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Abstract
Purpose  According to the updated classification system, human epidermal growth factor receptor 2 (HER2) 
expression statuses are divided into the following three groups: HER2-over-expression, HER2-low-expression, 
and HER2-zero-expression. HER2-negative expression was reclassified into HER2-low-expression and HER2-zero-
expression. This study aimed to identify three different HER2 expression statuses for breast cancer (BC) patients using 
PET/CT radiomics and clinicopathological characteristics.

Methods and materials  A total of 315 BC patients who met the inclusion and exclusion criteria from two institutions 
were retrospectively included. The patients in institution 1 were divided into the training set and the independent 
validation set according to the ratio of 7:3, and institution 2 was used as the external validation set. According to the 
results of pathological examination, all BC patients were divided into HER2-over-expression, HER2-low-expression, and 
HER2-zero-expression. First, PET/CT radiomic features and clinicopathological features based on each patient were 
extracted and collected. Second, multiple methods were used to perform feature screening and feature selection. 
Then, four machine learning classifiers, including logistic regression (LR), k-nearest neighbor (KNN), support vector 
machine (SVM), and random forest (RF), were constructed to identify HER2-over-expression vs. others, HER2-low-
expression vs. others, and HER2-zero-expression vs. others. The receiver operator characteristic (ROC) curve was 
plotted to measure the model’s predictive power.

Results  According to the feature screening process, 8, 10, and 2 radiomics features and 2 clinicopathological features 
were finally selected to construct three prediction models (HER2-over-expression vs. others, HER2-low-expression vs. 
others, and HER2-zero-expression vs. others). For HER2-over-expression vs. others, the RF model outperformed other 
models with an AUC value of 0.843 (95%CI: 0.774–0.897), 0.785 (95%CI: 0.665–0.877), and 0.788 (95%CI: 0.708–0.868) in 
the training set, independent validation set, and external validation set. Concerning HER2-low-expression vs. others, 
the outperformance of the LR model over other models was identified with an AUC value of 0.783 (95%CI: 0.708–
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Introduction
Breast cancer is the most common cancer type in female 
malignancies, which accounts for 30% of incidence and 
15% of mortality, respectively [1, 2]. As a prototypic 
oncogene, human epidermal growth factor receptor 2 
(HER2) is an important driver gene, therapeutic target, 
and prognostic indicator of breast cancer [3]. HER2-
over-expression breast cancer has a higher recurrence 
rate and a poorer prognosis than HER2-negative breast 
cancer [3, 4]. Nevertheless, according to a recently pro-
posed classification system, HER2 expression statuses 
were categorized into the following three groups: HER2-
over-expression, HER2-low-expression, and HER2-zero-
expression [5, 6]. In other words, the previous 
HER2-negative status was reclassified into HER2-low-
expression and HER2-zero-expression. HER2 is currently 
a promising therapeutic target in BC targeted therapy. 
A significant percentage of BC patients benefit from 
anti-HER2 treatment in clinical practice. As previously 
reported, compared to BC with HER2-zero-expression, 
BC with HER2-over-expression exhibited a remarkably 
favorable prognosis in the context of anti-HER2 targeted 
therapy [7]. For BC with HER2-low-expression, which 
accounts for 40–50% of all BC patients, the antibody–
drug conjugate (ADC) regimen is increasingly considered 
a promising, precise treatment strategy [8–10]. There-
fore, it is critical to accurately identify HER2 expression 
status to determine appropriate treatment options for 
breast cancer patients. In particular, the newly intro-
duced HER2-low-expression status enables a treatment 
revolution in the BC cohort with HER2-low-expression 
status. Because HER2-low-expression was previously 
equal to HER2-negative-expression, anti-HER2 targeted 
therapy was unavailable to BC with HER2-low-expres-
sion status. Pathological analysis of biopsy specimens is 
typically used for preoperative HER2 status determina-
tion based on the results of using immunohistochemis-
try (IHC) assay and fluorescence in situ hybridization 
(FISH) test [4]. However, biopsy is still an invasive pro-
cedure, and preoperative core needle biopsy (CNB) is 
only obtained with a limited size and is not able to accu-
rately reflect the overall heterogeneity of the entire tumor 
[11]. Therefore, a precise, practical, and non-invasive 

technique to preoperatively identify the three different 
HER2 expression statuses is urgently needed.

