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Abstract
Objective Phyllodes tumors (PTs) are rare breast tumors with high recurrence rates, current methods relying on post-
resection pathology often delay detection and require further surgery. We propose a deep-learning-based Phyllodes 
Tumors Hierarchical Diagnosis Model (PTs-HDM) for preoperative identification and grading.

Methods Ultrasound images from five hospitals were retrospectively collected, with all patients having undergone 
surgical pathological confirmation of either PTs or fibroadenomas (FAs). PTs-HDM follows a two-stage classification: 
first distinguishing PTs from FAs, then grading PTs into benign or borderline/malignant. Model performance metrics 
including AUC and accuracy were quantitatively evaluated. A comparative analysis was conducted between the 
algorithm’s diagnostic capabilities and those of radiologists with varying clinical experience within an external 
validation cohort. Through the provision of PTs-HDM’s automated classification outputs and associated thermal 
activation mapping guidance, we systematically assessed the enhancement in radiologists’ diagnostic concordance 
and classification accuracy.

Results A total of 712 patients were included. On the external test set, PTs-HDM achieved an AUC of 0.883, accuracy 
of 87.3% for PT vs. FA classification. Subgroup analysis showed high accuracy for tumors < 2 cm (90.9%). In hierarchical 

Hierarchical diagnosis of breast phyllodes 
tumors enabled by deep learning 
of ultrasound images: a retrospective multi-
center study
Yuqi Yan1,2,3,4,5,6†, Yuanzhen Liu1†, Yao Wang7, Tian Jiang1,5,6, Jiayu Xie6, Yahan Zhou2,3,4, Xin Liu1, Meiying Yan1, 
Qiuqing Zheng1, Haifei Xu7, Jinxiao Chen7, Lin Sui1,2,3,4,5,6, Chen Chen1, RongRong Ru8, Kai Wang9, Anli Zhao9, 
Shiyan Li10, Ying Zhu11*†, Yang Zhang2,3,4*†, Vicky Yang Wang2,3,4*† and Dong Xu1,2,3,4,5*†

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40644-025-00879-9&domain=pdf&date_stamp=2025-5-8


Page 2 of 13Yan et al. Cancer Imaging           (2025) 25:61 

Introduction
Phyllodes tumors (PTs) are rare fibroepithelial breast 
neoplasms, accounting for 2.5% of fibroepithelial lesions, 
with fibroadenomas (FAs) comprising the remainder [1]. 
Based on histological features including stromal cellular-
ity, atypia, and mitotic activity, the WHO classifies PTs 
into benign, borderline, and malignant subtypes, which 
exhibit progressively increasing recurrence rates of 7.1%, 
16.7%, and 25.1%, respectively [2, 3]. This classification 
directly guides treatment approaches: benign PTs require 
simple excision, while borderline and malignant variants 
necessitate wide excision margins and potential adjuvant 
radiotherapy. In contrast, FAs typically only require mon-
itoring after diagnosis, underscoring the critical impor-
tance of accurate preoperative differentiation and grading 
[4].

Currently, preoperative PT diagnosis relies on patho-
logical and imaging examinations, both of which face 
accuracy challenges. Pathologically, Fine needle aspi-
ration has limited utility due to overlapping features 
between PTs and FAs [5]. Although core needle biopsy 
(CNB) provides more detailed information, tumor het-
erogeneity often leads to misclassification, with positive 
predictive values (PPV) ranging from 65 to 83% for PTs 
[6, 7]. From an imaging perspective, ultrasound is widely 
used due to being radiation-free and cost-effective. While 
lobulated appearance and heterogeneous echoes are 
more common in PTs [8], these features are not consis-
tently observed, and diagnostic accuracy heavily depends 
on radiologists’ expertise, with typical accuracy rates 
below 71% [9]. These challenges underscore the urgent 
need for innovative and reliable tools to enhance preop-
erative diagnosis and grading of PTs.

In response to these challenges, deep learning (DL) has 
emerged as a promising solution, demonstrating supe-
rior capability in extracting complex imaging features 
and identifying subtle patterns that may elude human 
observation [10–15]. Despite these advancements, the 

application of DL models to ultrasound imaging for dif-
ferentiating PTs from FAs remains underexplored. To 
date, few studies have investigated this approach, and 
none have addressed the use of DL for grading PTs [9, 16, 
17]. This gap highlights the need for further research to 
harness DL’s potential in improving the preoperative dif-
ferentiation and grading of PTs, paving the way for more 
precise and personalized treatment strategies.

To this end, this study developed and validated a Phyl-
lodes Tumors Hierarchical Diagnosis Model (PTs-HDM) 
driven by DL techniques and assessed its applicability 
using a multicenter ultrasound dataset. PTs-HDM con-
sists of two stages: distinguishing PTs from FAs and grad-
ing PTs into borderline/malignant or benign categories. 
To assess its clinical utility in terms of enhancing diag-
nostic accuracy and reducing classification inconsisten-
cies, we recruited six radiologists with varying expertise 
in ultrasound to evaluate their diagnostic performance in 
two rounds of reader studies, both with and without PTs-
HDM assistance.

Materials & methods
This multi-center diagnostic study adhered to the princi-
ples outlined in the Declaration of Helsinki and received 
approval from the ethics committee of all participating 
institutions (details in Appendix S1). Given the retro-
spective nature of this study, the requirement for individ-
ual consent was waived.

