son values in this study, aiming to minimize this impact. 
Our study did not find an increase in lesion SUV Lesion

max  
with increasing BMI, which may be due to the different 
types of lesions in the various BMI groups. Furthermore, 
our study was conducted with a data acquisition time 
of 1.5 min/bed. As shown in our previous research [21], 
extending the acquisition time to 2.5 min/bed reduces the 
differences in CNR and SNR between OSEM and DPL. 
Consequently, our results may not be reproducible with 
an acquisition time exceeding 2.5  min/bed. Moreover, 
we have acknowledged that ringing artifacts, inherent to 
point-spread-function (PSF)-based reconstructions, may 

(See figure on previous page.)
Fig. 5  Representative PET/CT images of patients in the different BMI groups with large and sub-centimeter lesions, reconstructed with OSEM and DPL. 
a-d: PET/CT images of an underweight female patient with cervical cancer (BMI: 16.30) and larger lesions. The arrow indicates a metastatic lymph node 
in the retroperitoneum with a maximum diameter of 2.63 cm. m-p: PET/CT images of an underweight female patient with lung cancer (BMI:16.18) and 
sub-centimeter lesions. The arrow indicates a metastatic lymph node in the left hilum with a maximum diameter of 0.58 cm. e-h: PET/CT images of a 
normal-weight male patient with lung cancer (BMI: 21.23) and larger lesions. The arrow indicates a mass in the left lower lobe with a maximum diameter 
of 3.88 cm. q-t: PET/CT images of a normal-weight female patient with lymphoma (BMI: 23.73) and sub-centimeter lesions. The arrow indicates a lymph 
node in the left neck with a maximum diameter of 0.51 cm. i-l: PET/CT images of an overweight female patient with malignant melanoma (BMI: 25.39) 
and larger lesions. The arrow indicates a metastatic lymph node in the left subclavian region with a maximum diameter of 1.62 cm. u-x: PET/CT images of 
an overweight male patient with liver cancer (BMI: 28.23) and small lesions. The arrow indicates a metastatic lesion with a maximum diameter of 0.88 cm. 
Columns 1 and 3 display the fused PET/CT images of patients in the transverse plane, while columns 2 and 4 present the MIPs of the patients’ PET scans. 
Rows 1, 3 and 5 are the OSEM, Rows 2, 4 and 6 are DPL
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still manifest in DPL due to its integration of TOF-PSF-
OSEM as the base reconstruction step. Finally, the DPL 
algorithm is currently only applicable to the reconstruc-
tion of 18F-FDG PET images. Other images of PET radio-
pharmaceuticals require new specialized datasets for 
retraining, which significantly limits its applicability. 18F 
is less sensitive to reductions in injection dose compared 
to 68Ga, making the development of a DPL algorithm for 
68Ga even more important.

Conclusion
This study evaluates the image quality and lesion diag-
nostic performance in PET scans reconstructed by 
using OSEM and DPL across various BMI categories. 
DPL outperformed OSEM in terms of image quality and 
lesion diagnostic performance, maintaining stable per-
formance with increasing BMI, while OSEM’s perfor-
mance declined significantly. This indicates that DPL is 
less affected by increasing BMI compared to OSEM. DPL 
significantly improved the lesion contrast and SUVLesion

max  
values across all BMI groups, with more pronounced 
improvement for sub-centimeter lesions compared to 
larger lesions. Based on these findings, we recommend 
DPL reconstruction for 18F-FDG PET imaging, particu-
larly for patients requiring enhanced image quality and 
accurate lesion diagnosis.
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