[18F]-Fluorodeoxyglucose positron emission tomogra-
phy/computed tomography ([18F]FDG PET/CT) imaging, 
as a hybrid imaging technology, is widely used in clini-
cal practice for tumor diagnosis and treatment based on 
simultaneous anatomic structure information and molec-
ular function information. About BC, though PET/CT 
imaging was previously recommended to be performed 
for only advanced BC patients, the updated National 
Comprehensive Cancer Network (NCCN) guidelines 
suggested that PET/CT should be available to BC patients 
whose staging was uncertain. Furthermore, multiple PET 
metabolic parameters, such as standardized uptake value 
(SUV), metabolic tumor volume (MTV), and total lesion 
glycolysis (TLG), were also identified as potential indica-
tors to classify molecular subtype for BC [12, 13]. Addi-
tionally, HER2-targeted positron emission tomography 
(PET/CT) enables real-time monitoring of HER2 expres-
sion in systemic lesions [14]. However, those traditional 
PET metabolic metrics are all semi-quantitative indices, 
which are not able to reflect the complex heterogeneity 
across the whole lesion in BC. Radiomics, as a rapidly 
emerging technique, is capable of comprehensively quan-
tifying intra-tumoral and inter-tumoral heterogeneities 
based on a high-throughput extraction of quantitative 
features from many medical images [15]. As reported in 
our previous reports, constructed radiomic models based 
on PET/CT were verified as potential non-invasive tools 
to effectively predict the molecular subtype classification 
in BC, particularly for the HER2 expression status [16, 
17].

With the updated stratification strategy for HER2 
expression status, it is urgently needed to evaluate the 
role of PET/CT radiomics in the prediction of HER2-
over-expression, HER2-low-expression, and HER2-zero-
expression, which is rarely reported in previous studies. 
In the present study, a total of 215 BC patients from our 
institution were included to construct and validate the 
predictive power of radiomic models based on PET/CT 
in identifying HER2 expression status. It is noteworthy 
that another 100 BC patients from an external institution 
were also enrolled to perform an external validation.

0.846), 0.756 (95%CI: 0.634–0.854), and 0.779 (95%CI: 0.698–0.860) in the training set, independent validation set, 
and external validation set. Whereas, the KNN model was confirmed as the optimal model to distinguish HER2-zero-
expression from others, with an AUC value of 0.929 (95%CI: 0.890–0.958), 0.847 (95%CI: 0.764–0.910), and 0.835 (95%CI: 
0.762–0.908) in the training set, independent validation set, and external validation set.

Conclusion  Combined PET/CT radiomic models integrating with clinicopathological characteristics are non-
invasively predictive of different HER2 statuses of BC patients.

Keywords  PET/CT, Radiomics, Breast cancer, HER2
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Methods
Patients
A total of 315 BC patients who underwent preoperative 
PET/CT examination were enrolled in this study, 215 
from our institution and 100 from another institution. 
The specific inclusion and exclusion criteria are listed 
as follows: Inclusion criteria: (1) Patients with patho-
logically diagnosed primary BC; (2) Preoperative PET/
CT examination; (3) Complete and available IHC and/
or FISH results for HER2 expression status after sur-
gery. Exclusion criteria: (1) The pathological findings 
were incomplete; (2) PET/CT images or related data are 
not available; (3) PET/CT imaging was performed after 
biopsy, surgery, or treatment; (4) Neoadjuvant therapy 
was given before the preoperative and pathological exam-
ination. The flow chart of patient enrollment is shown in 
Fig. 1. Patient informed consent was not required for this 
retrospective investigation, which was permitted by the 
institutional Ethics Committee.

Clinicopathological features
Clinical features (Age, SUVmax, SUVmean) and patho-
logical characteristics (estrogen receptor [ER] status, 
progesterone receptor [PR] status, Ki-67 index) were col-
lected from the hospital system. ER/PR thresholds ≥ 1% 
and Ki-67 thresholds ≥ 14% are positive.

Classification of HER2 expression status
The HER2 expression statuses for all the included BC 
patients in this study were determined by IHC or FISH 
assay according to the American Society of Clinical 
Oncology/College of American Pathologists (ASCO/
CAP) criteria. Based on IHC and/or FISH results, BC 
patients were divided into the following three groups: 
HER2-over-expression (IHC 3 + or 2 + with FISH posi-
tive amplification), HER2-low-expression (IHC 1 + or 
2 + without FISH positive amplification), and HER2-zero-
expression (IHC 0).