Participants and datasets
This study involved patients from five tertiary referral 
hospitals located in eastern China: Zhejiang Cancer Hos-
pital (Hospital 1), and four additional hospitals (Hospi-
tals 2–5). A total of 519 patients from Hospital 1, treated 
between January 2006 and May 2023, were included in 
the training and internal validation cohort, while 173 
patients from Hospitals 2–5, treated between 2021 and 
2024, made up the external test cohort. Patients were 

classification, the model obtained an AUC of 0.856 and accuracy of 80.9%. Radiologists’ performance improved with 
PTs-HDM assistance, with binary classification accuracy increasing from 82.7%, 67.7%, and 64.2–87.6%, 76.6%, and 
82.1% for senior, attending, and resident radiologists, respectively. Their hierarchical classification AUCs improved from 
0.566 to 0.827 to 0.725–0.837. PTs-HDM also enhanced inter-radiologist consistency, increasing Kappa values from 
− 0.05 to 0.41 to 0.12 to 0.65, and the intraclass correlation coefficient from 0.19 to 0.45.

Conclusion PTs-HDM shows strong diagnostic performance, especially for small lesions, and improves radiologists’ 
accuracy across all experience levels, bridging diagnostic gaps and providing reliable support for PTs’ hierarchical 
diagnosis.

Key points
• Accurate preoperative diagnosis and grading of Phyllodes tumors remain challenging.
• An ultrasound-based deep learning model enables preoperative hierarchical diagnosis of Phyllodes tumors.
• PTs-HDM improves radiologists’ accuracy and consistency, reducing diagnostic variability.

Keywords Deep learning, Ultrasound, Breast, Phyllodes tumors, Fibroadenoma



Page 3 of 13Yan et al. Cancer Imaging           (2025) 25:61 

retrospectively and consecutively screened through the 
pathological database. To prevent excessive data bias 
from affecting the model, we randomly matched an equal 
number of fibroadenomas to phyllodes tumors in the 
database during inclusion. Additionally, for each patient’s 
available imaging data, we retained all accessible ultra-
sound images to facilitate the learning of comprehensive 
tumor-related features. The patient enrollment process is 
summarized in Fig. 1. The inclusion and exclusion crite-
ria are as follows.

Inclusion criteria included

(a) Patients diagnosed with either PTs or FAs, with 
histological confirmation and PT grading performed 
post-surgery by pathologists with over 10 years of 
experience.

(b) Patients who underwent US examination within two 
weeks prior to surgical excision.

Exclusion criteria included

(a) PT cases lacking definitive pathological grading.
(b) prior history of breast surgery or therapy.
(c) Multiple breast lesions on the same side.
(d) Incomplete clinical or imaging data.

A total of 12 different ultrasound diagnostic instru-
ments were used to image the patients included in this 
study (see Fig. S1). Baseline characteristics (i.e. age, gen-
der, menopausal status) of patients and lesions (such 

as location and size) were obtained from the electronic 
medical record system.

Study design
This multicenter, retrospective diagnostic study com-
prised three sequential phases. In Phase 1 (Fig.  2: 
Training), a DL model was developed using grayscale 
ultrasound images with a two-stage diagnostic frame-
work: the first stage differentiated PTs from FAs, while 
the second stage classified PTs into benign or border-
line/malignant categories. Phase 2 (Fig.  2: Evaluation), 
validated the model’s diagnostic performance using an 
external test dataset. In Phase 3 (Fig.  2: DL-Radiologist 
Interaction), the model’s accuracy was compared with 
that of radiologists using the same external test dataset to 
assess its potential as a decision-support tool.

Data preprocessing
All grayscale ultrasound images in DICOM format were 
de-identified using custom Python scripts to ensure 
patient privacy. For each patient, a radiologist with 6 
years of ultrasound experience selected representative 
images (1–4 images per tumor) and annotated the lesion 
areas using Labelme annotation software ( h t t p  s : /  / g i t  h u  
b . c  o m /  l a b e  l m  e a i / l a b e l m e). These labels were then used 
in Python-based cropping scripts to isolate the lesion 
regions from the original images.

To augment the training dataset, various data augmen-
tation techniques were implemented, including vertical/
horizontal flipping, image rotation (5°-15° range), and 
random cropping. This approach resulted in a fourfold 
expansion of the dataset (from 1,181 to 4,724 images), 

Fig. 1 Patient selection flowchart. Hospital 1, Zhejiang Cancer Hospital; FAs, fibroadenomas; PTs, phyllodes tumors; US, ultrasound

 

https://github.com/labelmeai/labelme
https://github.com/labelmeai/labelme
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thereby enhancing the model’s robustness through 
increased training data diversity.

Model development
PTs-HDM is a two-stage classification model. The first 
stage (diagnostic network) differentiates PTs from FAs, 
and the second stage (grading network) classifies PTs as 
borderline/malignant or benign. The overall structure of 
PTs-HDM is shown in Fig. 3a. After evaluating multiple 
convolutional neural networks (DenseNet121, Incep-
tionV3, MobileNetV2, ResNet50V2, and Xception), we 
selected Xception for diagnosis and ResNet50V2 for 
grading based on performance metrics (Fig.  3b and c, 
Table S1, S2). Detailed training protocols are available in 
Appendix S2. In the first stage, lesions classified as FAs 
were excluded from further analysis. Lesions identified 
as PTs proceeded to stage two for grading (borderline/
malignant vs. benign). The model’s overall performance 
was evaluated by combining the metrics from both 

stages. PTs-HDM operates solely on ultrasound images 
without additional patient data.

To enhance the interpretability of the model, Gradient-
weighted Class Activation Mapping (Grad-CAM) was 
applied to visualize the final classification layer. Grad-
CAM highlighted regions of interest in the ultrasound 
images that contributed to the model’s predictions, with 
color coding from red (highest attention) to blue (lowest 
attention), providing insight into the model’s decision-
making process.

DL-Radiologist interaction
A two-round radiologist study was conducted to assess 
the diagnostic performance of PTs-HDM and its clinical 
value. Six radiologists with varying ultrasound experience 
(3–11 years, average 7 years) participated in a two-round 
diagnostic study. They were categorized as senior radi-
ologists (WY, XHF), attending radiologists (YMY, CXH), 
and residents (YYQ, TJ), with WY and YYQ specializing 

Fig. 2 Overview of the study. Phase 1 (Model training): 1181 ultrasound images were collected from one single hospital, and five deep learning network 
models with different structures were trained and validated to construct a phyllodes tumors hierarchical diagnosis model (PTs-HDM), which iteratively 
performed the tasks of PTs diagnosis (i.e. to discriminate between FAs and PTs), and PTs grading (to distinguish benign PTs from borderline/malignant 
PTs). Phase 2 (Evaluation): Data from four other hospitals were collected as the external test set for evaluating the performance of the models. Phase 3 
(DL-Radiologist interaction): Finally, the diagnostic performance of six radiologists with and without input from DL models was evaluated. Yellow stars 
indicate the optimal backbone model for PTs diagnosis; green stars indicate the optimal backbone model for PTs grading. FAs, fibroadenomas; PTs, phyl-
lodes tumors; B-US, Breast Ultrasound; DL, deep learning; ROI, region of interest; ROC, receiver operating characteristic
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in breast ultrasound and others in general ultrasound. 
All radiologists independently evaluated shuffled cases 
from the external test cohort through an online platform 
(Wenjuanxing), blinded to pathological information.

Round one involved diagnosis based solely on ultra-
sound images and patient baseline data (age, location, 
size), with radiologists classifying tumors as fibroadeno-
mas, benign PTs, or borderline/malignant PTs. After a 

Fig. 3 Structure and diagnostic performance of PTs-HDM. a) Overall architecture diagram of PTs-HDM; b) ROC curve for the fibroadenomas vs. phyllodes 
tumor classification model; c) ROC curve for the borderline/malignant vs. benign classification model; d) Confusion matrix for the binary classification of 
phyllodes tumors vs. fibroadenomas using PTs-HDM; e) Confusion matrix for the hierarchical diagnosis of borderline/malignant PTs, benign PTs, and FAs 
using PTs-HDM. FAs, fibroadenomas; PTs, phyllodes tumors;-B, Benign; -M, Borderline/Malignant; PTs-HDM, phyllodes tumors hierarchical diagnosis model
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four-week interval, round two provided additional PTs-
HDM predictions, including probability scores and heat-
maps. Radiologists could maintain or revise their initial 
diagnoses. The study assessed improvements in diagnos-
tic accuracy and consistency with PTs-HDM assistance.

Statistical analysis
All DL models were trained using TensorFlow-GPU (ver-
sion 2.6.0), and statistical analyses were performed in 
Python (version 3.8.15). Non-normally distributed con-
tinuous data were summarized as M (Q₁, Q₃) and com-
pared using rank sum test. Categorical variables were 
compared using chi-square or Fisher’s exact test.

Model performance was evaluated using Receiver 
Operating Characteristic (ROC) curves, Decision Curve 
Analysis (DCA) and confusion matrices on the exter-
nal test set. Confusion matrices were constructed to 
compare diagnostic outcomes between PTs-HDM and 
radiologists. A two-sided DeLong test was employed to 
assess statistical differences in the area under the ROC 
curve (AUC) between groups. Diagnostic performance 
metrics, including accuracy, sensitivity, specificity, PPV, 
negative predictive value (NPV), and F1-score, were cal-
culated using the Scikit-learn library (version 1.1.3). For 
multi-class classification tasks, additional metrics such 
as recall, precision, and F1-score were applied. Boot-
strap method provided 95% CIs for performance metrics. 
Inter-reader agreement was assessed using intraclass cor-
relation coefficient (ICC) and Cohen’s kappa coefficients, 
with significance tested using asymptotic standard errors 
(null hypothesis κ = 0). Statistical significance was set at 
P < 0.05.

Results
Baseline characteristics
This multicenter study included 712 patients (Fig. 1). The 
training cohort from Hospital 1 comprised 1181 images 
of 519 patients (292 FAs, median age 38.0 years; 247 PTs, 

median age 46.0 years). The external test cohort from four 
hospitals included 537 images of 133 patients (108 FAs, 
median age 39.0 years; 65 PTs, median age 46.0 years). 
Age, lesion diameter, and menopausal status showed no 
significant differences between groups (P > 0.05). Detailed 
patient demographics and lesion characteristics are sum-
marized in Table  1, while the number, demographics, 
and lesion details for each pathology type are provided in 
Table S3.