Image acquisition
Institution 1 uses the GE Discovery Elite PET/CT scan-
ner (GE Medical Systems) for PET/CT imaging. Insti-
tution 2 performed PET/CT examinations using the 
Discovery 710 PET/CT (GE Healthcare, Milwaukee, WI, 
USA). The detailed 18F-FDG PET/CT imaging protocol 
can be found in the Supplementary Material.

Volume of interest segmentation for breast lesions
The 3D Slicer program (version 5.2.1) and Python (ver-
sion 3.7.9) were used to perform volume of interest (VOI) 
segmentation and extract radiomics features. In brief, 
the VOI in the CT image was delineated layer by layer 
manually, and the VOI in the PET image was segmented 
by using a threshold method (40% of the SUVmax) [18]. 
To guarantee the reliability of VOI segmentation, two 

Fig. 1  The flow chart of patient enrollment
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experienced nuclear medicine doctors (Readers 1 and 2 
have 6 and 11 years of expertise in diagnosing PET/CT 
images) segmented the lesions on the images, with one of 
the doctors (Reader 1) performing the segmentation on 
the images twice.

Radiomic features extraction
Before radiomic feature extraction, the VOIs in CT and 
PET images were resampled to 1.0 × 1.0 × 1.0 mm3 iso-
tropic voxels [19]. Subsequently, using Pyradiomics, 
an open-source Python software, a high throughput of 
radiomic features was extracted based on PET and CT 
images, respectively. For each included BC patient, a 
total of 1886 radiomics features were obtained, includ-
ing 943 PET radiomics features and 943 CT radiomics 
features. The information for the categories of extracted 
radiomics features is described in detail in the Supple-
mentary Material. Reliability was determined using 
intraclass correlation coefficients (ICCs). To calculate 
the extracted radiomic features’ stability and reliability, 
inter-(Reader 1 vs. Reader 2) and intra-observer (Reader 
1 vs. Reader 1) ICCs were computed. Both inter-(Readers 
1 vs. Readers 2) and intra-observer (Readers 1 vs. Read-
ers 1) ICCs > 0.75 were selected in subsequent radiomic 
analysis.

Construction and evaluation of radiomic models
The included BC patients in our institution were used 
to construct radiomic models and perform internal vali-
dation, with the whole population randomly assigned 
to a training set (n = 150) and an independentvalida-
tion set (n = 65) at a ratio of 7:3. Based on the HER2 
expression status, BC patients were categorized into 
HER2-over-expression vs. others (HER2-low-expres-
sion + HER2-zero-expression), HER2-low-expression 
vs. others (HER2-over-expression + HER2-zero-expres-
sion), and HER2-zero-expression vs. others (HER2-over-
expression + HER2-low-expression). According to the 
above groups, the corresponding radiomics models were 
constructed to distinguish HER2-over-expression vs. oth-
ers, HER2-low-expression vs. others, and HER2-zero-
expression vs. others. In the training set, T-tests and 
maximum relevance minimum redundancy (mRMR) 
were used to screen and finally select the significantly 
informative radiomic features. Based on that, combined 
radiomic models were established by integrating clinico-
pathological features. To select the potentially optimal 
radiomic models, a total of four machine learning classi-
fiers were employed to establish radiomic models, includ-
ing logistic regression (LR), k-nearest neighbor (KNN), 
support vector machine (SVM), and random forest (RF). 
The receiver operating characteristic (ROC) curves were 
drawn, and the area under the curve (AUC) values were 
calculated to assess the predictive performance of the 

constructed radiomic models. The whole procedure of 
the radiomic analysis in this study is depicted in Fig. 2.

Statistical analysis
SPSS (version 26.0), Python (version 3.7.9), and R soft-
ware (version 4.3.1) were used for all statistical analy-
ses in the study. Regarding clinicopathological features, 
ANOVA was conducted for continuous variables, 
whereas Fisher’s exact or Pearson chi-square test was 
carried out for categorical variables. The Delong test was 
used to compare the AUCs of different radiomic models.