PTs-HDM performance evaluation
The Xception and ResNet50V2 networks were selected 
as the backbone architectures for PTs-HDM. The exter-
nal test cohort was used to independently evaluate the 
performance of the DL models. The stage-one model 
(Xception), designed to differentiate between PTs and 
FAs, achieved AUC of 0.893 (95% CI: 0.867–0.919), with 
an accuracy of 86.1% (95% CI: 81.0% − 91.3%), sensitiv-
ity of 83.3% (95% CI: 77.8% − 88.9%), and specificity of 
90.8%. The stage-two model (ResNet50V2), responsible 
for distinguishing borderline/malignant PTs from benign 
PTs, reported an AUC of 0.869 (95%CI: 0.824–0.914), 
with an accuracy, sensitivity, and specificity of 80.0% 
(95%CI: 70.3% − 89.7%), 86.8% (95%CI: 78.6% − 95.1%), 
and 70.4% (95%CI: 59.3% − 81.5%), respectively. Cor-
responding ROC curves are presented in Fig.  3b and c. 
Detailed performance metrics are provided in Table 
S1. When evaluated on the external test set, PTs-HDM 
achieved a micro-AUC of 0.856 (95% CI: 0.809–0.900), 
and accuracy of 80.9% (95% CI: 74.6% − 86.7%). The con-
fusion matrix for the external test set is shown in Fig. 3d 
and e. The performance metrics for the micro and macro 
methods are shown in Tables 3, and the metrics for the 
weighted method are shown in Table S4. As evidenced by 
DCA, the PTs-HDM demonstrated clinical utility in dif-
ferentiating PTs from FAs when the probability threshold 
was set between 10% and 75%, where its decision curve 
consistently remained above both the ‘none’ and ‘all’ 
intervention reference lines (Fig. S2a). Similarly, for dis-
tinguishing borderline/malignant PTs from benign PTs, 
the model maintained diagnostic validity across a thresh-
old range of 15-75% (Fig. S2b).

Heatmap-Based model interpretability
Heatmap visualization was employed to elucidate the 
decision-making process of PTs-HDM. Performance 
differences were observed between cases correctly and 
incorrectly predicted (Fig. S3). In correctly classified 
cases, the model focused on critical internal lesion fea-
tures across all pathological types. Misclassified cases 
showed inadequate capture of key diagnostic features. 
Radiologists were advised that model predictions might 
be unreliable when heatmaps focused beyond tumor 

Table 1 Clinical and imaging characteristics of the training & 
validation set, and the external test set
Characteristics Total Training & 

Validation
External 
Test

P

Patients (n) 712 539 173 -
Images (n) 1718 1181 537 -
Age (y), M (Q₁, Q₃) 42.0 (33.0, 

50.0)
41.0 (33.0, 
51.0)

42.0 (33.0, 
50.0)

0.59

Menstrual status (n, %) 0.42
 Postmenopausal 157 (22.1) 42 (24.3) 115 (21.3)
 Premenopausal 555 (77.9) 131 (75.7) 424 (78.7)
Lesion diameter (mm), 
M (Q₁, Q₃)

23.0 (16.0, 
34.0)

21.0 (15.0, 
32.0)

24.0 (17.0, 
34.0)

0.42

P-value is the result of the comparison between the Training & Validation and 
Testing groups. PTs, phyllodes tumors; FAs, fibroadenomas; M: Median, Q₁: 1st 
Quartile, Q₃: 3st Quartile
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edges or showed predominantly blue regions, warranting 
clinical judgment.

Diagnostic performance of radiologists
In binary classification (PTs vs. FAs), senior radiologists 
achieved accuracy of 82.7% (95% CI: 77.5-87.9%), sen-
sitivity of 76.9% (95% CI: 65.7-87.0%), and specificity of 
99.1% (95% CI: 96.8-100.0%), outperforming attending 
radiologists and residents (Table  2). Detailed perfor-
mance is shown in Fig. 4a.

In the hierarchical diagnosis of PTs (FAs, benign PTs, 
malignant PTs), senior radiologists demonstrated sig-
nificantly superior diagnostic performance compared 
to attending radiologists, who, in turn, outperformed 
residents (micro-AUC: 0.788, [95% CI: 0.736–0.838] 
vs. micro-AUC: 0.708, [95% CI: 0.656–0.762] vs. micro-
AUC: 0.641, [95% CI: 0.588–0.695]). The breast ultra-
sound specialist represented by senior radiologist 1 and 
resident 1 exhibited markedly better performance com-
pared to their counterparts of equivalent seniority with-
out breast ultrasound specialization (Senior micro-AUC: 

0.827 vs. 0.749, Resident micro-AUC: 0.715 vs. 0.566). 
Figure  4b presents the confusion matrices, showing 
the quantity and percentage of correct predictions in 
the three-class classification. Furthermore, PTs-HDM 
achieved micro-AUC of 0.856 (0.809-0.900), surpass-
ing attending radiologists and residents, comparable to 
senior breast specialists (Table 3). Weighted hierarchical 
diagnostic indicators are presented in Table S4.

Diagnostic performance improvement with PTs-HDM 
assistance
In the binary classification of PTs vs. FAs, radiologists’ 
AUC values (0.507–0.872) improved with PTs-HDM 
assistance (0.629–0.880). Mean accuracy increased 
from 82.7 to 87.6% for senior radiologists, 67.7–76.6% 
for attending radiologists, and 64.2–82.1% for residents 
(Table  2 and Fig. S4). Comparable trends were noted 
in the hierarchical diagnosis of PTs, micro-AUC val-
ues improved from 0.566 to 0.827 to 0.725–0.837 with 
PTs-HDM assistance. Notably, with PTs-HDM support, 
residents and attending radiologists achieved diagnostic 

Table 2 Comparison of diagnostic performance for PTs and FAs among 6 radiologists, and between radiologists with and without 
PTs-HDM assistance