Results
Clinicopathological characteristics in the internal and 
external institutions
The general clinicopathological characteristics of the 
included BC patients are presented based on the HER2 
expression status in Tables  1 and 2 for the internal and 
the external institutions, respectively. Particularly, for the 
internal institution, the included 215 BC patients were 
randomly divided into a training set and an independent 
validation set at a ratio of 7:3. As shown in Tables 1 and 
2, the differences in the ER and PR statuses are found to 
be statistically significant between the three groups with 
different HER2 expression status in the training set (ER: 
p = 0.001; PR: p < 0.001), the independent validation set 
(ER: p = 0.036; PR: p = 0.001) and the external validation 
set (ER: p < 0.001; PR: p < 0.001). Thus, the ER and the PR 
statuses were selected as the significant clinicopatho-
logical features and finally incorporated into the subse-
quently constructed radiomic models.

Construction of PET/CT-derived radiomic models
Following the aforementioned traditional radiomic analy-
sis procedure, including VOI delineation, radiomic fea-
ture extraction, and radiomic feature screening, a total 
of 8, 10, and 2 radiomic features were finally selected 
as the informative indicators to discriminate between 
HER2-over-expression vs. others, HER2-low-expression 
vs. others, and HER2-zero-expression vs. others, respec-
tively. All the selected radiomic features to identify HER2 
expression status are listed in detail in Table 3. In the end, 
based on a combination of these selected radiomic fea-
tures with the selected clinicopathological features (ER 
and PR), four machine learning classifiers were employed, 
including LR, KNN, SVM, and RF, to develop and select 
the optimal radiomic models to distinguish HER2-over-
expression vs. others, HER2-low-expression vs. others, 
and HER2-zero-expression vs. others, respectively.

Predictive performance of established PET/CT-derived 
radiomic models in HER2 expression status
To evaluate the performance of these constructed 
PET/CT-derived radiomic models in predicting HER2 
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expression status, respective ROC curves were depicted 
to calculate AUCs (Figs.  3, 4 and 5, and 6 ). As shown 
(Table  4), for HER2-over-expression vs. others, the RF 
model outperformed other models with an AUC value 
of 0.843 (95%CI: 0.774–0.897) and 0.785 (95%CI: 0.665–
0.877) in the training set and the independent valida-
tion set, respectively. The DeLong test revealed that the 
independent validation set’s RF vs. LR (p = 0.400), KNN 
(p = 0.025), and SVM (p = 0.010) displayed statistical sig-
nificance. About HER2-low-expression vs. others, the 
outperformance of the LR model over other models was 

identified with an AUC value of 0.783 (95%CI: 0.708–
0.846) and 0.756 (95%CI: 0.634–0.854) in the training 
set and the independent validation set, respectively. The 
DeLong test revealed that the independent validation 
set’s LR vs. RF (p = 0.055), KNN (p = 0.012), and SVM 
(p = 0.060) showed statistical significance. Whereas, the 
KNN model was confirmed as the optimal model to dis-
tinguish HER2-zero-expression vs. others, with an AUC 
value of 0.929 (95%CI: 0.890–0.958) and 0.847 (95%CI: 
0.764–0.910) in the training set and independent valida-
tion set, respectively. The DeLong test revealed that the 

Table 1  Clinicopathological characteristics of BC patients enrolled in internal institutions
Clinicopathologic Characteristic Training set (n = 150) Independent validation set (n = 65)

HER2-over
(n = 52)

HER2-low
(n = 65)

HER2-zero
(n = 33)

p HER2-over
(n = 27)

HER2-low
(n = 31)

HER2-zero
(n = 7)

p

Age 50.79 ± 11.05 52.8 ± 12.46 52.36 ± 13.31 0.660 54.00 ± 10.62 53.71 ± 11.69 60.57 ± 13.0 0.341
SUVmax 11.41 ± 5.67 10.96 ± 6.30 11.14 ± 5.76 0.921 11.91 ± 4.98 10.16 ± 4.90 10.83 ± 6.74 0.436
SUVmean 6.55 ± 3.35 6.60 ± 3.72 6.66 ± 3.91 0.983 7.10 ± 2.83 6.12 ± 2.84 6.12 ± 3.81 0.425
ER 0.001 0.036
Positive 23(15.3%) 51(34.0%) 22(14.7%) 16(24.6%) 26(40.0%) 3(4.6%)
Negative 29(19.3%) 14(9.3%) 11(7.3%) 11(16.9%) 5(7.7%) 4(6.2%)
PR < 0.001 0.001
Positive 14(9.3%) 45(30.0%) 18(12.0%) 19(29.2%) 23(35.4%) 2(3.1%)
Negative 38(25.3%) 20(13.3%) 15(10.0%) 8(12.3%) 8(12.3%) 5(7.7%)
Ki-67 0.058 0.731
≥ 14 50(33.3%) 65(43.3%) 30(20.0%) 26(40.0%) 29(44.6%) 7(10.8%)
< 14 2(1.3%) 0(0%) 3(2.0%) 1(1.5%) 2(3.1%) 0(0%)
Abbreviations: ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; SUV: standardized uptake value

Fig. 2  Process of radiomics research
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independent validation set’s KNN vs. RF (p = 0.068), LR 
(p = 0.020), and SVM (p = 0.025). Finally, an independent 
external validation was performed to verify the predictive 
power of the identified optimal radiomic models in HER2 
expression status. As illustrated in Fig.  6, the selected 
RF model for HER2-over-expression vs. others, the LR 
model for HER2-low-expression vs. others, and the KNN 
model for HER2-zero-expression vs. others based on 
the internal institution, also exhibited predictive perfor-
mance for BC patients from the external institution with 
an AUC of 0.788 (95%CI: 0.708–0.868), 0.779 (95%CI: 
0.698–0.860), 0.835 (95%CI: 0.762–0.908), respectively.

Discussion
The HER2 expression status of BC patients was reclas-
sified as HER2-over-expression, HER2-low-expression, 
and HER2-zero-expression [20]. Furthermore, previous 
studies also confirmed that BC patients with HER2-low-
expression status and HER2-zero-expression status were 
different from the perspectives of biological characteris-
tics and responses to treatment [21]. Accordingly, a pre-
cise treatment strategy is recommended for BC patients 
based on HER2 expression status. Traditional HER2-
targeted medications significantly improved the progno-
sis of BC patients with HER2-over-expression status [22, 
23], and BC with HER2-zero-expression status is ineligi-
ble for HER2-targeted therapy. Whereas, BC with HER2-
low-expression status who were previously classified into 
the HER2-negative expression group would benefit from 
novel HER2-targeted antibody-drug conjugate (ADC), 
such as trastuzumab deruxtecan (T-DXd) [4, 24]. For the 
precision treatment of HER2 BC patients, non-invasive 
and reliable identification of HER2 expression status 
before surgery is critically important. In this study, a com-
prehensive radiomics study based on 18F-FDG PET/CT 
images was performed to construct and select the best 
radiomics model to predict HER2 expression status. As 
demonstrated in the results, the predictive performances 
of different machine learning classifiers varied among dif-
ferent comparison tasks. For HER2-over-expression vs. 
others, the RF model outperformed other models with 
an AUC value of 0.785 in the independent validation 
set. About HER2-low-expression vs. others, the outper-
formance of the LR model over other models with an 

Table 2  Clinicopathological characteristics of BC patients 
enrolled in the external institution
Clinico-
pathologic 
Characteristic

External validation set (n = 100)
HER2-over
(n = 25)

HER2-low
(n = 45)

HER2-zero
(n = 30)

p

Age 52.16 ± 8.89 54.98 ± 10.36 46.13 ± 10.81 0.002
SUVmax 13.15 ± 5.94 11.43 ± 7.62 13.67 ± 6.52 0.344
SUVmean 6.05 ± 1.68 4.97 ± 1.86 5.85 ± 1.60 0.025
ER < 0.001
Positive 14(14.0%) 34(34.0%) 17(17.0%)
Negative 11(11.0%) 11(11.0%) 13(13.0%)
PR < 0.001
Positive 11(11.0%) 29(29.0%) 15(15.0%)
Negative 14(14.0%) 16(16.0%) 15(15.0%)
Ki-67 0.064
≥ 14 25(25.0%) 40(40.0%) 28(28.0%)
< 14 0(0%) 5(5.0%) 2(2.0%)
Abbreviations: ER, estrogen receptor; PR, progesterone receptor; HER2, human 
epidermal growth factor receptor 2; SUV: standardized uptake value