AUC Accuracy Sensitivity Specificity PPV NPV F1-score
PTs-HDM 0.883 (0.831, 0.927) 87.3 (82.1, 91.9) 92.3 (84.9, 98.4) 84.3 (76.6, 90.4) 77.9 (68.1, 86.7) 94.8 (89.8, 98.9) 84.5 (77.5, 90.3)
Senior 1 0.872 (0.821, 0.925) 90.2 (86.1, 94.2) 75.4 (65.1, 85.7) 99.1 (97.1, 100.0) 98.0 (93.3, 100.0) 87.0 (81.0, 92.8) 85.2 (78.1, 91.7)
Senior 1+ 0.880 (0.826, 0.931) ↑ 90.8 (86.7, 94.8) ↑ 76.9 (65.7, 

87.0) ↑
99.1 (96.8, 100.0) 98.0 (93.2, 100.0) 87.7 (81.7, 

93.2) ↑
86.2 (78.4, 
92.6) ↑

Senior 2 0.712 (0.647, 0.780) 75.1 (68.8, 81.5) 55.4 (43.8, 67.5) 87.0 (80.4, 93.2) 72.0 (59.6, 84.1) 76.4 (69.2, 83.7) 62.6 (51.9, 72.3)
Senior 2 + AI 0.817 (0.755, 0.880) ↑ 84.4 (79.2, 89.6) ↑ 70.8 (59.7, 

82.4) ↑
92.6 (87.0, 97.2) ↑ 85.2 (74.6, 94.2) ↑ 84.0 (77.8, 

90.3) ↑
77.3 (68.4, 
85.7) ↑

Senior Mean 0.792 (0.734, 0.853) 82.7 (77.5, 87.9) 65.4 (54.5, 76.6) 93.1 (88.8, 96.6) 85.0 (76.5, 92.1) 81.7 (75.1, 88.3) 73.9 (65.0, 82.0)
Senior Mean+ 0.848 (0.789, 0.906) ↑ 87.6 (83.0, 92.2) ↑ 73.9 (62.7, 

84.7) ↑
95.8 (91.9, 98.6) ↑ 91.6 (83.9, 97.1) ↑ 85.9 (79.8, 

91.8) ↑
81.8 (73.4, 
89.2) ↑

Attending 1 0.507 (0.441, 0.585) 56.1 (49.1, 64.2) 29.2 (18.9, 41.0) 72.2 (63.5, 81.0) 38.8 (25.0, 54.2) 62.9 (54.6, 71.7) 33.3 (22.0, 45.0)
Attending 
1 + AI

0.629 (0.556, 0.695) ↑ 67.1 (60.1, 73.4) ↑ 46.2 (33.3, 
58.5) ↑

79.6 (71.7, 86.5) ↑ 57.7 (44.4, 70.2) ↑ 71.1 (62.7, 
78.8) ↑

51.3 (39.2, 
61.0) ↑

Attending 2 0.775 (0.713, 0.839) 79.2 (73.4, 85.0) 70.8 (59.5, 81.7) 84.3 (76.8, 90.8) 73.0 (61.0, 84.1) 82.7 (75.7, 89.3) 71.9 (62.6, 80.0)
Attending 
2 + AI

0.846 (0.787, 0.904) ↑ 86.1 (80.9, 91.3) ↑ 78.5 (68.1, 
87.9) ↑

90.7 (84.9, 96.1) ↑ 83.6 (74.6, 92.6) ↑ 87.5 (81.7, 
93.2) ↑

81.0 (72.9, 
88.1) ↑

Attending 
Mean

0.641 (0.577, 0.712) 67.7 (61.3, 74.6) 50.0 (39.2, 61.4) 78.3 (70.2, 85.9) 55.9 (43.0, 69.2) 72.8 (65.2, 80.5) 52.6 (42.3, 62.5)

Attending 
Mean+

0.738 (0.672, 0.800) ↑ 76.6 (70.5, 82.4) ↑ 62.4 (50.7, 
73.2) ↑

85.2 (78.3, 91.3) ↑ 70.7 (59.5, 81.4) ↑ 79.3 (72.2, 
86.0) ↑

66.2 (56.1, 
74.6) ↑

Resident 1 0.744 (0.675, 0.813) 75.7 (69.4, 82.1) 69.2 (58.3, 81.0) 79.6 (71.7, 86.9) 67.2 (54.8, 78.8) 81.1 (73.5, 88.6) 68.2 (58.6, 77.1)
Resident 1 + AI 0.871 (0.817, 0.921) ↑ 87.3 (82.1, 91.9) ↑ 86.2 (78.0, 

93.8) ↑
88.0 (81.5, 93.5) ↑ 81.2 (71.1, 90.0) ↑ 91.3 (86.0, 

96.3) ↑
83.6 (76.3, 
89.7) ↑

Resident 2 0.538 (0.478, 0.614) 52.6 (44.7, 60.7) 58.5 (45.7, 70.5) 49.1 (40.0, 59.4) 40.9 (31.4, 50.5) 66.3 (55.6, 76.9) 48.1 (38.6, 57.3)
Resident 2 + AI 0.781 (0.718, 0.840) ↑ 76.9 (70.5, 82.7) ↑ 83.1 (73.3, 

92.1) ↑
73.1 (64.4, 81.1) ↑ 65.1 (54.8, 74.7) ↑ 87.8 (80.4, 

94.1) ↑
73.0 (64.4, 
81.5) ↑

Resident Mean 0.641 (0.577, 0.714) 64.2 (57.1, 71.4) 63.9 (52.0, 75.8) 64.4 (55.9, 73.2) 54.1 (43.1, 64.7) 73.7 (64.6, 82.8) 58.2 (48.6, 67.2)
Resident 
Mean+