Table 3  Final selected radiomics features to identify HER2 expression status
Model Radiomic Feature
HER2-over-expression vs. others ct_original_shape_MajorAxisLength

pet_wavelet-LLL_firstorder_Skewness
pet_log-sigma-1-mm-3D_glcm_MCC
ct_wavelet-HHH_glszm_ZoneEntropy
ct_original_firstorder_Maximum
pet_original_glrlm_RunLengthNonUniformityNormalized
ct_wavelet-LHH_glszm_LargeAreaHighGrayLevelEmphasis
ct_log-sigma-1-mm-3D_glszm_LargeAreaHighGrayLevelEmphasis

HER2-low-expression vs. others pet_wavelet-HHL_firstorder_Kurtosis
ct_wavelet-HHH_glszm_LargeAreaHighGrayLevelEmphasis
pet_wavelet-LHH_gldm_DependenceNonUniformityNormalized
pet_wavelet-LLL_firstorder_Skewness
pet_wavelet-HLH_glcm_JointEnergy
ct_wavelet-LLH_glcm_InverseVariance
ct_log-sigma-1-mm-3D_glszm_LargeAreaHighGrayLevelEmphasis
pet_wavelet-LHH_glszm_GrayLevelNonUniformity
ct_wavelet-LLH_glszm_SmallAreaLowGrayLevelEmphasis
pet_original_glszm_SmallAreaLowGrayLevelEmphasis

HER2-zero-expression vs. others pet_wavelet-HHL_glcm_MaximumProbability
ct_wavelet-HHH_glszm_ZoneEntropy
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Fig. 4  ROC curves of 4 constructed radiomic models for HER2-low-expression vs. others (HER2-over-expression + HER2-zero-expression) in the training 
(left) and independent validation set (right)

 

Fig. 3  ROC curves of 4 constructed radiomic models for HER2-over-expression vs. others (HER2-low-expression + HER2-zero-expression) in the training 
(left) and independent validation set (right)
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AUC value of 0.756 in the independent validation set. 
Whereas, the KNN model was confirmed as the optimal 
model to distinguish HER2-zero-expression from oth-
ers, with an AUC value of 0.847 in the independent vali-
dation set. An independent external validation was also 

conducted in this study. In the external validation set, 
radiomics models achieved an AUC of 0.788 in differen-
tiating HER2-overexpression from others; 0.779 in dif-
ferentiating HER2-low-expression from others; and 0.835 
in differentiating HER2-zero-expression from others, 

Fig. 6  ROC curves of the optimal radiomic models for HER2-over-expression vs. others, HER2-low-expression vs. others, and HER2-zero-expression vs. 
others in the external independent set

 

Fig. 5  ROC curves of 4 constructed radiomic models for HER2-zero-expression vs. others (HER2-over-expression + HER2-low-expression) in the training 
(left) and independent validation set (right)
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respectively. The research results show that the radiomics 
model has potential clinical application value in guiding 
the treatment of BC patients with different HER2 expres-
sion status.

For HER2-over-expression vs. others in the study, 
which is equal to HER2-over-expression vs. HER2-neg-
ative-expression, multiple radiomic models based on 
PET/CT images were already constructed and evaluated 
in previous studies. Chen et al. included 217 BC patients 
and finally constructed four radiomic models, and the 
XGBoost model outperformed other models in discrimi-
nating between HER2-over-expression and HER2-neg-
ative with an AUC of 0.72 in the test set [16]. Liu et al. 
built a radiomic signature model to distinguish between 
HER2-over-expression and HER2-negative, and the AUC 
of the model was 0.788 in the validation cohort [17]. In 
our work, the optimal RF model (Independent validation 
set: AUC = 0.785, External validation set: 0.788) could 
distinguish HER2-over-expression from others and had 
comparable predictive ability to previous studies.

As aforementioned, it is necessary to discriminate 
HER2-low-expression and HER2-zero-expression, 
because they are characterized by different biological 
features, response to anti-HER2 treatment, and different 
prognosis [21]. Currently, studies to differentiate between 
HER2-low-expression and HER2-zero-expression status 
were mainly limited to MRI. Guo et al. established a deep 
learning radiomic (DLR) model based on magnetic reso-
nance imaging (MRI) to exclusively discriminate between 
HER2-low-expression and HER2-zero-expression with 
an AUC of 0.750 [25]. However, the DLR model can only 
be used to classify HER2-negative status. A study from 
Ramtohul et al. [26], an MRI-based radiomic model was 
constructed to distinguish HER2-zero-expression vs. oth-
ers (HER2-low-expression + HER2-over-expression) with 
an AUC of 0.80, whereas no predictive radiomic mod-
els were developed to differentiate HER2-over-express-
sion vs. others, and HER2-low-expression vs. others. 
In our study, three comparison tasks were completed, 
including HER2-over-expression vs. others, HER2-low-
expression vs. others, and HER2-zero-expression vs. 

others. Similarly, multiple MRI diffusion models were 
constructed by Mao et al. to conduct these three compar-
ison tasks [27], but no radiomic or deep learning analysis 
was used in the study. Though both studies from Zheng 
et al. [7] and Dai et al. [28] constructed three models for 
identifying HER2 status based on multi-parameter MRI 
radiomics and deep learning to complete these three 
comparison tasks, no clinicopathological characteristics 
or multiple machine learning classifiers were included 
to conduct a comprehensive radiomic analysis. To the 
best of our knowledge, there are currently few radiomics 
analyses based on PET/CT images to identify the three 
different HER2 expression statuses of BC. In our study, 
we performed a comprehensive radiomic analysis based 
on PET/CT images, including clinicopathological fea-
tures and multiple machine learning classifiers, to select 
the optimal radiomic model, which further enhanced the 
identification of the three HER2 expression statuses.

ER and PR are present in mammary epithelial cells, but 
they may be partially or completely absent when the nor-
mal cells turn into cancerous cells. Multiple mechanisms 
were potentially responsible for the loss of hormone 
receptors in BC cells [29]. Both ER and PR are remark-
ably correlated with HER2 expression status. As reported, 
HER2-over-expression was negatively correlated with PR 
or ER level [30]. Patients with HER2-over-expression 
status had lower ER/PR levels compared to those with 
HER2 low-expression status [31]. Presumably, that par-
tially contributed to the differences in ER and PR levels 
between BC with different HER2 expression statuses.

Despite encouraging conclusions obtained in the study, 
some limitations need to be pointed out. First, manual 
VOI segmentation on CT images is still a tedious and 
subjective process. In future studies, standardized seg-
mentation algorithms should be employed to guarantee 
objectivity and repeatability. Secondly, only two insti-
tutions were enrolled to perform internal and external 
validation. More external institutions were expected to 
further verify the conclusion in a multi-center study in 
the future. Then, only BC with invasive ductal carcinoma 

Table 4  The performances of all 12 constructed radiomic models in discriminating HER2 expression status in the training and 
independent validation sets from the internal institution
Models AUC (95%CI) and datasets LR KNN SVM RF
HER2-over-expression vs. others
Training set 0.766(0.690–0.831) 0.834 (0.765–0.890) 0.820(0.749–0.878) 0.843(0.774–0.897)
Independent validation set 0.756(0.634–0.854) 0.639 (0.510–0.755) 0.616(0.488–0.735) 0.785(0.665–0.877)
HER2-low-expression vs. others
Training set 0.783(0.708–0.846) 0.867(0.802–0.917) 0.836(0.767–0.892) 0.875(0.811–0.923)
Independent validation set 0.756(0.634–0.854) 0.701(0.574–0.808) 0.742(0.618–0.843) 0.733(0.609–0.835)
HER2-zero-expression vs. others
Training set 0.732(0.672–0.786) 0.929(0.890–0.958) 0.774(0.716–0.825) 0.799(0.744–0.848)
Independent validation set 0.696(0.598–0.782) 0.847(0.764–0.910) 0.706(0.610–0.791) 0.734(0.639–0.815)
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was included in the study, and no analysis was conducted 
for other histological types.

Conclusions
Our study first shows that three different HER2 expres-
sion statuses can be identified based on PET/CT 
radiomic models. Identifying the HER2-over-expression 
statuses will benefit patients who are undergoing tradi-
tional HER2-targeting therapy. Identifying the HER2-
low-expression statuses will benefit patients from novel 
anti-HER2 treatment options (T-DXd).
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