0.826 (0.768, 0.881) ↑ 82.1 (76.3, 87.3) ↑ 84.7 (75.7, 
93.0) ↑

80.6 (73.0, 87.3) ↑ 73.2 (63.0, 82.4) ↑ 89.6 (83.2, 
95.2) ↑

78.3 (70.4, 
85.6) ↑

The data in brackets represent the 95% confidence intervals PPV, positive predictive value; NPV, negative predictive value; + indicates with PTs-HDM assistance The 
upward arrow (↑) represents indicators that improved owing to PTs-HDM assistance
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Fig. 4 (See legend on next page.)
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performance comparable to senior radiologists, with Res-
ident 2 demonstrating a substantial AUC improvement 
of 0.204 underscores the model’s potential to reduce the 
impact of experience disparity. Similar improvements 
were observed across all radiologists in terms of accu-
racy, recall, precision, and F1-score (Table 3). In conclu-
sion, PTs-HDM enhanced diagnostic performance across 
all radiologist levels, effectively bridging experience gaps.

Enhanced diagnostic consistency with PTs-HDM 
integration
PTs-HDM significantly improved diagnostic consistency 
among radiologists by standardizing lesion interpretation 
through probabilistic outputs and heatmap-based visual 
aids, fostering more uniform decision-making. As shown 
in Fig. 5, inter-radiologist agreement in binary classifica-
tion of PTs vs. FAs, Kappa values improved from − 0.11 to 
0.60 to 0.13–0.77, while ICC increased from 0.23 to 0.52. 
Similarly, for the hierarchical diagnosis (three-class clas-
sification) was initially poor, with Kappa values ranging 
from − 0.05 to 0.41 and an ICC of 0.19. After PTs-HDM 
integration, Kappa values increased to 0.12–0.65, and 
ICC rose to 0.45, indicating notable improvement. These 
findings demonstrate PTs-HDM’s ability to reduce diag-
nostic variability and enhance reliability by providing 
consistent, interpretable guidance that mitigates subjec-
tive differences.

Subgroup analysis based on tumor size
To evaluate the influence of tumor size, patients were 
grouped into three categories: <2  cm (n = 77, 22 PTs), 
2–4  cm (n = 64, 38 PTs), and ≥ 4  cm (n = 32, 31 PTs). 
Across all subgroups, PTs-HDM demonstrated high 
diagnostic accuracy (90.9%, 81.2%, and 90.6%, respec-
tively). Sensitivity was robust (< 2  cm: 100.0%, 2–4  cm: 
89.3%, ≥ 4  cm: 93.5%), while specificity showed greater 
variability (< 2 cm: 90.1%, 2–4 cm: 75.0%, ≥ 4 cm: 0.0%).

Radiologists’ performance also improved consistently 
with PTs-HDM integration. For tumors < 2  cm, accu-
racy increased from 46.8%-93.5–81.2-94.8%; for 2–4 cm 
lesions, from 51.6%-85.9–54.7-84.4%; and for ≥ 4  cm 
lesions, from 37.5%-90.6–53.1-93.8%. Notably, the most 
substantial F1-score improvements were observed in 
the < 2  cm subgroup, highlighting PTs-HDM’s potential 
in addressing diagnostic challenges for smaller lesions 
(Fig.  6). Comprehensive subgroup confusion matrices 
are available in the supplementary materials (Fig. S5-8), 

further supporting PTs-HDM’s role in enhancing diag-
nostic consistency and accuracy across tumor sizes.

Discussion
PTs exhibit distinct biological behaviors from FAs, mak-
ing accurate preoperative differentiation crucial for 
selecting appropriate surgical strategies. However, cur-
rent diagnostic tools, such as imaging and biopsy, have 
significant limitations [18, 19]. This study presents the 
first comprehensive evaluation of PTs-HDM, a deep 
learning model for PT diagnosis and grading, using mul-
ticenter ultrasound data from 712 patients across 5 hos-
pitals. The study also demonstrates PTs-HDM’s value in 
improving diagnostic accuracy and reducing discrepan-
cies among radiologists of varying experience levels.

In the context of binary classification, Shi et al. [9]
developed a DL model based on single-center ultrasound 
data to differentiate between PTs and FAs, achieving an 
AUC of 0.91. For PT grading, Basara et al. [27] analyzed 
texture features extracted from ultrasound images of 63 
PT patients (41 benign, 12 borderline, and 10 malignant) 
to distinguish between benign PTs and borderline/malig-
nant PTs. The AUC values for all independent factors 
discriminating between benign and malignant groups 
ranged from 0.65 to 0.75. Unlike prior single-center stud-
ies, our study incorporates a multicenter design and 
diverse ultrasound equipment, offering a more generaliz-
able assessment of the model’s performance in real-world 
clinical settings. Multi-vendor ultrasound systems inher-
ently induce feature-level heterogeneity in disease char-
acterization due to device-specific variations in acoustic 
parameters (e.g., dynamic signal processing algorithms) 
[20, 21]. Despite these challenges, PTs-HDM demon-
strated strong performance in both binary and three-
class classification tasks for PT diagnosis, with AUC, 
accuracy, and sensitivity exceeding 0.8 in all evaluations.

In clinical practice, significant variability exists among 
radiologists in the preoperative diagnosis of PTs, which 
was further confirmed by our study. Our results demon-
strated that the AUC values across six radiologists ranged 
from 0.507 to 0.872 (mean: 0.655) for binary classifica-
tion and from 0.566 to 0.827 (mean: 0.712) for hierarchi-
cal diagnosis. Our study highlights the potential value of 
PTs-HDM as a preoperative diagnostic assistance tool in 
improving both the accuracy and consistency of diagno-
ses. With PTs-HDM assistance, the AUC values of the six 
radiologists improved to 0.629–0.880 (mean: 0.804) for 

(See figure on previous page.)
Fig. 4 Confusion matrices of six radiologists performing hierarchical diagnosis and binary classification with and without PTs-HDM assistance. a) Binary 
Classification: Each matrix compares the performance of the same six radiologists for differentiating between fibroadenomas and phyllodes tumors. b) 
Hierarchical Diagnosis: Each matrix represents the distribution of predictions for FAs, benign PTs, and borderline/malignant PTs across six radiologists. 
Rows indicate the actual labels, and columns indicate the predicted labels. Across both binary classification and hierarchical diagnosis tasks, PTs-HDM 
assistance improved diagnostic accuracy, reducing misclassification rates and increasing consistency, especially for borderline/malignant cases (PTs-M) 
This effect was more pronounced for residents compared to seniors and attendings, reflecting the potential of PTs-HDM to augment less experienced 
radiologists. FAs, fibroadenomas; PTs, phyllodes tumors; -B, Benign; -M, Borderline/Malignant; +, with PTs-HDM assistance
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binary classification and 0.725–0.837 (mean: 0.797) for 
hierarchical diagnosis. Moreover, the ICC among the six 
radiologists increased from 0.453 to 0.523 for binary clas-
sification and from 0.191 to 0.237 for hierarchical diag-
nosis. The pairwise kappa values between radiologists 
showed similar improvements, indicating that PTs-HDM 
assistance effectively reduced diagnostic disparities 
among radiologists with varying levels of experience.

We further analyzed the performance of both PTs-
HDM and radiologists stratified by tumor size. PTs-HDM 
demonstrated significant value in assisting radiologists, 
although its performance varied among size groups. For 
tumors smaller than 2 cm, PTs-HDM achieved high diag-
nostic accuracy (90.9%) and sensitivity (100.0%), valuable 
for early-stage diagnoses, though its low PPV (46.2%) 
suggests careful interpretation of positive results. For 
medium-sized tumors (2–4 cm), the model showed bal-
anced performance (accuracy 81.3%, sensitivity 89.3%), 
with specificity (75.0%) remaining an area for improve-
ment. For tumors larger than 4 cm, while achieving high 
sensitivity (93.5%) and PPV (96.7%), the specificity (0%) 
performance indicates room for optimization. More-
over, the impact of AI assistance varied with radiologists’ 
experience levels, showing value in standardizing diag-
noses among less experienced practitioners. For small 
tumors, less experienced radiologists (e.g., Resident 2) 
showed substantial improvement in diagnostic accuracy 
(46.8–79.2%). This finding suggests PTs-HDM’s poten-
tial in standardizing diagnostic procedures and reducing 
inter-observer variability. However, the varying improve-
ment across size ranges emphasizes the importance of 

considering tumor size in AI system development and 
implementation.

Our study has several limitations. First, in real-world 
settings, the number of FA patients substantially exceeds 
that of PT patients. To ensure effective model training 
and adequately capture distinct imaging characteristics 
across different pathologies, we included an equal num-
ber of FA samples to match the number of PT samples 
[22–25]. Second, radiologists were limited to interpret-
ing static two-dimensional grayscale images, whereas 
clinical diagnosis typically involves patient history, symp-
toms, and dynamic imaging information. Third, some 
radiologists showed minimal improvement with model 
assistance, possibly due to their already high diagnostic 
accuracy or conflicts between AI suggestions and clinical 
judgment. This occasional performance degradation sug-
gests the need for more interpretable model recommen-
dations [26, 27] and continuous learning mechanisms 
that incorporate radiologist feedback [28], thereby mini-
mizing decision inconsistencies and enhancing diagnos-
tic performance.

Conclusions
PTs-HDM demonstrates strong performance in assist-
ing radiologists with hierarchical diagnosis, enhancing 
consistency and accuracy particularly among radiolo-
gists with varying experience levels. Size-specific analy-
sis reveals opportunities for optimization, particularly in 
improving PPV for small tumors and specificity for large 
tumors. Future development should focus on enhanc-
ing model performance across all tumor sizes while 

Table 3 Comparison of diagnostic performance between PTs-HDM and 6 radiologists
AUC-micro AUC-macro Accuracy-macro Recall-macro Precision-macro F1-macro

PTs-HDM 0.856 (0.809, 0.900) 0.842 (0.787, 0.893) 80.9 (75.1, 86.7) 77.8 (69.8, 85.2) 78.0 (70.9, 84.2) 76.6 (69.1, 83.6)
Senior 1 0.827 (0.779, 0.874) 0.709 (0.668, 0.746) 76.8 (70.5, 83.2) 55.8 (50.7, 60.9) 46.7 (41.7, 51.3) 50.7 (45.9, 54.9)
Senior 1+ 0.827 (0.779, 0.874) 0.680 (0.637, 0.723) 76.8 (70.5, 83.2) 56.2 (50.8, 62.0) ↑ 61.4 (42.3, 82.7) ↑ 52.1 (46.0, 59.2) ↑
Senior 2 0.749 (0.692, 0.801) 0.631 (0.578, 0.681) 66.5 (59.0, 72.8) 48.2 (41.5, 54.5) 67.5 (36.0, 76.8) 46.2 (39.1, 54.8)
Senior 2+ 0.810 (0.757, 0.857) ↑ 0.720 (0.663, 0.777) ↑ 74.5 (67.6, 80.3) ↑ 59.7 (51.7, 68.4) ↑ 65.3 (55.3, 74.9) 61.3 (52.2, 70.2) ↑
Senior Mean 0.788 (0.736, 0.838) 0.670 (0.623, 0.714) 71.7 (64.8, 78.0) 52.0 (46.1, 57.7) 57.1 (38.9, 64.1) 48.5 (42.5, 54.9)
Senior Mean+ 0.819 (0.768, 0.866) ↑ 0.700 (0.650, 0.750) ↑ 74.3 (68.8, 80.2) ↑ 56.0 (49.2, 62.8) ↑ 54.5 (47.1, 62.0) 54.4 (47.3, 61.3) ↑
Attending 1 0.636 (0.584, 0.692) 0.518 (0.468, 0.573) 51.4 (43.4, 58.4) 36.4 (29.7, 43.1) 36.0 (28.0, 45.0) 34.8 (27.5, 42.6)
Attending 1+ 0.725 (0.671, 0.775) ↑ 0.635 (0.575, 0.694) ↑ 63.1 (55.5, 70.0) ↑ 52.0 (44.1, 59.7) ↑ 53.2 (44.2, 62.3) ↑ 52.3 (43.5, 60.3) ↑
Attending 2 0.780 (0.727, 0.831) 0.720 (0.657, 0.781) 70.5 (63.6, 77.5) 61.3 (52.5, 69.8) 61.6 (52.8, 70.2) 61.2 (53.1, 68.8)
Attending 2+ 0.809 (0.762, 0.853) ↑ 0.737 (0.679, 0.793) ↑ 74.6 (67.6, 80.9) ↑ 61.9 (53.0, 70.5) ↑ 63.3 (54.3, 71.9) ↑ 62.3 (53.7, 71.2) ↑
Attending Mean 0.708 (0.656, 0.762) 0.619 (0.566, 0.675) 61.0 (53.5, 68.0) 48.9 (41.1, 56.5) 48.8 (40.4, 57.6) 48.0 (40.3, 55.7)
Attending Mean+ 0.767 (0.717, 0.814) ↑ 0.686 (0.627, 0.744) ↑ 68.9 (61.6, 80.9) ↑ 61.9 (53.0, 70.5) ↑ 63.3 (54.3, 71.9) ↑ 62.3 (53.7, 71.2) ↑
Resident 1 0.715 (0.662, 0.766) 0.630 (0.575, 0.690) 61.8 (54.3, 69.4) 47.5 (39.5, 55.6) 48.2 (40.3, 56.5) 47.3 (39.6, 54.8)
Resident 1+ 0.837 (0.792, 0.883) ↑ 0.789 (0.732, 0.842) ↑ 78.1 (72.3, 83.8) ↑ 69.5 (61.2, 78.2) ↑ 72.5 (63.6, 80.6) ↑ 69.8 (61.3, 77.8) ↑
Resident 2 0.566 (0.514, 0.623) 0.544 (0.483, 0.601) 42.4 (35.3, 49.1) 39.9 (31.9, 47.2) 37.3 (29.4, 46.1) 34.0 (27.4, 41.2)
Resident 2+ 0.770 (0.714, 0.818) ↑ 0.753 (0.694, 0.810) ↑ 69.5 (63.0, 76.3) ↑ 66.3 (57.9, 74.6) ↑ 63.7 (55.3, 71.5) ↑ 64.0 (55.6, 72.0) ↑
Resident Mean 0.641 (0.588, 0.695) 0.587 (0.529, 0.646) 52.1 (44.8, 59.3) 43.7 (35.7, 51.4) 42.8 (34.9, 51.3) 40.7 (33.5, 48.0)
Resident Mean+ 0.804 (0.753, 0.851) ↑ 0.771 (0.713, 0.826) ↑ 73.8 (67.7, 80.1) ↑ 67.9 (59.6, 76.4) ↑ 68.1 (59.5, 76.1) ↑ 66.9 (58.5, 74.9) ↑
The data in brackets represent the 95% confidence intervals. + indicates with PTs-HDM assistance. The upward arrow (↑) represents indicators that improved owing 
to AI assistance
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incorporating dynamic imaging features and feedback 
mechanisms.

Fig. 5 Heatmaps showing the inter-rater agreement among different participants across four scenarios. (1) PTs vs. FAs without PTs-HDM (top-left); (2) PTs 
vs. FAs with PTs-HDM (top-right), (3) PTs-M vs. PTs-B vs. FAs without PTs-HDM (bottom-left), (4) PTs-M vs. PTs-B vs. FAs with PTs-HDM (bottom-right). Kappa 
values were interpreted according to Landis and Koch’s guidelines: ≤0 indicates no agreement, 0.01–0.20 slight agreement, 0.21–0.40 fair agreement, 
0.41–0.60 moderate agreement, 0.61–0.80 substantial agreement, and 0.81-1.00 almost perfect agreement. Statistical significance of Kappa coefficients 
was tested using asymptotic standard errors under the null hypothesis (κ = 0), with p-values noted within each cell. Darker colors represent higher Kappa 
values, indicating better agreement. The inclusion of PTs-HDM improved inter-rater agreement across most groups, especially between more experienced 
participants. FAs, fibroadenomas; PTs, phyllodes tumors; -B, Benign; -M, Borderline/Malignant; PTs-HDM, phyllodes tumors hierarchical diagnosis model
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